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ABSTRACT. In this paper we study the asymptotic stability of the zero solution of second order

neutral delay differential equation of the form

y′′(t) + αy′′(t − τ) + ay′(t) + by′(t − τ) + cy(t) + dy(t − τ) = 0,

where a, b, c, d, α ∈ (−1, 0)∪(0, 1), and τ > 0 are constants. In this paper, we obtain a new necessary

condition and obtain robust method of determining whether the zero solution is asymptotically

stable. In proving our results we make use of Pontryagin’s theory for quasi-polynomials.
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1. INTRODUCTION

The aim of this paper is to study the asymptotic stability of the zero solution of

the neutral delay differential equation

(1.1) y′′(t) + αy′′(t − τ) + ay′(t) + by′(t − τ) + cy(t) + dy(t− τ) = 0

where τ > 0, α ∈ (−1, 0) ∪ (0, 1), a, b, c, and d are real constants. There are many

applications of neutral differential equations in scientific models such as of masses

attached to an elastic bar [1] and population growth [2]. An intersting application of

neutral equations appears in [3] and involves an interplay between physical observa-

tion and simulation (called “real-time dynamic substructuring” ) for seismic testing.

There are many studies of neutral equations mainly dealing with oscillations or suffi-

cient conditions of stability of the zero solution. See [4–8]. In these studies necessary

conditions or sufficient conditions are derived using Lyapunov’s direct (or second)

method. In all of these works, there is a sizable gap between sufficiency and neces-

saity. In our previous papers [9,10], we considered non-neutral second order delay

differential equation (i.e., α = 0) and obtained an algorithmic method as a robust

means testing for asymptotic stability. We also obtained new complete criteria for

asymptotic stability in special cases of the non-neutral problem. In this paper, we
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attack the more difficult neutral problem (1.1) and obtain robust algorithmic tests

parallel to those in [9,10]. In addition, we obtain criteria for special cases leading

to asymptotic stability regions for some cases. We also obtain a new and far reach-

ing necessary condition (Theorem 3.3) for asymptotic stability which plays a role

throughout this paper. Generally, including delays in a differential equation has a

destabilizing effect. Our work on non-neutral delay equations certainly upholds this,

but when the order is 2 or higher there are rare cases when the delay has a stabilizing

effect. We raise the same question as whether inclusion of a “neutral term” can have

a stabilizing effect, and we give an example that gives an affirmative answer.

This paper is organized as follows. In Section 2, we present the tools used in our

asymptotic stability analysis. In Sections 3 we give our main results. In Section 4 we

present some examples. Some of the results of this paper derived in a different way

by Kuang (see [2]). Many of our results are new and derived using our approaches

developed in our earlier papers.

2. BACKGROUND

In this section, we identify the characteristic function of (1.1), and cite results

of Pontryagin [11] related to asymptotic stability and applications of Pontryagin’s

results [12, §13.7–13.9].

The characteristic function of (1.1) (derived by searching for solutions of the form

eλt or by using Laplace transforms) is given by

Ĥ(s) = s2 + αs2e−sτ + as + bse−sτ + c + de−sτ .(2.1)

We rewrite (2.1) by multiplying by esτ and letting s = z
τ

to get

H(z) = τ 2ezĤ
(z

τ

)
= z2ez + αz2 + Azez + Bz + Cez + D(2.2)

where

A = aτ, B = bτ, C = cτ 2, D = dτ 2.(2.3)

The following can be found in [13, Theorem 6.1].

Theorem 2.1 In order that all solutions of (1.1) approach zero as t → ∞ it is

necessary and sufficient that all zeros of (2.1), or equivalently (2.2), have negative

real parts and are bounded away from the imaginary axis, i.e., there is a positive real

number ν such that Rez ≤ −ν for every zero z of H(z).

We first determine the conditions under which all zeros of (2.1), or equivalently

(2.2), have negative real parts and then find conditions under which the zeros are

bounded uniformly away from the imaginary axis. The function (2.2) is a special
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function, usually called an exponential polynomial or a quasi-polynomial. The prob-

lem of analyzing the distribution of the zeros in the complex plane of such functions

has received considerable attention.

Definition 2.1 Let h(z, w) be a polynomial in the two variables z and w (with

complex coefficients),

h(z, w) =
∑

m,n

amnzmwn, (m, n nonnegative integers).(2.4)

We call the term arsz
rws the principal term of h(z, w) if ars 6= 0, and for every term

amnzmwn with amn 6= 0, we have m ≤ r and n ≤ s.

Note that H(z) = h(z, ez) where

h(z, w) = z2w + αz2 + Azw + Bz + Cw + D(2.5)

It is clear from Definition 2.1 that h(z, w) in (2.5) has principal term z2w. We now

cite two theorems of Pontryagin, see [11,12].

Theorem 2.2 Let H(z) = h(z, ez), where h(z, w) is a polynomial with a principal

term. We separate H(iy) into real and imaginary parts; that is, we set H(iy) =

F (y) + iG(y). (Of course, F (y) and G(y) have entire extensions.) If all the zeros of

the function H(z) lie in the open left half plane, then the zeros of the functions F (y)

and G(y) are real, are interlacing, and

∆(y) = G′(y)F (y)− G(y)F ′(y) > 0(2.6)

for all real y. Moreover, in order that all the zeros of the function H(z) lie in the open

left half plane, it is sufficient that any one of the following conditions be satisfied:

(a): All the zeros of the functions F (y) and G(y) are real and interlace, and the

inequality (2.6) is satisfied for at least one value of y.

(b): All the zeros of the function F (y) are real and for each of these zeros y = y0

(2.6) is satisfied, i.e., F ′(y0)G(y0) < 0.

(c): All the zeros of the function G(y) are real and for each of these zeros the (2.6)

is satisfied, i.e., G′(y0)F (y0) > 0.

In our case,

H(iy) = −y2eiy − αy2 + iAyeiy + Biy + Ceiy + D = F (y) + iG(y)(2.7)

where

F (y) = −y2 cos y − αy2 − Ay sin y + C cos y + D(2.8)

and

G(y) = −y2 sin y + Ay cos y + By + C sin y.(2.9)
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To study the location of the zeros of H(z), we study the zeros of F and G. To

do so, we need the following result which is useful in determining whether all roots

of F and G are real. Let f(z, u, v) be a polynomial in z, u, and v which we write in

the form

f(z, u, v) =
∑

m,n

zmφ(n)
m (u, v)(2.10)

where φ
(n)
m (u, v) is a polynomial of degree n, homogeneous in u and v, and let

zrφ
(s)
r (u, v) be the principal term of f(z, u, v), and let φ∗(s)(u, v) denote the coeffi-

cient of zr in f(z, u, v), so that

φ∗(s)(u, v) =
∑

n≤s

φ(n)
r (u, v).

(The Principal term for the polynomials of the form (2.10) are analogous to that

defined in Definition 2.1, see [20, pages]). Also we let

Φ∗(s)(z) = φ∗(s)(cos z, sin z).

Theorem 2.3 Let f(z, u, v) be a polynomial with principal term zrφ
(s)
r (u, v) and as-

sume that u2 + v2 is not a factor of φ
(s)
r (u, v). If ǫ is such that Φ∗(s)(ǫ + iy) 6= 0

for all real y, then in the strip −2πk + ǫ ≤ Rez ≤ 2πk + ǫ, the function F (z) =

f(z, cos z, sin z) has, for all sufficiently large values of k, exactly 4sk+ r zeros. Thus,

in order for the function F (z) to have only real roots, it is necessary and sufficient

that in the real interval −2πk + ǫ ≤ x ≤ 2πk + ǫ, it has exactly 4sk + r real roots for

all sufficiently large k.

Note that the functions F (y) and G(y) in (2.10) and (2.11) have principal terms

−z2u and z2v, respectively. The condition that u2 + v2 not be a factor of zrφ
(s)
r (u, v)

is frequently overlooked. When s = 1, it is not an issue. This condition is satisfied by

polynomials f(z, u, v) derived from function h(z, w) in (2.12) with a principal term.

As well, if f(z, u, v) is derived from function involving sin z and cos z, the Pythagorean

identity could be used to make this condition satisfied. Nonetheless this condition is

needed for Theorem 2.3 to be true as stated.

For the case in point, r = 2 and s = 1. Therefore F (z) (given in (2.8)) has all real

zeros if and only if F (z) has 4k + 2 zeros in (−2kπ, 2kπ) for k sufficiently large, and

the same holds for G given in (2.9) with (−2kπ, 2kπ) replaced by (−2kπ + ǫ, 2kπ + ǫ)

where 0 < ǫ < π.

3. MAIN RESULTS

In this section we present the main results of this paper. We first describe the

asymptotic behavior of the zeros of G. Throughout this paper for x real and a > 0,

[x]a denotes the unique real number in the interval [0, a) for which x − [x]a is an
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integer multiple of a. We will use a = π and a = 2π. See Kuang [2, p. 65] for the

following result:

Lemma 3.1 A necessary condition for the zero solution of (1.1) to be asymptotically

stable is that |α| ≤ 1.

In this paper we will mostly only consider |α| < 1. We have the following neces-

sary conditions.

Lemma 3.2 If the zero solution of (1.1) is asymptotically stable, then (C + D)(A +

B + C) > 0.

Proof. Theorem 2.2 and the fact that y = 0 is a zero of G yield ∆(0) = G′(0)F (0) =

(C + D)(A + B + C) > 0.

Lemma 3.3 For n sufficiently large, the interval (nπ−π/2, nπ+π/2) contains exactly

one zero rn of G and limn→∞(rn − nπ) = 0.

Proof. From (2.9), y = 0 is a zero of G and

(3.1) G(nπ + π/2) = −(nπ + π/2)2(−1)n+1 + B(nπ + π/2) + C(−1)n+1.

Thus there can be at most four zeros of G of the form nπ + π/2. All other zeros of

G are roots of the equation

(3.2) w(y) = ζ(y)

where

(3.3) w(y) = (y2 − C) tan y − By sec y

and

(3.4) ζ(y) = Ay.

For n sufficiently large, w resembles the tangent function on (nπ − π/2, nπ + π/2) in

that w has limits −∞ and ∞ at nπ − π/2 and nπ + π/2 when the limits are taken

from inside the interval. For n sufficiently large these yield existence of a solution of

(3.2) in (nπ − π/2, nπ + π/2). Now (3.2) yields

(3.5) sin y =

B
y

+ A cos y

y

1 − C
y

.

It follows from (3.5) that

lim
G(y)=0
y→∞

sin y = 0,

and thus the roots of G in (nπ − π/2, nπ + π/2) tends to the center of the interval

as n goes to infinity. Also in this case it is easy to see that w′(y) > |A| for y ∈
(nπ − π/4, nπ + π/4) and n sufficiently large, and thus uniqueness holds.

The following is a very useful necessary condition for the asymptotic stability of

the zero solution of (1.1). It refines the necessary condition in Lemma 3.2.
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Theorem 3.1 Assume −1 < α ≤ 1. If the zero solution of (1.1) is asymptotically

stable, then A + B + C > 0 and C + D > 0.

Proof. Assume the zero solution of (1.1) is asymptotically stable. From Lemma 3.2

∆(0) = (C + D)(A + B + C) > 0.(3.6)

It follows from Theorems 2.1-2.3 that G has all real zeros and for k sufficiently large

(−2kπ + ǫ, 2kπ + ǫ) contains precisely 4k + 2 zeros of G. We are taking 0 < ǫ < π/4.

Since y = 0 is a zero of G and G is odd, (0, 2kπ + ǫ) contains precisely 2k + 1

zeros r1 < r2 < . . . < r2k+1 of G where k is sufficiently large. By Lemma 3.3,

r2k+1 ∈ (2kπ − ǫ, 2kπ + ǫ) for k sufficiently large. From (2.8) and the hypothesis

−1 < α ≤ 1, it follows that F (r2k+1) < 0 for k sufficiently large. By Theorems 2.1 and

2.2, the zeros of F and G interlace and thus the F (rj) must strictly alternate in sign

(where r0 = 0). Thus F (0)F (r2k+1) < 0, and since F (r2k+1) < 0, F (0) = C + D > 0.

By (3.6) A + B + C > 0, and the proof is complete.

We first consider special cases where some of the coefficients A, B, C, or D are

zero. In this paper Z+ denotes the set of all nonnegative integers.

Theorem 3.2 Suppose that |α| < 1 and that all zeros of H(z) are in the open left

half plane (i.e. Rez < 0 for every zero z of H(z)). Then all zeros of H(z) are bounded

away from imaginary axis (i.e. there η > 0 for which Rez < −η for every zero z of

H(z)).

Proof. Assume otherwise. Then there is a sequence zn = αn + iβn of zeros of H(z)

where αn < 0, and αn → 0. If {βn} were bounded, then H(z) would have a zero on

the imaginary axis. Thus we may assume that βn → ∞ and βn > 0. From H(z) = 0

and (2.2)

|1 + αe−zn | =

∣∣∣∣
Azn + Bzne−zn + C + De−zn

z2
n

∣∣∣∣.(3.7)

Since αn → 0 and βn → ∞, |zn| → ∞ and the right hand side of (3.7) tends to 0 as

n → ∞. But

|1 + αe−zn|2 = (1 + αe−αn cos βn)2 + (αe−αn sin βn)2(3.8)

≥ (1 − |α|e−αn)2 → (1 − |α|)2.

Since |α| < 1, (3.8) yields a contradiction.

We consider some special cases:

Theorem 3.3 Assume that |α| < 1, A = B = 0, C > 0, and C + D > 0.

(i) Suppose D − αC > 0. The zero solution of (1.1) is asymptotically stable if

and only if and if there exists a positive integer k such that

(2k − 1)π <
√

C < 2kπ,

(1 + α)((2k − 2)π)2 < C + D < (1 + α)(2kπ)2,
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and

((2k − 1)π)2(1 − α) < C − D < (1 − α)((2k + 1)π)2.

(ii) Suppose D − αC < 0. The zero solution of (1.1) is asymptotically stable if and

only if there is a positive integer k such that

(2k − 2)π <
√

C < (2k − 1)π,

and

C + D < (1 + α)(2π)2,

C − D < (1 − α)π2

when k = 1 and

(1 + α)((2k − 2)π)2 < C + D < (1 + α)(2kπ)2,

((1 − α(2k − 3)π)2 < C − D < (1 − α)((2k − 1)π)2

when k > 1.

(iii) If D − αC = 0, then the zero solution of (1.1) is not asymptotically stable.

With A = B = 0, C > 0 and C + D > 0 are the necessary conditions of

Theorem 3.2.

Proof. For A = B = 0, (2.8) and (2.9) yield

G(y) = − sin y(y2 − C),

G′(y) = − cos y(y2 − C) − 2y sin y,

and

F (y) = −y2(cos y + α) + C cos y + D.

The zeros of G are y = ±
√

C and y = nπ(n ∈ Z). If y is a zero of G, then

(3.9) ∆(y) = [−y2(cos y + α) + C cos y + D][− cos y(y2 − C) − 2y sin y],

and, in particular,

(3.10) ∆(−
√

C) = ∆(
√

C) = −2
√

C sin
√

C[D − αC].

If D − αC = 0, then ∆(±
√

C) = 0, and by Theorems 2.2–2.3, the zero solution of

(1.1) is not asymptotically stable, and (iii) is proven. Suppose D − αC > 0. By

(3.10), ∆(
√

C) > 0 if and only if sin
√

C < 0, or there exists a positive integer k such

that

(2k − 1)π <
√

C < 2kπ.

At the points y = nπ (n ∈ Z+) we have

(3.11) ∆(nπ) = [−(nπ)2((−1)n + α) + C(−1)n + D][−(−1)n((nπ)2 − C)].

Suppose that n ≥ 2k. Then (nπ)2 − C > 0. If, in addition, n is even, then

(3.12) ∆(nπ) = −[−(nπ)2(1 + α) + C + D]((nπ)2 − C)) > 0
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if and only if

C + D < (1 + α)(nπ)2.

Thus ∆(nπ) > 0 for all even n ≥ 2k if and only if

C + D < (1 + α)(2kπ)2.

For odd n ≥ 2k,

(3.13) ∆(nπ) = [(nπ)2(1 − α) − C + D]((nπ)2 − C) > 0.

if and only if

C − D < (1 − α)(nπ)2.

Thus ∆(nπ) > 0 for all odd n > 2k if and only if

C − D < (1 − α)((2k + 1)π)2.

Suppose that 0 ≤ n ≤ 2k−1. Then (nπ)2 −C < 0. As above, ∆(nπ) > 0 for all even

n with 0 ≤ n < 2k − 1 if and only if

C + D > (1 + α)((2n − 2)π))2,

and ∆(nπ) > 0 for all odd n with 0 < n ≤ 2k − 1 if and only if

C − D > (1 − α)((2k − 1)π)2.

Since ∆ is an even function of y, (i) is now proven using Theorems 2.2, 2.3 and 3.2.

Suppose that D − αC < 0. By (3.11), ∆(
√

C) > 0 if and only if sin
√

C > 0, or

there exist a positive integer k such that

(2k − 2)π <
√

C < (2k − 1)π.

The remainder of the proof of (ii) is similar to that of (i) above. Note that when

k = 1, the only nonnegative multiple of π less than or equal to (2k − 2)π is 0 and

∆(0) = (C + D)C > 0 by hypothesis.

We consider the pure delay case, i.e. A = 0 and C = 0.

Theorem 3.4 Assume that A = 0, C = 0, B > 0, and D > 0.Then G has all real

zeros if and only if 0 < B < B⋆ where B⋆ = y⋆ sin y⋆ and y⋆ is the unique solution of

tan y = −y in (0, π) (B⋆ ≈ 1.819705741).

With A = C = 0, B > 0 and D > 0 are the necessary conditions of Theorem 3.2,

and thus Theorem 3.4 and Theorem 3.5 below represent the general pure delay case.

Proof. When A = 0 and C = 0, (2.9) yields

G(y) = −y2 sin y + By.

Thus y = 0 is a zero of G, and the nonzero zeros of G are the roots of the equation

(3.14) sin y =
B

y
.
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For the function G to have all real and distinct zeros it is necessary and sufficient

that sin y and B
y

agree at two distinct points in the interval (0, π). The choice of B∗

yields sin y = B⋆

y
having one root in (0, π) with multiplicity 2, and sin y = B

y
has two

roots in (0, π) precisely when 0 < B < B∗. Note that in this case (2kπ, 2kπ + ǫ)

contains a zero of G while (−2kπ,−2kπ + ǫ) does not for k sufficiently large so that

G has 4k + 2 zeros in (−2kπ + ǫ, 2kπ + ǫ) for k sufficiently large.

With 0 < B < B∗, the positive zeros of G, 0 < r1 < r2 < . . ., satisfy 2(n− 1)π <

r2n−1 < r2n < (2n − 1)π for n = 1, 2, . . ., and [r2n−1]2π ↓ 0 and [r2n]2π ↑ π as n → ∞
Theorem 3.5 Let −1 < α < 1, A = 0, C = 0, 0 < B < B∗, and D > 0. Let

r1 < r2 < r3 < r4 . . . be the positive zeros of G. If −1 < α ≤ 0, the zero solution of

(1.1) is asymptotically stable if and only if F (r1) < 0. If 0 < α < 1, then the zero

solution of (1.1) is asymptotically stable if and only if F (r1) < 0, and F (r2j) > 0 for

j = 1, 2, . . . , m − 1 where m is the smallest index for which cos r2m + α < 0.

Proof. By Theorem 3.5, G has all real zeros. Note that F (0) = D > 0. In either

case, the sign conditions on F are necessary for the zeros of F and G to interlace and

thus for the zero solution of (1.1) to be asymptotically stable. Thus we need to prove

sufficiency in both cases. To this end, it suffices to show that (−1)nF (rn) > 0 for

n = 1, 2, . . .. Since F (0) = D > 0, this would imply the interlacing of the zeros of F

and G and the zero solution of (1.1) would be asymptotically stable. Note that from

(2.8)

F (y) = −y2(cos y + α) + D

Suppose −1 < α ≤ 0 and F (r1) < 0. From the proof of Theorem 3.4, r2n−1, r2n ∈
((2n − 2)π, (2n − 1)π) and r2n ∈ ((2n − 3/2)π, (2n − 1)π) for n = 1, 2, . . ., and

r2n−1 ∈ ((2n − 2)π, (2n − 3/2)π) for n = 2, 3, . . . Since α ≤ 0 and cos y < 0 for

y ∈ ((2n−3/2)π, (2n−2)π), F (y) > 0 for such y. Thus F (r2n) > 0 for all n = 1, 2, . . ..

Since F (r1) < 0, r1 ∈ (0, π/2) and cos r1 + α > 0. Also, [r3]2π < [r1]2π while r3 > r1.

It follows that

(3.15) F (r3) = −r2
3(cos r3 + α) + D < −r2

1(cos r1 + α) + D = F (r1) < 0.

The same argument yields F (r2n−1) < 0 for all n = 1, 2, . . .. It follows then that the

zero solution of (1.1) is asymptotically stable.

Now we assume that 0 < α < 1. Since F (r1) = −r2
1(cos r1 + α) + D < 0,

cos r1 +α > 0. The argument in the first case yields F (r2n−1) < 0 for all n = 1, 2, . . ..

For the even roots, note that [r2k]2π ↑ π as k → ∞. Thus there is a first index m

where cos r2m + α < 0. Since [r2m]2π increases it follows that cos r2n + α < 0 and

F (r2n) > 0 for all m ≥ n. Asymptotic stability of the zero solution of (1.1) now

follows.

In the next case, we take B = C = 0, A > 0, and D > 0. Of course, if B = C = 0,

then A > 0, and D > 0 are the necessary conditions of Theorem 3.1. For B = C = 0,
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(2.8) and (2.9) yield

(3.16) G(y) = −y2 sin y + Ay cos y

and

(3.17) F (y) = −y2 cos y − αy2 − Ay sin y + D.

The real zeros of G are y = 0 and the roots of cot y = y

A
. With A > 0, cot y = y

A
has

precisely one root in each open interval between successive multiples of π. When k is

sufficiently large, (2kπ, 2kπ + ǫ) contains a root of cot y = y

A
and (−2kπ,−2kπ + ǫ)

does not, and so G has 4k+2 zeros in (−2kπ+ǫ, 2kπ+ǫ). Here 0 < ǫ < π. Thus G has

all real zeros. For n = 1, 2, . . ., let rn be the zero of G in the interval ((n − 1)π, nπ).

In fact, [rn]π ∈ (0, π/2) and [rn]π decreases to zero as n → ∞. As such cos r2j−1 > 0

and cos r2j−1 increases to 1 as j → ∞, and cos r2j < 0 and decreases to −1 as j → ∞.

Theorem 3.6 Let −1 < α < 1, B = C = 0, A > 0, and D > 0. If 0 < α < 1, the

zero solution of (1.1) is asymptotically stable if and only if F (r1) < 0 and F (r2j) > 0

for j = 1, . . . , m−1 where m is the smallest index for which cos r2m +α < 0. If −1 <

α ≤ 0, the zero solution of (1.1) is asymptotically stable if and only if F (r2j−1) < 0

for j = 1, . . . , m where m is the smallest index for which cos r2m−1 + α > 0.

Proof. As in the proof of Theorem 3.5, necessity is evident, and for sufficiency we

need to argue that under the stated conditions, we have

(3.18) (−1)nF (rn) > 0 for n = 1, 2, . . . .

From (3.16),

(3.19) rn sin rn = A cos rn,

and simple calculations yield

(3.20) F (rn) = −[cos rn(r2
n + A2) + αr2

n − D].

Suppose 0 < α < 1. The first expression in (3.20) yields that F (r2k−1) is de-

creasing in k. Thus if F (r1) < 0, then F (r2k−1) < 0 for all k = 2, 3, . . .. Also (3.20)

yields that F (r2k) > 0 for all k where cos r2k + α < 0. Thus sufficiency holds when

0 < α < 1. Suppose −1 < α ≤ 0. The first expression in (3.20) yields that F (r2k) > 0

for all k = 1, 2, . . .. The second expression in (3.20) yields that F (r2k−1) is decreasing

over those k where cos r2k−1 + α > 0. Thus sufficiency holds for −1 < α ≤ 0.

Now we consider the case where A = 0 and B and C are nonzero. In the

first lemma we consider the case C > 0 and D > 0, and in the second lemma we

consider the case CD < 0. Note that the necessary conditions of Theorem 3.1 become

B + C > 0 and C + D > 0 so that C < 0 and D < 0 is ruled out for asymptotic

stability and thus both lemmas cover all cases of interest.
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Lemma 3.5 Assume that A = 0, B 6= 0, C > 0, D > 0, and B + C > 0. Necessary

conditions for the zero solution of (1.1) to be asymptotically stable are

1. If B < 0, then

(i) G has exactly one zero in (0, π) (in fact, it is in (π/2, π) when −1 < α < 0),

(ii) G has exactly two zeros in (2jπ, (2j + 1)π) for j = 1, . . . , m and G has two

zeros in ((2m + 1)π, (2m + 2)π) if
√

C ∈ (2mπ, (2m + 2)π).

2. If B > 0, then

(i) G has exactly two zeros in (0, π) if
√

C ∈ (0, π)

(ii) G has exactly two zeros in ((2j +1)π, (2j +2)π) for j = 0, . . . , m and G has

exactly two zeros in ((2m + 2)π, (2m + 3)π) when
√

C ∈ ((2m + 1)π, (2m +

3)π).

Note that in 1(ii) the first condition is empty when m = 0, and in fact it is

replaced by 1(i).

Proof. With A = 0, (2.8) and (2.9) yield

(3.21) G(y) = −y2 sin y + By + C sin y

and

(3.22) F (y) = −y2 cos y − αy2 + C cos y + D.

The zeros of G are y = 0 and the roots of the equation csc y = 1
B

(y − C
y
). Note

that y =
√

C is the positive zero of ζ(y) = 1
B

(y − C
y
).

In the remainder of this proof, we will mark some arguments with Roman nu-

merals for subsequent reference, as they will be repeated later.

Suppose B < 0. Since B + C > 0, −C/B > 1. Thus csc y = ζ(y) has an odd

number of roots in (0, π) and even number of roots in each interval (nπ, (n + 1)π) for

n = 1, 2 . . .. Notice that if r is a zero of G, then

(3.23) r2 − C = B
r

sin r
,

and by (3.21)

(3.24) F (r) = −Br cot(r) − αr2 + D.

Let W denote the function whose values W (r) are given by the right side of (3.24).

For −1 < α < 0, W (r) > 0 in (0, π/2]. Since F (0) = C + D > 0, G cannot have

a zero in (0, π/2]. Otherwise interlacing of the zeros of F and G would fail and the

zero solution of (1.1) would not be asymptotically stable. Since csc y is increasing in

(π/2, π) and ζ(y) is decreasing in (π/2, π), G has exactly one zero in (π/2, π).

(Argument I) Suppose 0 < α < 1. Now W ′(r) = B csc2 r(r − sin r cos r) − 2αr < 0

in every interval (nπ, (n + 1)π) for n = 0, 1, . . .. Now G has an odd number of zeros

in (0, π). If G has three zeros in (0, π), then in order for the zeros of F and G to
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interlace, F (and thus W ) would have three points of sign change in (0, π). As such

W ′ would have a sign change in (0, π) which is false. Thus 1(i) is proven. (I.)

On any interval ((2ℓ − 1)π, 2ℓπ), ℓ = 1, 2, . . ., the concavity properties of csc y

and 1
B

(y − C
y
) yield that G can have at most two zeros. The arguments above for

−1 < α < 0 and 0 < α < 1 also yield that G can have at most two zeros in each

interval (2ℓπ, (2ℓ + 1)π), ℓ = 1, 2, . . .. Part 1(ii) now follows because G must have

4k + 2 zeros in (−2kπ + ǫ, 2kπ + ǫ) for all sufficiently large k.

Now suppose B > 0. With C > 0, it follows that G has an even number of zeros

in each interval (nπ, (n+1)π), n = 0, 1, . . .. Suppose
√

C ∈ ((2m+1)π, (2m+3)π) for

some m = 0, 1, 2 . . .. We have that ζ(y) < 0 if 0 < y <
√

C and ζ(y) > 0 if y >
√

C.

As such on (0,
√

C), ζ(y) can only meet csc y on lower branches of csc y. That is,

on (0,
√

C), G can only have zeros in intervals of the form ((2ℓ + 1)π, (2ℓ + 2)π).

Likewise, on (
√

C,∞), G can only have zeros in intervals of the form (2ℓπ, (2ℓ+1)π).

Due to opposing concavities G can meet the upper branches in at most two points.

We show that in lower branches of csc y, G can have at most two zeros. In this case,

the necessary conditions will follow from Theorem 2.3 so G has all real zeros.

Assume 0 < α < 1. There are 3 cases based on the sign of D − αC.

(Argument II.) If D−αC = 0, the zeros of F are ±
√

C and the roots of cos y = −α.

If G has four zeros in any interval between consecutive multiples of π, F would need

to have at least three zeros in this interval which is not the case. (II.)

The zeros of F are the roots of the equation y2 = φ(y) where φ(y) = C cos y+D

cos y+α
.

Note that φ(y) has period 2π and vertical asymptotes corresponding to roots of cos y =

−α. We have φ′(y) = (D−αC) sin y

(cos y+α)2
.

(Argument III.) If D − αC > 0, φ′(y) agrees in sign with sin y. In the interval

((2ℓ + 1)π, (2ℓ+ 2)π), φ(y) is decreasing on ((2ℓ + 1)π, ρ) and on (ρ, (2ℓ + 2)π) where

ρ is the root of cos y = −α in this interval. Since y2 is increasing on (0,∞), F can

have at most two zeros in ((2ℓ+1)π, (2ℓ+2)π), and the proof in this case is complete.

(III.)

(Argument IV.) Now assume D − αC < 0. In this case φ′(y) and − sin y agree in

sign. A typical sketch of y2 and φ(y) is shown in Figure 1 for D − αC < 0.

Notice that φ(0) = C+D
1+α

< C < −C+D
−1+α

= φ(π), which is reflected in Figure 1.

If y <
√

C, then y2 < φ(π) and y2 can only meet the lower branches of φ(y). Due

to opposite concavities, in any interval ((2ℓ + 1)π, (2ℓ + 2)π) ⊆ (0,
√

C), y2 = φ(y)

can only have two roots. If in any of these intervals G had four zeros, then F would

need three zeros for interlacing to hold. The case with B > 0 and 0 < α < 1 is now

complete. (IV.)
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Figure 1 y2 and φ(y) when D − αC < 0

Suppose B > 0 and −1 < α < 0. In this case W ′(r) = B csc2 r(r − sin r cos r) −
2αr > 0 and as in Argument I interlacing would fail if G has 4 zeros in ((2ℓ+1)π, (2ℓ+

2)π) and 2(ii) is proven.

Remark 3.1 If
√

C were an odd multiple of π when B > 0 or if
√

C were an even

multiple of π when B < 0, the zero count for G and Theorem 2.3 would yield that

the zero solution of (1.1) is not asymptotically stable.

Lemma 3.6 Assume that A = 0, B 6= 0, B + C > 0, C + D > 0, and CD < 0.

Necessary conditions for the zero solution of (1.1) to be asymptotically stable are

1. If B < 0 (and thus C > 0), then

(i) G has exactly one zero in (0, π) (in fact, it is in (π/2, π) when −1 < α < 0)

(ii) G has exactly two zeros in (2jπ, (2j + 1)π) for j = 1, . . . , m when
√

C ∈
(2mπ, (2m + 2)π) and G has two zeros in ((2m + 1)π, (2m + 2)π)

2. If B > 0, then

(i) G has exactly two zeros in (0, π) if
√

C ∈ (0, π)

(ii) G has exactly two zeros in ((2j + 1)π, (2j + 2)π) for j = 0, . . . , m if
√

C ∈
((2m + 1)π, (2m + 2)π)and G has two zeros in ((2m + 2)π, (2m + 3)π).

(iii) G has exactly two zeros in ((2j)π, (2j + 1)π) for j = 0, . . . , m if
√
−C ∈

((2m + 1)π, (2m + 2)π) and C < 0.

Proof. The functions G(y) and F (y) are given by (3.21) and (3.22), and as in

Lemma 3.5, the zeros of G are y = 0 and the roots of the equation csc y = 1
B

(y − C
y
).

The proof uses the arguments given in Lemma 3.5.

Suppose B < 0 and C > 0. Then D < 0 and −C
B

> 1. When 0 < α < 1,

W ′(r) = B csc2 r(r − sin r cos r) − 2αr < 0 on every interval (nπ, (n + 1)π), and

Argument I yields the result. Suppose −1 < α < 0. Notice that φ′(y) = (D−αC) sin y

(cos y+α)2
,

and if D−αC < 0, then − sin y and φ′(y) agree in sign. Here we apply Argument IV.

When D − αC = 0, Argument II applies, and when D − αC > 0, Argument III

applies.
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Suppose B > 0 and C > 0, then D < 0 with −1 < α < 0, W ′(r) > 0 and

Argument I applies. For 0 < α < 1, D − αC < 0 and we apply Argument IV.

We consider B > 0, C < 0. Then D > 0 and −C
B

< 1. If −1 < α < 0, then

W ′(r) > 0, and we apply Argument I. See Figures 2a–2b for the roots of csc y =
1
B

(y − C
y
).

y
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Figure 2a csc(y) and ζ(y) in (0, 4π) when C < 0, B > 0
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Figure 2b csc(y) and ζ(y) in (0, π) when C < 0, B > 0

Suppose 0 < α < 1. Then D−αC > 0. With B > 0, C < 0, and −C
B

< 1, csc y =
1
B

(y− C
y
) and thus G has an even number of zeros in the interval (2mπ, (2m+1)π) and

no zeros in the intervals ((2m + 1)π, (2m + 2)π) for m = 0, 1, . . . (see Figures 2a–2b).

We will show that each interval (2mπ, (2m + 1)π) contains precisely two zeros of G.

If we rule out four or more zeros, the standard counting argument yields the result.

Assume that G has four zeros in (2mπ, (2m + 1)π). Since F (0) > 0 and G(0) = 0, at

the first four zeros of G(y) in (2mπ, (2m + 1)π), F (y) has values that are negative,

positive, negative, and positive, respectively, in order that the zeros of G and F

interlace. Now F must have three zeros between successive pairs of these zeros of G,

and F must change sign from negative to positive, positive to negative, and negative

to positive at these zeros, respectively. Since φ(y) < 0 < y2 on (2mπ + ρ, (2m + 1)π)

where ρ ∈ (0, π) and cos ρ+α = 0, these zeros of F are in (2mπ, 2mπ+ρ) (see Figure

3). Since cos y + α > 0 for y ∈ (2mπ, 2mπ + ρ), F̄ (y) = y2 − φ(y) must change sign

from positive to negative, negative to positive, and positive to negative, respectively
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at these zeros of F . Thus F̄ ′(y) has values that are negative, positive, and negative

successfully. Thus F̄ ′′(y) has values that are positive and negative, successfully and

so F̄ ′′′ has a negative value. But

(3.25) F̄ ′′′(y) = −sin y(D − αC)(α2 − 4 cos yα − 6)

(cos y + α)4
> 0

for y ∈ (2mπ, 2mπ + π), a contradiction.

2 4 6 8 10 12 14 16 18

K100

K50

0

50

100

Figure 3 y2 and φ(y) when D − αC > 0

Remark 3.2 We assume A = 0 and the necessary conditions of Lemmas 3.5–3.6

hold. Under these conditions G has all real zeros, and we denote the positive zeros

of G as r1 < r2 < · · · . Of course, these are the positive roots of csc y = 1
B

(y − C
y
).

With C > 0 and B > 0 the odd numbered roots in (
√

C,∞) are decreasing to 0

modulo 2π, i.e. [r2j+1]2π ↓ 0, and the even numbered roots increase to π modulo 2π,

i.e. [r2j ]2π ↑ π. With C > 0 and B < 0, in (
√

C,∞), [r2j+1]2π ↑ 2π while [r2j ]2π ↓ π.

With C < 0 and B > 0, r2j+1 in (
√
−C,∞) [r2j+1]2π ↓ 0 and [r2j ]2π ↑ π.

By Remark 3.2 and Lemmas 3.5 and 3.6, there are 3 cases to consider for the

zero configurations of G.

Theorem 3.8 Assume that A = 0 and that the necessary conditions of Lemmas 3.5

and 3.6 hold. Let rj, j = 0, 1, 2, . . . be the nonnegative zeros of G where r0 = 0. The

zero solution of (1.1) is asymptotically stable if and only if

(−1)jF (rj) > 0, j = 1, 2, . . . .

We omit the proof of Theorem 3.8 as the conditions are precisely those needed

to guarantee interlacing of the zeros of F and G and the conditions in Lemmas 3.5

and 3.6 guarantee F and G have all real zeros.

It is clear that one cannot use Theorem 3.8 with an infinite number of conditions,

and thus we obtain a stability test with a finite number of conditions.
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Theorem 3.9 (Algorithmic Stability Test I) Assume that A = 0 and that the

necessary conditions of Lemmas 3.5 and 3.6 hold. The zero solution of (1.1) is asymp-

totically stable if and only if

1: F (r2j+1) < 0 for j = 1, 2, . . . , P1, and

2: F (r2j) > 0 for j = 1, 2, . . . , P2

where P1 = max(M1, N1, L1) P2 = max(M2, N2, L2) and M1, M2, N1, N2, L1,

L2 are as follows.

Here M1 and M2 are the first positive integers such that r2M1+1 >
√

|C| and

r2M2 >
√
|C|. The values L1, L2, N1 and N2 are based on the parameters C and α

as follows.

I. If C > 0, L1 and L2 are the first positive integers such that

1: −r2
2L1+1(cos r2L1+1 + α) + C + D < 0 and

2: −r2
2L2

(cos r2L2 + α) − C + D > 0.

For 0 < α < 1 N1 = 1 and N2 is the first positive integer such that cos r2N2 +α <

0. For −1 < α < 0, N1 is the first positive integer such that cos r2N1+1 + α > 0,

and N2 = 1.

II. If C < 0, then L1 = M1 and L2 = M2. For −1 < α < 0, N1 = 1 and N2 is the

first positive integer such that cos r2N2 + α < 0 and for 0 < α < 1, N1 = 1 and

N2 is the first positive index such that cos r2N2 + α > 0.

The monotone convergence of the residues of the even and odd numbered roots

of G guarantee the existence of these numbers. These monotonicities guarantee that

if 1 and 2 in Theorem 3.9 hold, then these inequalities hold for all j > P1 and j > P2,

respectively. Asymptotic stability would then follow from Theorem 3.8.

In the case where D = αC, we can obtain asymptotic stability criteria based on

the parameters of the problem rather than an algorithm. We also obtain stability

regions. We will use the following notations: ρ1 is the root of cos y = −α in (0, π)

and ρ2 is the root of cos y = −α in (π, 2π). Notice that ρ2 = 2π−ρ1, ρ2j+1 = ρ1+2jπ,

and ρ2j+2 = ρ2 + 2jπ, j = 1, 2, . . ., constitute all positive roots of cos y = −α. For

convenience, we let ρ−1 = ρ0 = 0, and β = B√
1−α2 .

Theorem 3.10 Assume A = 0, B 6= 0, D = αC, −1 < α < 1, and α 6= 0. The zero

solution of (1.1) is asymptotically stable if and only if

(3.26) 0 < β < ρ1 and 0 < C < ρ2
1 − βρ1,

or 0 < β < 2ρ1, and there exist L ≥ 1 such that

(3.27) ρ2
2L + βρ2L < C < ρ2

2L+1 − βρ2L+1,

or −2(π − ρ1) < β < 0 and there exists L ≥ 1 such that

(3.28) ρ2
2L−1 − βρ2L−1 < C < ρ2

2L + βρ2L.
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Proof. First note that with D = αC, C > 0 is a necessary condition from Theo-

rem 3.1. With A = 0 and D = αC, the positive zeros of F are y =
√

C and the

positive roots cos y = −α. It is easy to see from Theorem 2.3 that F has all real

zeros. From (3.22)

(3.29) F ′(y) = −2y(cos y + α) + (y2 − C) sin y.

By Theorem 2.2 the zero solution of (1.1) is asymptotically stable if and only if

(3.30) ∆(
√

C) = 2BC(cos
√

C + α) > 0,

(3.31) ∆(ρ2j−1) = − sin(ρ2j−1)(ρ
2
2j−1 − C)

(
sin ρ2j−1(C − ρ2

2j−1) + Bρ2j−1

)
> 0,

and

(3.32) ∆(ρ2j) = − sin(ρ2j)(ρ
2
2j − C)

(
sin ρ2j(C − ρ2

2j) + Bρ2j

)
> 0

for all j = 1, 2, . . ..

Notice that sin ρ2j−1 =
√

1 − α2 and sin ρ2j = −
√

1 − α2 for j = 1, 2, . . . and thus

equations (3.32) and (3.33) are equivalent to

(3.33) ∆(ρ2j−1) = (1 − α2)(ρ2
2j−1 − C)(ρ2

2j−1 − βρ2j−1 − C) > 0

and

(3.34) ∆(ρ2j) = (1 − α2)(ρ2
2j − C)(ρ2

2j + βρ2j − C) > 0

for all j = 1, 2, . . ..

If B > 0, then (3.31) is equivalent to cos
√

C + α > 0, or equivalentally, ρ2L <√
C < ρ2L+1 for some integer L ≥ 0. Now (3.34) and (3.35) hold for all j = 1, 2, . . . if

and only if the positive zeros of the quadratic functions ρ2 − βρ−C and ρ2 + βρ−C

lie in the interval (ρ2L−1, ρ2L+1) and (ρ2L, ρ2L+2), respectively. That is,

(3.35) ρ2L−1 <
β +

√
β2 + 4C

2
< ρ2L+1

and

(3.36) ρ2L <
−β +

√
β2 + 4C

2
< ρ2L+2.

We have that (3.36) and (3.37) are equivalent to

(3.37) 2ρ2L−1 − β <
√

β2 + 4C < 2ρ2L+1 − β

and

(3.38) 2ρ2L + β <
√

β2 + 4C < 2ρ2L+2 + β.
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With β = B√
1−α2 > 0, (3.38) and (3.39) are equivalent to

(3.39) 2ρ2L + β <
√

β2 + 4C < 2ρ2L+1 − β.

In this case, (3.40) is equivalent to 0 < β < ρ2L+1 − ρ2L and

(3.40) ρ2
2L + βρ2L < C < ρ2

2L+1 − βρ2L.

If L = 0, these are equivalent to 0 < β < ρ1 and 0 < C < ρ2
1 − βρ1. If L ≥ 1, these

are equivalent to 0 < β < 2ρ1 and (3.40). See Example 4.1 for region of stability.

The proof for B < 0 is similar.

For the general case we will use the following lemma. The proof is essentially the

same as the proof of Lemma 3.3 in [9], and we omit the proof.

Lemma 3.7 Assume −1 < α < 1. Let δ = (1 + |α|)/2. Let n ∈ Z+. If n ≥ M :=

max(M1, M2, M3, M4) where M1, M1, M3 and M4 be the smallest positive integers

such that

(3.41)
|B| +

√
B2 + 4C

2M1π − π
< 1

(3.42)
|C|

(M2π − π/2)2
+

δ|A| + |B|
(M2π − π/2)

√
1 − δ2

< 1

(3.43)
|C| + δ|B| + δ2|A|
δ2(M3π − π/2)2

+
(2δ + |B|)

√
1 − δ2

δ2(M3π − π/2)
< 1

(3.44)
|C|

(M4π − π/2)2
+

|B| + δ|A|
(M4π − π/2)

√
1 − δ2

< 1,

then the interval [nπ − π/2, nπ + π/2] contains exactly one zero r of G and (nπ −
cos−1 δ < r < nπ + cos−1 δ) .

Remark 3.3 Recall that G has all real zeros if and only if G has 4k + 2 zeros in

(−2jπ+ǫ, 2kπ+ǫ) (or, equivalently, 2k+1 zeros in (0, 2kπ+ǫ) for all sufficiently large

k where 0 < ǫ < π/2. From Lemma 3.7, G has all real zeros if and only if G has M +1

zeros in (0, Mπ + ǫ). In this case let r1 < r2 < r3 < · · · denote the positive zeros of

G. The zero solution of (1.1) is asymptotically stable if in addition (−1)jF (rj) > 0

for all j = 1, 2, . . . It follows that r2k+1−2kπ → 0 and r2k − (2k−1)π → 0 as k → ∞.

Suppose 0 < α < 1. We have

(3.45) F (rj) = −r2
j

(
cos rj + α + A

sin rj

rj

− C
cos rj

r2
j

− D

r2
j

)
.

If 2k ≥ M , then Lemma 3.7 yields cos r2k < −δ so that

(3.46) cos r2k + α < −1 − α

2
= −1 − |α|

2
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and if 2k + 1 ≥ M , then cos r2k−1 > δ so that

(3.47) cos r2k+1 + α >
1 + 3|α|

2
>

1 − |α|
2

.

Let J be the smallest positive integer for which

(3.48)
|A|

(Jπ − π/2)
+

|C| + |D|
(Jπ − π/2)2

<
1 − |α|

2

It follows that if

(3.49) j > N := max(M, J), then (−1)jF (rj) > 0.

If −1 < α < 0, the analysis is similar with the sensitive inequality being for odd

indices rather than the even ones.

In this analysis, we established the following general asymptotic stability test.

Theorem 3.11 (Algorithmic Stability Test II, General Test) Assume that

A + B + C > 0 and C + D > 0, and that −1 < α < 0 or 0 < α < 1. Let M be as

in Lemma 3.7, and assume that G has M + 1 zeros in (0, Mπ + π/2). Then the zero

solution of (1.1) is asymptotically stable if and only if

(3.50) (−1)jF (rj) > 0, j = 1, 2, . . . , N

where N defined in (3.50).

4. EXAMPLES

Example 4.1 Consider (1.1) with A = 0, α = 0.5, D = αC, C > 0 i.e.

y′′(t) + αy′′(t − τ) + by′(t − τ) + cy(t) + αcy(t− τ) = 0.(4.1)

Recall B = bτ and C = cτ 2. We apply Theorem 3.10 and Theorem 3.3 (iii). In

this example ρ1 = arccos(−0.5) = 2.094395102. In the figure below the portion of the

asymptotic stability region for 0 < C < ρ2
4 is is shown. Specifically, the asymptotic

stability region is the union of the interiors of the derived triangles in the right half

plane in (C, β)-space. See the bounds in (3.27) and (3.28) for the slopes of the

boundary lines. We also note that in Theorem 3.10 the inequalities β < ρ1, β < 2ρ2,

and β > −2(π − ρ1) are redundant upon other inequalities in their respective cases.

We include them because they reveal the upper and lower vertices of the triangles

in the asymptotic stability region. Figure 4 is typical for all α with −1 < α < 0

or 0 < α < 1. The region is shown in (C, β)-space, the upper vertices lie on the

line β = 2ρ1 = 2 arccos(−α) (except the first one which lie on β = ρ1) and the

lower vertices lie on the line y = −2(π − ρ1) = −2(π − arccos(−α)). As α → 1, the

lower triangles narrow away (in (C, β)-space), and as α → −1, the upper triangles

narrow away. Since B = β
√

1 − α2, all of the triangles narrow away in (C, B)-space

as α → ±1.
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F
¯
igure 4- Region of asymptotic stability for α = 0.5 in the (C, β)-plane.

Example 4.2 Consider (1.1) with A = 0, B = 1, C = 0.5, D unspecified and α = 0.6,

i.e.,

y′′(t) + αy′′(t − τ) + by′(t − τ) + cy(t) + dy(t− τ) = 0(4.2)

where

B = bτ, C = cτ 2, D = dτ 2.(4.3)

The zeros of G(y) are independent of D. Table I gives values of the first four positive

zeros of G and the values of the function F at these zeros.

Table I

r1 = 1.38054 F (r1) = −1.409410313 + D

r2 = 2.73984 F (r2) = 1.944804 + D

r3 = 6.44098 F (r3) = −65.36888 + D

r4 = 9.3166 F (r4) = 33.715318 + D

In this example, we use Algorithmic Stability Test I. Here −r2
3(cos r3 + α) + C +

D = −65.3627 + D and −r2
2(cos r2 + α) − C + D = 1.9050 + D. We have M1 = 1,

M2 = 1, N1 = 1, N2 = 1. The zero solution of (1.1) is asymptotically stable for all D

where −1.90499 < D < 1.409. Note that L1 = 1 and L2 = 1 for these values of D.

Example 4.3 Consider (1.1) with A = 3, B = 1, C = 0.5, D = 5.3 and α = 0.7, i.e.

y′′(t) + αy′′(t − τ) + ay′(t) + by′(t − τ) + cy(t) + dy(t− τ) = 0(4.4)

where

A = aτ, B = bτ, C = cτ 2, D = dτ 2.(4.5)
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In this example we will use the Algorithmic Stability Test II and Lemma 3.7. Using

direct calculations we found that M1 = 1, M2 = 3, M3 = 2, and M4 = 3, and by

Lemma 3.7, M = 3 and the value of J defined in (3.45) is 8. By (3.46), N = 8. In

the Table II below we present rj and the value of F (rj) for j = 1, . . . , 8.

Table II

r1 = 1.511303125 F (r1) = −0.930789465

r2 = 3.632129007 F (r2) = 12.39430676

r3 = 6.836264110 F (r3) = −77.52907973

r4 = 9.628546078 F (r4) = 36.55028535

r5 = 12.87196732 F (r5) =-279.8333553

r6 = 15.8333687 F (r6) = 83.98506486

r7 = 19.05782871 F (r7) = −615.6250571

r8 = 22.08138467 F (r8) = 155.0640468

The function G has four zeros in (0, 3π+π/2) and interlacing holds for j = 1, . . . , 8

and by Algorithmic Stability Test II the zero solution of (4.4) is asymptotically stable.

For the nonneutral case, i.e. α = 0 we found that F (r1) = 0.668036530 > 0. and

interlacing fails. By Theorem 2.2 the zero solution is not asymptotically stable. Typ-

ically introducing delays and neutral terms has an unstabilizing effect. In nonneutral

case when the order is 2 or higher, we have found rare cases when the delay has a

stabilizing effect. This example provides a case where the addition of a neutral term

has a stabilizing effect.
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