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ABSTRACT. In the paper we investigate the structure of solutions of discrete-time control systems

with a compact metric space of states. We are interested in turnpike properties of the approximate

solutions which are independent of the length of the interval, for all sufficiently large intervals. Using

the porosity notion we show that most control systems possess the turnpike property.
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1. INTRODUCTION

The study of the existence and the structure of solutions of optimal control prob-

lems defined on infinite intervals and on sufficiently large intervals has recently been

a rapidly growing area of research. See, for example, [5–7, 9, 10, 15, 16, 18, 25, 26,

28, 34–40] and the references mentioned therein. These problems arise in engineering

[1, 19], in models of economic growth [2, 8, 9, 14, 18, 21, 23, 24, 31, 32, 38–40], in in-

finite discrete models of solid-state physics related to dislocations in one-dimensional

crystals [4, 33] and in the theory of thermodynamical equilibrium for materials [11,

20, 22]. In this paper we study the structure of solutions of a discrete-time optimal

control system considered in [34–40].

Let (K, ρ) be a compact metric space, Rn be the n-dimensional Euclidean space

equipped with the Euclidean norm and let C(K × K) be the space of all continuous

functions defined on the space K × K.

For each v ∈ C(K × K) set

(1.1) ‖v‖ = sup{|v(z1, z2)| : z1, z2 ∈ K}.

Denote by M the set of all sequences {vi}
∞
i=0, where vi ∈ C(K ×K), i = 0, 1, . . . and

such that

(1.2) sup{‖vi‖ : i = 0, 1, . . .} < ∞.
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Let {vi}
∞
i=0 ∈ M. For each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 and each

y, z ∈ K we consider the optimization problems

T2−1
∑

i=T1

vi(xi, xi+1) → min,

{xi}
T2

i=T1
⊂ K, xT1

= y, xT2
= z

and
T2−1
∑

i=T1

vi(xi, xi+1) → min,

{xi}
T2

i=T1
⊂ K, xT1

= y.

The interest in discrete-time optimal problems of these types stems from the study

of various optimization problems which can be reduced to it, e.g., continuous-time

control systems which are represented by ordinary differential equations whose cost

integrand contains a discounting factor [9], tracking problems in engineering [20], the

study of Frenkel-Kontorova model related to dislocations in one-dimensional crystals

[4, 33] and the analysis of a long slender bar of a polymeric material under tension in

[11, 20, 22]. See also [18, 34–40] and the references mentioned therein.

We are interested in a turnpike property of the approximate solutions of these

problems which is independent of the length of the interval [T1, T2], for all sufficiently

large intervals. To have this property means, roughly speaking, that the approximate

solutions of the optimal control problems are determined mainly by the cost function

v, and are essentially independent of T2, T1, y and z. Turnpike properties are well

known in mathematical economics. The term was first coined by Samuelson in 1948

(see [31]) where he showed that an efficient expanding economy would spend most of

the time in the vicinity of a balanced equilibrium path (also called a von Neumann

path). This property was further investigated for optimal trajectories of models of

economic dynamics (see, for example, [2, 14, 21, 23, 24, 32, 38] and the references

mentioned there).

Recently it was shown that the turnpike property is a general phenomenon which

holds for large classes of variational and optimal control problems [34–38]. For each

of these classes we established that most problems (integrands, objective functions

respectively) in the sense of Baire category possess the turnpike property.

In the sequel we say that a property of elements of a complete metric space Z

is generic (typical) in Z if the set of all elements of Z which possess this property

contains an everywhere dense Gδ subset of Z. In this case we also say that the

property holds for a generic (typical) element of Z or that a generic (typical) element

of Z possesses the property [3, 11, 27, 38].
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In [34–38] we identified a class of problems with a complete metric space of

objective functions (integrands) and showed that the turnpike property holds for a

generic element of the space of objective functions (integrands, respectively). In this

paper we use the concept of porosity which will enable us to obtain more refined

results.

First we recall the concept of porosity. Let Z be a metric space. We denote by

BZ(y, r) the closed ball of center y ∈ Z and radius r > 0. A subset E ⊂ Z is called

porous in Z if there exist α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each

y ∈ Z, there exists z ∈ Z for which

BZ(z, αr) ⊂ BZ(y, r) \ E.

A subset of the space Z is called σ-porous in Z if it is a countable union of porous

subsets in Z.

Other notions of porosity can be found in the literature. We use the rather strong

concept of porosity which has already found application in, for example, [12], [13],

[29], [30].

Since porous sets are nowhere dense, all σ-porous sets are of the first category. If

Y is a finite-dimensional Euclidean space, then σ-porous sets are of Lebesgue measure

zero. In fact, the class of σ-porous sets in such a space is much smaller than the class

of sets which have measure zero and are of the first category.

In this paper we equip the space M with an appropriate complete metric and

construct a set F ⊂ M such that the complement M\F is porous set in the metric

space M and that for any element of F the corresponding optimal control system

possesses the turnpike property.

In the sequel we use the following notation and definitions.

Put

(1.3) diam(K) = sup{ρ(z1, z2) : z1, z2 ∈ K}.

We assume that the sum over empty set is zero.

For each {vi}
∞
i=0 ∈ M, each y, z ∈ K and each pair of integers T1, T2 satisfying

0 ≤ T1 < T2 set

(1.4) U({vi}
∞

i=0, y, z, T1, T2)

= inf

{

T2−1
∑

i=T1

vi(xi, xi+1) : {xi}
T2

i=T1
⊂ K, xT1

= y, xT2
= z

}

,

(1.5) Ũ({vi}
∞

i=0, y, T1, T2) = inf

{

T2−1
∑

i=T1

vi(xi, xi+1) : {xi}
T2

i=T1
⊂ K, xT1

= y

}

.

The following two results will be proved in Section 2.



306 A. J. ZASLAVSKI

Theorem 1.1. Let {vi}
∞
i=0 ∈ M and y ∈ K. Then there exists a sequence {xi}

∞
i=0 ⊂

K such that x0 = y and

T−1
∑

i=0

vi(xi, xi+1) = U({vi}
∞

i=0, y, x(T ), 0, T )

for all natural numbers T .

Theorem 1.2. Let {vi}
∞
i=0 ∈ M, 0 ≤ T1 < T2 be integers and let {xi}

T2

i=T1
⊂ K

satisfy
T2−1
∑

i=T1

vi(xi, xi+1) = U({vi}
∞

i=0, xT1
, xT2

, T1, T2).

Then for each {yi}
T2

i=T1
⊂ K,

(1.6)

T2−1
∑

i=T1

vi(yi, yi+1) ≥

T2−1
∑

i=T1

vi(xi, xi+1) − 4 sup{‖vi‖ : i = 0, 1, . . .}.

Corollary 1.3. Let {vi}
∞
i=0 ⊂ M and let {xi}

∞
i=0 ⊂ K satisfy

T−1
∑

i=0

vi(xi, xi+1) = U({vi}
∞

i=0, x0, xT , 0, T )

for any integer T ≥ 1. Then for each {yi}
∞
i=0 ⊂ K

T−1
∑

i=0

vi(yi, yi+1) −

T−1
∑

i=0

vi(xi, xi+1) ≥ −4 sup{‖vi‖ : i = 0, 1, . . .}

for all integers T ≥ 1.

Corollary 1.4. Let {vi}
∞
i=0 ⊂ M, {xi}

∞
i=0 ⊂ K, satisfy

T−1
∑

i=0

vi(xi, xi+1) = U({vi}
∞

i=0, x0, xT , 0, T )

for all integers T ≥ 1 and let {yi}
∞
i=0 ⊂ K. Then either the sequence

{

T
∑

i=0

vi(yi, yi+1) −

T−1
∑

i=0

vi(xi, xi+1) : T = 0, 1, . . .

}

is bounded or
∑T

i=0 vi(yi, yi+1) −
∑T−1

i=0 vi(xi, xi+1) → ∞ as T → ∞.

Let {vi}
∞
i=0 ∈ M. A sequence {xi}

∞
i=0 ⊂ K is called ({vi}

∞
i=0)-good [9, 14, 38] if

for each {yi}
∞
i=0 ⊂ K there is M > 0 such that

T−1
∑

i=0

vi(yi, yi+1) −
T−1
∑

i=0

vi(xi, xi+1) ≥ −M for all integers T ≥ 1.
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Let {vi}
∞
i=0 ∈ M. A sequence {xi}

∞
i=0 ⊂ K is called ({vi}

∞
i=0)-overtaking optimal

if for any sequence {yi}
∞
i=0 ⊂ K satisfying y0 = x0,

lim sup
T→∞

[

T
∑

i=0

vi(xi, xi+1) −
T
∑

i=0

vi(yi, yi+1)

]

≤ 0.

We use the convention that ∞/∞ = 1. For each {vi}
∞
i=0, {ui}

∞
i=0 ∈ M put

d̃({vi}
∞

i=0, {ui}
∞

i=0) = sup{|vi(z1, z2) − ui(z1, z2)| : z1, z2 ∈ K, i = 0, 1, . . .}

+ sup{|(vi − ui)(y1, y2) − (vi − ui)(z1, z2)|(ρ(z1, y1) + ρ(z2, y2))
−1 :

(1.7) y1, y2, z1, z2 ∈ K such that (y1, y2) 6= (z1, z2) and i = 0, 1, . . .},

(1.8) d({vi}
∞

i=0, {ui}
∞

i=0) = d̃({vi}
∞

i=0, {ui}
∞

i=0)(1 + d̃({vi}
∞

i=0, {ui}
∞

i=0))
−1.

It is not difficult to see that (M, d) is a complete metric space. In view of (1.8) for

each {vi}
∞
i=0, {ui}

∞
i=0 ∈ M such that d({vi}

∞
i=0, {ui}

∞
i=0) < 1 we have

(1.9) d̃({vi}
∞

i=0, {ui}
∞

i=0) = d({vi}
∞

i=0, {ui}
∞

i=0)(1 − d({vi}
∞

i=0, {ui}
∞

i=0))
−1.

Denote by Mu the set of all sequences {vi}
∞
i=0 ∈ M for which the following

property holds:

for each ǫ > 0 there exists δ > 0 such that if an integer i ≥ 0 and if y1, y2, z1, z2 ∈

X satisfy ρ(y1, z1), ρ(y2, z2) ≤ δ, then |vi(y1, y2) − vi(z1, z2)| ≤ ǫ.

Denote by ML the set of all {vi}
∞
i=0 ∈ M such that for each integer i ≥ 0,

sup{|vi(y1, y2) − vi(z1, z2)|(ρ(y1, z1) + ρ(y2, z2))
−1 :

y1, y2, z1, z2 ∈ X such that (y1, y2) 6= (z1, z2)} < ∞

and denote by MuL the set of all {vi}
∞
i=0 ∈ M such that

sup{|vi(y1, y2) − vi(z1, z2)|(ρ(y1, z1) + ρ(y2, z2))
−1 :

y1, y2, z1, z2 ∈ K such that (y1, y2) 6= (z1, z2), i ≥ 0 is an integer} < ∞.

Clearly, Mu, ML and MuL are closed subsets of the complete metric space (M, d).

Denote by Ma the set of all {vi}
∞
i=0 ∈ M such that vi = v0 for all integers

i ≥ 0. Clearly, Ma is a closed subset of (M, d) and it is identified with the the space

C(K × K).

Let v ∈ C(K × K) and vi = v for all integers i ≥ 0. Set

(1.10) µ(v) = inf

{

lim inf
N→∞

N−1
∑

i=0

v(zi, zi+1) : {zi}
∞

i=0 ⊂ K

}

.

Clearly,

(1.11) µ(v) ≤ inf{v(x, x) : x ∈ K}.
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Denote by Mar the set of all {vi}
∞
i=0 ∈ Ma such that

(1.12) µ(v0) = inf{v0(z, z) : z ∈ K}.

Clearly Mar is a closed subset of the metric space (M, d).

It is not difficult to see that the following assertion holds.

Theorem 1.5. Let {vi}
∞
i=0 ∈ Mar. Then the following assertions hold.

1. There is x ∈ K such that µ(v0) = v0(x, x).

2. Assume that x ∈ K satisfies µ(v0) = v0(x, x). Then for each integer T ≥ 0,

Tµ(v0) = U({vi}
∞

i=0, x, x, 0, T ).

Set MLar = ML∩Mar. Clearly, MLar is a closed subset of the metric space(M, d).

If K is a compact subset of a normed space (X, ‖ · ‖) and ρ(x, y) = ‖x − y‖,

x, y ∈ K, then we denote by Mac the set of all {vi}
∞
i=0 ∈ Ma such that v0 is convex.

Note that in this case Mac is a closed subset of (M, d) and in view of Proposi-

tion 2.1 of [36], Mac ⊂ Mar.

The following theorem is our main result.

Theorem 1.6. Let A be Mu or MuL or Mar or MLar or Mac equipped with the

metric d. Let F be the set of all {vi}
∞
i=0 ∈ A for which there exist {x̄i}

∞
i=0 ⊂ K and

a neighborhood U of {vi}
∞
i=0 in A such that the following properties hold:

(i) For each {wi}
∞
i=0 ∈ U and each pair of integers T2 > T1 ≥ 0,

U({wi}
∞

i=0, x̄T1
, x̄T2

, T1, T2) =

T2−1
∑

i=T1

wi(x̄i, x̄i+1).

(ii) For each {wi}
∞
i=0 ∈ U and each ({wi}

∞
i=0)-good sequence {yi}

∞
i=0 ⊂ K,

∞
∑

i=0

ρ(yi, x̄i) < ∞.

(iii) For each {wi}
∞
i=0 ∈ U and each x0 ∈ K there is an ({wi}

∞
i=0)-overtaking

optimal {xi}
∞
i=0 ⊂ K and moreover, any sequence {xi}

∞
i=0 ⊂ K satisfying

T
∑

i=0

wi(xi, xi+1) = U({wi}
∞

i=0, x0, xT , 0, T )

for all integers T , is ({wi}
∞
i=0)-overtaking optimal.

(iv) For each M0 > 0 there is M1 > 0 such that for each {wi}
∞
i=0 ∈ M, each pair

of integers T1 ≥ 0, T1 > T1 + 1 and each sequence {xi}
T2

i=T1
⊂ K satisfying

T2−1
∑

i=T1

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT1
, xT2

, T1, T2) + M0
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the inequality
∑T2

i=T1
ρ(xi, x̄i) ≤ M1 holds.

(v) For each ǫ ∈ (0, 1) there exist δ ∈ (0, ǫ) and a natural number L such that

for each {wi}
∞
i=0 ∈ U , each integer T1 ≥ 0, each integer T2 > T1 + 2L + 1 and each

sequence {xi}
T2

i=T1
⊂ K which satisfies

T2−1
∑

i=T1

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT1
, xT2

, T1, T2) + δ

there exist integers τ1 ∈ [T1, T1 + L], τ2 ∈ [T2 − L, T2] such that

τ2
∑

i=τ1

ρ(xi, x̄) ≤ ǫ.

Moreover, if ρ(xT1
, x̄T1

) ≤ δ, then τ1 = T1 and if ρ(xT2
, x̄T2

) ≤ δ, then τ2 = T2.

Then A \ F is a porous set in (A, d) with

α = 128−1(2diam(K) + 1)−1.

2. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. For each natural number n there exists {x
(n)
i }n

i=0 ⊂ K

such that

(2.1) x
(n)
0 = y,

n
∑

i=0

vi(x
(n)
i , x

(n)
i+1) = Ũ({vi}

∞

i=0, y, 0, n).

By using a diagonalization process we obtain that there exists a strictly increasing

sequence of natural numbers {nk}
∞
k=1 such that for each integer i ≥ 0 there is

(2.2) xi = lim
k→∞

x
(nk)
i .

Clearly,

(2.3) x0 = y.

Let T be a natural number. We show that

(2.4)

T−1
∑

i=0

vi(xi, xi+1) = U({vi}
∞

i=0, y, xT , 0, T ) > 0.

Let us assume the contrary. Then

(2.5) ǫ :=

T−1
∑

i=0

vi(xi, xi+1) − U({vi}
∞

i=0, y, xT , 0, T ) > 0

and there exists {zi}
T
i=0 ⊂ K such that

z0 = y, zT = xT ,

(2.6)
T−1
∑

i=0

vi(xi, xi+1) −
T−1
∑

i=0

vi(zi, zi+1) > ǫ/2.
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There exists δ > 0 such that

(2.7) |vi(y1, y2) − vi(ȳ1, ȳ2)| ≤ ǫ(8 + 8T )−1

for any integer i ∈ [0, T + 1] and each y1, y2, ȳ1, ȳ2 ∈ K satisfying ρ(yi, ȳi) ≤ 2δ, i =

0, . . . , T + 1. In view of (2.2) there exists a natural number k such that

(2.8) nk > T + 8, ρ(xi, x
(nk)
i ) ≤ δ, i = 0, . . . , T + 8.

Define a sequence {z̃i}
nk

i=0 ⊂ K as follows:

(2.9) z̃i = zi, i = 0, . . . , T, z̃i = x
(nk)
i , i = T + 1, . . . , nk.

By (2.1), (2.6) and (2.9),

(2.10) z̃0 = y = x
(nk)
0 , z̃nk

= x(nk)
nk

.

Relations (2.1), (2.9) and (2.10) imply that

0 ≤

nk−1
∑

i=0

vi(z̃i, z̃i+1) −

nk−1
∑

i=0

vi(x
(nk)
i , x

(nk)
i+1 ) =

T
∑

i=0

vi(z̃i, z̃i+1) −
T
∑

i=0

vi(x
nk)
i , x

(nk)
i+1 )

(2.11) =

T−1
∑

i=0

vi(zi, zi+1) + vT (zT , x
(nk)
T+1) −

T
∑

i=0

vi(x
(nk)
i , x

(nk)
i+1 ).

By (2.6) and (2.11),

0 ≤

T−1
∑

i=0

vi(zi, zi+1) −

T−1
∑

i=0

vi(xi, xi+1) +

[

T−1
∑

i=0

vi(xi, xi+1) −

T−1
∑

i=0

vi(x
(nk)
i , x

(nk)
i+1 )

]

+vT (xT , x
(nk)
T+1) − vT (x

(nk)
T , x

(nk)
T+1) ≤ −ǫ/2 +

[

T−1
∑

i=0

vi(xi, xi+1) −

T−1
∑

i=0

vi(x
(nk)
i , x

(nk)
i+1 )

]

(2.12) +vT (xT , x
(nk)
T+1) − vT (x

(nk)
T , x

(nk)
T+1).

By (2.8) and the choice of δ (see (2.7)),

|vT (xT , x
(nk)
T+1) − vT (x

(nk)
T , x

(nk)
T+1)| ≤ ǫ(8(T + 1))−1

and for i = 0, . . . , T,

|vi(xi, xi+1) − vi(x
(nk)
i , x

(nk)
i+1 )| ≤ ǫ(8(T + 1))−1.

Combined with (2.12) these two inequalities above imply that

0 ≤ −ǫ/2 + (T + 1)(ǫ/8)(T + 1)−1 < 0,

a contradiction. The contradiction we have reached proves that (2.4) holds. Theo-

rem 1.1 is proved.
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Proof of Theorem 1.2. Let {yi}
T2

i=T1
⊂ K. We show that (1.6) holds. It is clear

that we may only consider the case when T2 > T1 + 1. Set

(2.13) zT1
= xT1

, zT2
= xT2

, zi = yi, i ∈ {T1, . . . , T2} \ {T1, T2}.

By (2.13),

0 ≤

T2−1
∑

i=T1

vi(zi, zi+1) −

T2−1
∑

i=T1

vi(xi, xi+1)

≤

T2−1
∑

i=T1

vi(zi, zi+1) −

T2−1
∑

i=T1

vi(yi, yi+1) +

T2−1
∑

i=T1

vi(yi, yi+1) −

T2−1
∑

i=T1

vi(xi, xi+1)

≤ 4 sup{‖vi‖ : i = 0, 1, . . .} +

T2−1
∑

i=T1

vi(yi, yi+1) −

T2−1
∑

i=T1

vi(xi, xi+1).

Theorem 1.2 is proved.

3. AUXILIARY RESULTS

Let {vi}
∞
i=0 ∈ M. By Theorem 1.1 there is {x̄i}

∞
i=0 ∈ K such that

(3.1)
T−1
∑

i=0

vi(x̄i, x̄i+1) = U({vi}
∞

i=0, x̄0, x̄T , 0, T )

for all natural numbers T .

If {vi}
∞
i=0 ∈ Mar, then in view of Theorem 1.5 we may assume that

(3.2) x̄i = x̄0 for all integers i ≥ 0,

where

(3.3) v0(x̄0, x̄0) = µ(v0).

Let n be a natural number. Put

(3.4) (vn)i(x, y) = vi(x, y) + n−1(ρ(x, x̄i) + ρ(y, x̄i+1)),

x, y ∈ K, i = 0, 1, . . .

Clearly, {(vn)i}
∞
i=0 ∈ M and if {vi}

∞
i=0 ∈ Ma (respectively, ML, MuL,Mar,

MLar, Mac, Mac ∩ ML), then {(vn)i}
∞
i=0 ∈ Mu (respectively, ML, MuL, Mar,

MLar,Mac, Mac ∩ML) and

sup{|(vn)i(x, y) − vi(x, y)| : x, y ∈ K, i = 0, 1, . . .}

(3.5) ≤ 2n−1 sup{ρ(z1, z2) : z1, z2 ∈ K} ≤ 2n−1diam(K)

and that for x1, x2, y1, y2 ∈ K and i ∈ {0, 1, . . .}

|((vn)i − vi)(x1, y1) − ((vn)i − vi)(x2, y2)|
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(3.6)

= n−1|(ρ(x1, x̄i) + ρ(y1, x̄i+1)) − (ρ(x2, x̄i) + ρ(y2, x̄i+1))| ≤ n−1(ρ(x1, x2) + ρ(y1, y2)).

Lemma 3.1. Let {wi}
∞
i=0 ∈ M satisfy

(3.7) |wi(z1, z2) − (vn)i(z1, z2)| ≤ (4n)−1

for all z1, z2 ∈ X and all integers i ≥ 0 and

(3.8) |(wi − (vn)i)(z1, z2) − (wi − (vn)i)(y1, y2)| ≤ (4n)−1(ρ(z1, y1) + ρ(z2, y2))

for all integers i ≥ 0 and all y1, y2, z1, z2 ∈ K.

Then the following assertions hold.

1. Let z1, z2 ∈ K and an integer i ≥ 0. Then

wi(z1, z2) − wi(x̄i, x̄i+1) ≥ vi(z1, z2) − vi(x̄i, x̄i+1) + 3(4n)−1(ρ(z1, x̄i) + ρ(z2, x̄i+1)).

2. Let integers T1, T2 satisfy 0 ≤ T1 < T2 and let {zi}
T2

i=T1
⊂ K. Then

T2−1
∑

i=T1

wi(zi, zi+1) −

T2−1
∑

i=T1

wi(x̄i, x̄i+1) ≥

T2−1
∑

i=T1

vi(zi, zi+1) −

T2−1
∑

i=T1

vi(x̄i, x̄i+1)

+3(4n)−1
T2−1
∑

i=T1

(ρ(zi, x̄i) + ρ(zi+1, x̄i+1)).

3. For each pair of integers T2 > T1 ≥ 0,

U({wi}
∞

i=0, x̄T1
, x̄T2

, T1, T2) =

T2−1
∑

i=T1

wi(x̄i, x̄i+1).

4. For each ({wi}
∞
i=0)-good sequence {yi}

∞
i=0 ,

∑

∞

i=0 ρ(yi, x̄i) < ∞.

5. Let {wi}
∞
i=0 ∈ Mu. Then for each x0 ∈ K there is a ({wi}

∞
i=0)-overtaking

optimal sequence {xi}
∞
i=0 ∈ K. Moreover, any sequence {xi}

∞
i=0 ⊂ K satisfying

T
∑

i=0

wi(xi, xi+1) = U({wi}
∞

i=0, x0, xT , 0, T ) for all integers T ≥ 0

is ({wi}
∞
i=0)-overtaking optimal.

6. Let M0 > 0. Then for each pair of integers T1 ≥ 0, T2 > T1 + 1 and each

sequence {xi}
T2

i=T1
⊂ K satisfying

T2−1
∑

i=T1

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT1
, xT2

, T1, T2) + M0

the following inequality holds:

T2
∑

i=T1

ρ(xi, x̄i) ≤ 2n(M0 + 8 sup{‖vi‖ : i = 0, 1, . . .}) + 2 + 16diam(K).
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7. Let M0 > 0, ǫ > 0 and a natural number L ≥ 2 satisfies

Lǫ > 2n(M0 + 8 sup{‖vi‖ : i = 0, 1, . . .}) + 16diam(K).

Then for each integer T ≥ 0 and each sequence {xi}
T+L
i=L ⊂ K satisfying

T+L−1
∑

i=T

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT , xT+L, T, T + L) + M0

the following inequality holds:

min{ρ(xi, x̄i) : i = T, . . . , T + L} ≤ ǫ.

Proof of Assertion 1. By (3.4) and (3.8),

wi(z1, z2) − wi(x̄i, x̄i+1) = (vn)i(z1, z2) − (vn)i(x̄i, x̄i+1)

+ [(wi − (vn)i)(z1, z2) − (wi − (vn)i)(x̄i, x̄i+1)]

≥ (vn)i(z1, z2) − (vn)i(x̄i, x̄i+1)

− (4n)−1(ρ(z1, x̄i) + ρ(z2, x̄i+1))

= vi(z1, z2) + n−1(ρ(z1, x̄i) + ρ(z2, x̄i+1))

− vi(x̄i, x̄i+1) − (4n)−1(ρ(z1, x̄i) + ρ(z2, x̄i+1))

= vi(z1, z2) − vi(x̄i, x̄i+1) + 3(4n)−1(ρ(z1, x̄i) + ρ(z2, x̄i+1)).

Assertion 1 is proved.

Assertion 2 follows from Assertion 1 while Assertion 3 follows from Assertion 2

and (3.1). It is easy to see that Assertion 4 follows from Assertion 2, (3.1) and

Theorem 1.2.

Let us prove Assertion 5. Let x0 ∈ K. By Theorem 1.1 there is a sequence

{xi}
∞
i=0 ⊂ K such that for all natural numbers T

(3.9)
T−1
∑

i=0

wi(xi, xi+1) = U({wi}
∞

i=0, x0, xT , 0, T ).

We show that {xi}
∞
i=0 is ({wi}

∞
i=0)-overtaking optimal.

Assume the contrary. Then there exists {yi}
∞
i=0 ⊂ K such that

y0 = x0,

(3.10) lim sup
T→∞

[

T
∑

i=0

wi(xi, xi+1) −

T
∑

i=0

wi(yi, yi+1)

]

> 0.

By (3.9) and Theorem 1.2, {xi}
∞
i=0 is ({wi}

∞
i=0)-good. By (3.10), (3.9) and Corollar-

ies 1.3 and 1.4, the sequence {yi}
∞
i=0 is ({wi}

∞
i=0)-good. In view of Assertion 4,

(3.11)
∞
∑

i=0

ρ(yi, x̄i) < ∞,
∞
∑

i=0

ρ(xi, x̄) < ∞.
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By (3.10) there exist ǫ > 0 and a strictly increasing sequence of natural numbers

{Tk}
∞
k=0 such that T0 ≥ 4, Tk+1 ≥ Tk + 4 for all integers k ≥ 0 and

(3.12)

Tk−1
∑

i=0

wi(xi, xi+1) ≥

Tk−1
∑

i=0

wi(yi, yi+1) + 4ǫ for all integers k ≥ 0.

Since {wi}
∞
i=0 ∈ Mu there is δ > 0 such that the following property holds:

(P1) for each integer i ≥ 0 and each z1, z2, z̃1, z̃2 ∈ K satisfying ρ(zj , z̃j) ≤ 2δ,

j = 1, 2,

|wi(z1, z2) − wi(z̃1, z̃2)| ≤ ǫ.

By (3.11) there is a natural number k such that

(3.13) ρ(yTk
, x̄Tk

) ≤ δ/2, ρ(xTk
, x̄Tk

) ≤ δ/2.

Define a sequence {zi}
Tk

i=0 ⊂ K by

(3.14) zi = yi, i = 0, . . . , Tk − 1, zTk
= xTk

.

Clearly,

(3.15) z0 = y0 = x0.

By (3.15), (3.14), (3.9) and (3.12),

0 ≤

Tk−1
∑

i=0

wi(zi, zi+1) −

Tk−1
∑

i=0

wi(xi, xi+1)

=

Tk−1
∑

i=0

wi(yi, yi+1) −

Tk−1
∑

i=0

wi(xi, xi+1) + [

Tk−1
∑

i=0

wi(zi, zi+1) −

Tk−1
∑

i=0

wi(yi, yi+1)]

≤ −4ǫ + wTk−1(yTk−1, xTk
) − wTk−1(yTk−1, yTk

).

Together with property (P1) and (3.13) this implies that 0 ≤ −4ǫ+ǫ, a contradiction.

The contradiction we have reached proves Assertion 5.

Let us prove Assertion 6. Let T1 ≥ 0, T2 > T1 + 1 be integers and {xi}
T2

T1
⊂ K

satisfies

(3.16)

T2−1
∑

i=T1

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT1
, xT2

, T1, T2) + M0.

Define

(3.17) yT1
= xT1

, yT2
= xT2

, yi = x̄i for all integers i satisfying T1 < i < T2.

By (3.17), (3.8) and (3.4),

T2−1
∑

i=T1

wi(yi, yi+1) =

T2−1
∑

i=T1

wi(x̄i, x̄i+1)

+[wT1
(yT1

, yT1+1) − wT1
(x̄T1

, x̄T1+1) + wT2−1(yT2−1, yT2
) − wT2−1(x̄T2−1, x̄T2

)]
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≤

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + (4n)−14 + 4n−12diam(K)

+[vT1
(yT1

, yT1+1) − vT1
(x̄T1

, x̄T1+1) + vT2−1(yT2−1, yT2
) − vT2−1(x̄T2−1, x̄T2

)]

(3.18) ≤

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + n−1 + 8n−1diam(K) + 4 sup{‖vi‖ : i = 0, 1 . . .}.

It follows from (3.18), (3.16) and (3.17) that

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + n−1(1 + 8diam(K)) + 4 sup{‖vi‖ : i = 0, 1, . . .}

≥

T2−1
∑

i=T1

wi(yi, yi+1) ≥

T2−1
∑

i=T1

wi(xi, xi+1) − M0.

Together with Assertion 2, (3.1) and Theorem 1.2 this implies that

M0 + n−1(1 + 8diam(K)) + 4 sup{‖vi‖ : i = 0, 1, . . .}

≥

T2−1
∑

i=T1

wi(xi, xi+1) −

T2−1
∑

i=T1

wi(x̄i, x̄i+1)

≥

T2−1
∑

i=T1

vi(xi, xi+1) −

T2−1
∑

i=T1

vi(x̄i, x̄i+1) + 3(4n)−1

(

T2−1
∑

i=T1

ρ(xi, x̄i) + ρ(xi+1, x̄i+1)

)

≥ −4 sup{‖vi‖ : i = 0, 1, . . .} + 3(4n)−1

(

T2−1
∑

i=T1

ρ(xi, x̄i) + ρ(xi+1, x̄i+1)

)

and
T2−1
∑

i=T1

ρ(xi, x̄i) ≤ 2n(M0 + 8 sup{‖vi‖ : i = 0, 1, . . .}) + 16diam(K).

Thus Assertion 6 is proved.

Assertion 7 follows from Assertion 6. Lemma 3.1 is proved.

Lemma 3.2. Assume that {vi}
∞
i=0 ∈ Mu and ǫ > 0. Then there exists δ ∈ (0, ǫ) such

that for each {wi}
∞
i= ∈ M which satisfies

(3.19) |wi(z1, z2) − (vn)i(z1, z2)| ≤ (4n)−1 for all z1, z2 ∈ K and all integers i ≥ 0,

|(wi − (vn)i)(z1, z2) − (wi − (vn)i)(y1, y2)| ≤ (4n)−1(ρ(z1, y1) + ρ(z2, y2))

(3.20) for all integers i ≥ 0 and all y1, y2, z1, z2 ∈ K

and each sequence {xi}
T2

i=T1
⊂ K with integers T1 ≥ 0, T2 > T1 + 1 satisfying

(3.21) ρ(xTj
, x̄Tj

) ≤ δ, j = 1, 2,
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(3.22)

T2−1
∑

i=T1

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT1
, xT2

, T1, T2) + δ

the inequality
∑T2

i=T1
ρ(xi, x̄i) ≤ ǫ holds.

Proof. Since {vi}
∞
i=0 ∈ M there is

δ ∈ (0, (ǫ/8)(6n)−1)

such that the following property holds:

(P2) for each integer i ≥ 0 and each z1, z2, z̃1, z̃2 ∈ K satisfying ρ(zj , z̃j) ≤ 2δ,

j = 1, 2 the inequality

|vi(z1, z2) − vi(z̃1, z̃2)| ≤ (64n)−1ǫ

holds.

Let {wi}
∞
i=0 ∈ M satisfy (3.19) and (3.20), T1 ≥ 0, T2 > T1 + 1 be integers and

let a sequence {xi}
T2

i=T1
⊂ K satisfy (3.21) and (3.22).

Define

zT1
= x̄T1

, zT2
= x̄T2

, zi = xi for all integers i satisfying T1 < i < T2,

(3.23) yT1
= xT1

, yT2
= xT2

, yi = x̄i for all integers i satisfying T1 < i < T2.

By (3.23) and (3.22),

(3.24)

T2−1
∑

i=T1

wi(xi, xi+1) ≤

T2−1
∑

i=T1

wi(yi, yi+1) + δ.

In view of (3.23), (320) and (3,4),

T2−1
∑

i=T1

wi(yi, yi+1) =

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + [wT1
(yT1

, yT1+1) − wT1
(x̄T1

, x̄T1+1)]

+[wT2−1(yT2−1, yT2
) − wT2−1(x̄T2−1, x̄T2

)]

=

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + [(vn)T1
(yT1

, yT1+1) − (vn)T1
(x̄T1

, x̄T1+1)]

+[(vn)T2−1(yT2−1, yT2
) − (vn)T2

(x̄T2−1x̄T2
)]

+[(wT1
− (vn)T1

)(yT1
, yT1+1) − (wT1

− (vn)T1
)(x̄T1

, x̄T2
)]

+[(wT2−1 − (vn)T2−1)(yT2−1, yT2
) − (wT2−1 − (vn)T2−1)(x̄T2−1, x̄T2

)]

≤

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + [(vn)T1
(xT1

, x̄T1+1) − (vn)T1
(x̄T1

, x̄T1+1)]

+[(vn)T2−1(x̄T2−1, xT2
) − (vn)T2

(x̄T2−1, x̄T2
)] + (4n)−1[ρ(xT1

, x̄T1
) + ρ(xT2

, x̄T2
)]

=

T2−1
∑

i=T1

wi(x̄i, x̄i+1) + vT1
(xT1

, x̄T1+1) − vT1
(x̄T1

, x̄T1+1)
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(3.25) +n−1ρ(xT1
, x̄T1

) + vT2−1(x̄T2−1, xT2
) − vT2

(x̄T2−1, x̄T2
) + n−1ρ(x̄T2

, xT2
).

By (3.24), (3.25), (3.21) and property (P2),

T2−1
∑

i=T1

wi(xi, xi+1) −

T2−1
∑

i=T1

wi(x̄ix̄i+1)

≤

T2−1
∑

i=T1

wi(xi, xi+1) −

T2−1
∑

i=T1

wi(yi, yi+1) +

T2−1
∑

i=T1

wi(yi, yi+1) −

T2−1
∑

i=T1

wi(x̄i, x̄i+1)

≤ δ + (2/n)δ + vT1
(xT1

, x̄T1
) − vT1

(x̄T1
, x̄T1+1)

(3.26) +vT2−1(x̄T2−1, xT2
) − vT2

(x̄T2−1, x̄T2
) ≤ 3δ + (32n)−1ǫ.

By Assertion 2 of Lemma 3.1,

T2−1
∑

i=T1

wi(xi, xi+1) −

T2−1
∑

i=T1

wi(x̄i, x̄i+1)

(3.27) ≥

T2−1
∑

i=T1

vi(xi, xi+1) −

T2−1
∑

i=T1

vi(x̄i, x̄i+1) + 3(4n)−1

T2−1
∑

i=T1

(ρ(xi, x̄i) + ρ(xi+1, x̄i+1)).

In view of (3.22) and (3.1),

T2−1
∑

i=T1

vi(xi, xi+1) −

T2−1
∑

i=T1

vi(x̄i, x̄i+1) =

T2−1
∑

i=T1

vi(xi, xi+1) −

T2−1
∑

i=T1

vi(zi, zi+1)

+

T2−1
∑

i=T1

vi(zi, zi+1) −

T2−1
∑

i=T1

vi(x̄i, x̄i+1) ≥

T2−1
∑

i=T1

v(xi, xi+1) −

T2−1
∑

i=T1

vi(zi, zi+1)

= vT1
(xT1

, xT1+1) − vT1
(x̄T1

, xT1+1) + vT2−1(xT2−1, xT2
) − vT2−1(xT2−1, x̄T2

).

Together with (3.26), (3.27), (3.21) and property (P2) this implies that

3δ + (32n)−1ǫ ≥ 3(4n)−1

T2−1
∑

i=T1

(ρ(xi, x̄i) + ρ(xi+1, x̄i+1))

+

T2−1
∑

i=T1

vi(xi, xi+1) −

T2−1
∑

i=T1

vi(x̄i, x̄i+1)

≥ 3(4n)−1

T2−1
∑

i=T1

(ρ(xi, x̄i) + ρ(xi+1, x̄i+1)) − (32n)−1ǫ,

T2−1
∑

i=T1

ρ(xi, x̄i) ≤ 2n[(16n)−1ǫ + 3δ] ≤ ǫ/4.

Lemma 3.2 is proved.
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Lemma 3.3. Assume that {vi}
∞
i=0 ∈ Mu and ǫ ∈ (0, 1). Then there exist δ ∈ (0, ǫ)

and a natural number L such that for each {wi}
∞
i=0 ∈ M which satisfies (3.19) and

(3.20), each integer T1 ≥ 0, each integer T2 > T1+2L+1 and each sequence {xi}
T2

i=T1
⊂

K which satisfies

(3.28)

T2−1
∑

i=T1

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT1
, xT2

, T1, T2) + δ

there exist integers τ1 ∈ [T1, T1 + L], τ2 ∈ [T2 − L, T2] such that

τ2
∑

i=τ1

ρ(xi, x̄i+1) ≤ ǫ.

Moreover, if ρ(xT1
, x̄T1

) ≤ δ, then τ1 = T1 and if ρ(xT2
, x̄T2

) ≤ δ, the τ2 = T2.

Proof. Let δ ∈ (0, ǫ) be as guaranteed by Lemma 3.2. In view of Assertion 7

of Lemma 3.1 there exists a natural number L ≥ 2 such that the following property

holds:

(P3) for each {wi}
∞
i=0 ∈ M which satisfies (3.19) and (3.20), each integer T ≥ 0

and each sequence {xi}
T+L
i=T ⊂ K satisfying

T+L−1
∑

i=T

wi(xi, xi+1) ≤ U({wi}
∞

i=0, xT , xT+L, T, T + L) + 1

the inequality min{ρ(xi, x̄i) : i = T, . . . , T + L} ≤ δ holds.

Assume that {wi}
∞
i=0 ∈ M satisfies (3.19) and (3.20), an integer T1 ≥ 0, an

integer T2 > T1 + L + 1 and a sequence {xi}
T2

i=T1
⊂ K satisfies (3.18).

It follows from (P3) applied to the sequences {xi}
T1+L
i=T1

, {xi}
T2

i=T2−L that there exist

integers

(3.29) τ1 ∈ [T1, T1 + L], τ2 ∈ [T2 − L, T2]

such that

(3.30) ρ(xτi
, x̄τi

) ≤ δ, i = 1, 2.

If ρ(xT1
, x̄T1

) ≤ δ, then put τ1 = T1 and if ρ(xT2
, x̄T2

) ≤ δ, then put τ2 = T2.

By (3.30), (3.28), (3.29), the choice of δ and Lemma 3.2,

τ2
∑

i=τ1

ρ(xi, x̄i) ≤ ǫ.

Lemma 3.3 is proved.
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4. PROOF OF THEOREM 1.6

Put

(4.1) α0 = 64−1(2diam(K) + 1)−1, α = α0/2.

Let {vi}
∞
i=0 ∈ A, r ∈ (0, 1]. By Theorem 1.1 there is {x̄i}

∞
i=0 ∈ K such that

(4.2)
T−1
∑

i=0

vi(x̄i, x̄i+1) = U({vi}
∞

i=0, x̄0, x̄1, 0, T )

for all natural numbers T , and if {vi}
∞
i=0 ∈ Mar, then in view of Theorem 1.5

(4.3) x̄i = x̄0

for all integers i ≥ 0, where

(4.4) v0(x̄0, x̄0) = µ(v0).

Choose a natural number n such that

(4.5) n−1(2diam(K) + 1) ∈ [r/8, r/2]

and put

(4.6) (vn)i(x, y) = vi(x, y) + n−1(ρ(x, x̄i) + ρ(y, x̄i+1)), x, y ∈ K, i = 0, 1, . . . .

We noted in section 3 that {(vn)i}
∞
i=0 ∈ A and in view of (3.5) and (3.6),

d̃M({vi}
∞

i=0, {(vn)i}
∞

i=0) ≤ 2n−1diam(K) + n−1 = n−1(2diam(K) + 1),

dM({vi}
∞

i=0, {(vn)i}
∞

i=0)

≤ n−1(2diam(K) + 1)(1 + n−1(2diam(K) + 1)−1) ≤ n−12diam(K) + 1).

By (4.5), (4.7) and (4.1),

{{wi}
∞

i=0 ∈ A : dM({(vn)i}
∞

i=0, {wi}
∞

i=0) ≤ α0r}

(4.8) ⊂ {{wi}
∞

i=0 ∈ A : dM({vi}
∞

i=0, {wi}
∞

i=0) ≤ r}.

Assume that

(4.9) {wi}
∞

i=0 ∈ A, dM({(vn)i}
∞

i=0, {wi}
∞

i=0) ≤ α0r.

By (4.5), (1.9), (4.1) and (4.9),

d̃M({(vn)i}
∞

i=0, {wi}
∞

i=0) ≤ α0r(1 − αr)−1

≤ 2α0r ≤ 32−1(2diam(K) + 1)−1r ≤ 4−1n−1.

Together with (1.7) this implies that

sup{|(vn)i(z1, z2) − wi(z1, z2)| : z1, z2 ∈ K, i = 0, 1, . . .} ≤ 2αr ≤ (4n)−1,

sup{|(vn)i − wi)(y1, y2) − ((vn)i − wi)(z1, z2)|(ρ(z1, y1) + ρ(z2, y2))
−1 :

y1, y2, z1, z2 ∈ K such that (y1, y2) 6= (z1, z2), i = 0, 1, . . .} ≤ 2αr ≤ (4n)−1.
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Thus

{{wi}
∞

i=0 ∈ A, dM({(vn)i}
∞

i=0, {wi}
∞

i=0) ≤ α0r}

⊂ {{wi}
∞

i=0 ∈ A : such that 3.19), (3.20) hold}.

By the relation above and Lemmas 3.1 and 3.3

{{wi}
∞

i=0 ∈ A : dM({(vn)i}
∞

i=0 : {wi}
∞

i=0} < α0r} ⊂ F .

Theorem 1.5 is proved.
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