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1. INTRODUCTION

In this paper we use the notion of extendability to establish new continuation

theorems for admissible (and more general) maps. The ideas used are elementary,

in particular the notion of homotopy and Urysohn functions. An added bonus is

that the results hold for maps between Hausdorff topological spaces (i.e. the spaces

need not be vector spaces). Our theory was motivated by the books [2, 3] and the

references therein.

Now we introduce the maps we will discuss in Section 2. Let X and Z be subsets

of Hausdorff topological spaces. We will consider maps F : X → K(Z); here K(Z)

denotes the family of nonempty compact subsets of Z. A nonempty topological space

is said to be acyclic if all its reduced C̆ech homology groups over the rationals are

trivial. Now F : X → K(Z) is acyclic (and we write F ∈ AC(X, Z)) if F is upper

semicontinuous with acyclic values.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map

p : Γ→ X is called a Vietoris map (written p : Γ⇒ X) if the following two conditions

are satisfied:

(i). for each x ∈ X, the set p−1(x) is acyclic

(ii). p is a proper map i.e. for every compact A ⊆ X we have that p−1(A) is compact.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is

a nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form

X
p
← Γ

q
→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two

conditions hold:

(i). p is a Vietoris map
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and

(ii). q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps [2].

Definition 1.1. A upper semicontinuous map φ : X → Y with closed values is said

to be admissible (and we write φ ∈ Ad(X, Y )) provided there exists a selected pair

(p, q) of φ.

Now we define the permissible maps [2]. Let X and Y be Hausdorff topological

spaces.

Definition 1.2. A multivalued map F : X → K(Y ) is in the class Am(X, Y ) if (i).

F is continuous, and (ii). for each x ∈ X the set F (x) consists of one or m acyclic

components; here m is a positive integer. We say F is of class A0(X, Y ) if F is upper

semicontinuous and for each x ∈ X the set F (x) is acyclic.

Definition 1.3. A decomposition (F1, . . . , Fn) of a multivalued map F : X → 2Y is

a sequence of maps

X = X0
F1→ X1

F2→ X2
F3→ · · ·

Fn−1

→ Xn−1
Fn→ Xn = Y,

where Fi ∈ Ami
(Xi−1, Xi), F = Fn ◦ · · · ◦ F1. One can say that the map F is

determined by the decomposition (F1, . . . , Fn). The number n is said to be the length

of the decomposition (F1, . . . , Fn). We will denote the class of decompositions by

D(X, Y ).

Definition 1.4. An upper semicontinuous map F : X → K(Y ) is permissible

provided it admits a selector G : X → K(Y ) which is determined by a decomposition

(G1, . . . , Gn) ∈ D(X, Y ). We denote the class of permissible maps from X into Y by

P(X, Y ).

Now we define the maps of Park which include the above maps. Let X and Y be

Hausdorff topological spaces. Given a class X of maps, X (X, Y ) denotes the set of

maps F : X → 2Y (nonempty subsets of Y ) belonging to X , and Xc the set of finite

compositions of maps in X . We let

F(X ) = {Z : FixF 6= ∅ for all F ∈ X (Z, Z)}

where FixF denotes the set of fixed points of F .

The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Uc) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

We say F ∈ Uk
c (X, Y ) if for any compact subset K of X there is a G ∈ Uc(K, Y )

with G(x) ⊆ F (x) for each x ∈ K. Recall Uk
c is closed under compositions.
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2. CONTINUATION THEORY

Throughout this section Y will be a completely regular topological space and

U will be an open subset of Y . In applications we are usually interested in maps

F : U → Y (here U denotes the closure of U in Y ) and in conditions which guarantee

a fixed point in U . In our first (quite abstract) result assuming that we have a

homotopy extension type property (i.e. a H : Y × [0, 1]→ K(Y ) with H1|U = F ) we

will show that H1 (so consequently F ) has a fixed point in U .

Definition 2.1. We say F ∈ cAd(Y, Y ) if F ∈ Ad(Y, Y ) is a compact map.

Definition 2.2. If F ∈ cAd(Y, Y ) and p ∈ Y then we say F ∼= {p} in cAd(Y, Y )

if there exists an upper semicontinuous compact map Ω : Y × [0, 1] → K(Y ) with

Ω ∈ cAd(Y × [0, 1], Y ), Ω1 = F and Ω0 = {p} (here Ωt(x) = Ω(x, t)).

Theorem 2.1. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Suppose there exists an upper semicontinuous compact map H :

Y × [0, 1]→ K(Y ) with H ∈ cAd(Y × [0, 1], Y ), H(x, 0) = {u0} for each x ∈ Y and

x /∈ Ht(x) for x ∈ ∂U and t ∈ (0, 1]. In addition assume the following property holds:

(2.1)

{

for any Φ ∈ cAd(Y, Y ) and any p ∈ Y with Φ ∼= {p}

in cAd(Y, Y ) we have that Φ has a fixed point in Y.

Then H1 has a fixed point in U .

PROOF: Let

B = {x ∈ Y \U : x ∈ Ht(x) for some t ∈ [0, 1]} .

We consider two cases, namely B 6= ∅ and B = ∅.

Case (i). B = ∅.

Then for every t ∈ [0, 1] we have x /∈ Ht(x) for x ∈ Y \U . Also from H1
∼= {u0}

in cAd(Y, Y ) and (2.1) we know there exists y ∈ Y with y ∈ H1(y). Since x /∈ H1(x)

for x ∈ Y \U we deduce that y ∈ U .

Case (ii). B 6= ∅.

Now B is closed and compact and also note B ∩ U 6= ∅ (recall x /∈ Ht(x) for

x ∈ ∂U and t ∈ [0, 1]). Then there exists a continuous map µ : Y → [0, 1] with

µ(B) = 0 and µ(U) = 1. Define a map R : Y → K(Y ) by

R(x) = H(x, µ(x)) = H ◦ η(x)

where η : Y → Y × [0, 1] is given by η(x) = (x, µ(x)). Since R is the composition of

two admissible maps we have that R ∈ Ad(Y, Y ) is a compact map i.e. R ∈ cAd(Y, Y ).

In fact R ∼= {u0} in cAd(Y, Y ). To see this let Ω : Y × [0, 1]→ K(Y ) be given by

Ω(x, t) = H(x, tµ(x)) = H ◦ τ(x, t)
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where τ : Y × [0, 1]→ Y × [0, 1] is given by τ(x, t) = (x, tµ(x)). Note Ω ∈ cAd(Y ×

[0, 1], Y ), Ω1 = R and Ω0 = {u0} (note H(x, 0) = {u0} for each x ∈ Y ).

Now (2.1) guarantees that there exists x ∈ Y with x ∈ R(x) = Hµ(x)(x). If

x ∈ Y \U then since x ∈ B we have x ∈ H(x, µ(x)) = H(x, 0) = {u0} which is a

contradiction since u0 ∈ U . Thus x ∈ U and so x ∈ R(x) = H(x, µ(x)) = H(x, 1). �

Remark 2.1. In (2.1) we can replace p ∈ Y with p ∈ U or indeed just p equals u0.

Remark 2.2. We can replace the compactness of the maps H , Ω and in cAd with any

assumption on the appropriate maps that guarantee that B is compact (see [4]).

Corollary 2.1. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Suppose there exists a retraction (continuous) r : Y → U and

assume there exists an upper semicontinuous compact map Λ : U × [0, 1] → K(Y )

with Λ ∈ cAd(U × [0, 1], Y ), Λ(x, 0) = {u0} for each x ∈ U and x /∈ Λt(x) for x ∈ ∂U

and t ∈ (0, 1]. In addition assume (2.1) holds. Then Λ1 has a fixed point in U .

PROOF: Let

H(x, t) = Λ(r(x), t) = Λ ◦ ξ(x, t)

where ξ : Y × [0, 1] → U × [0, 1] is given by ξ(x, t) = (r(x), t). Notice H : Y ×

[0, 1] → K(Y ) is a upper semicontinuous compact map, H ∈ cAd(Y × [0, 1], Y ),

H(x, 0) = Λ(r(x), 0) = {u0} for x ∈ Y (note r(x) ∈ U for x ∈ Y ). Also note

x /∈ Ht(x) for x ∈ ∂U and t ∈ (0, 1]. To see this note if there exists x ∈ ∂U and

t ∈ (0, 1] with x ∈ Ht(x) then x ∈ Λt(r(x)) = Λt(x) (note r(x) = x for x ∈ U), a

contradiction. Thus H satisfies the conditions in the statement of Theorem 2.1. As

a result H1 (so consequently Λ1, note r(x) = x for x ∈ U) has a fixed point in U . �

Remark 2.3. Let Y , U , u0 and Λ be as in Corollary 2.1 and suppose (2.1) holds.

To deduce that Λ1 has a fixed point in U the idea is to apply Theorem 2.1 so we

must construct an upper semicontinuous compact map H : Y × [0, 1] → K(Y ) with

H ∈ cAd(Y × [0, 1], Y ), H(x, 0) = {u0} for each x ∈ Y and x /∈ Ht(x) for x ∈ ∂U

and t ∈ (0, 1] and such that H1(x) = Λ1(x) if x ∈ U and x ∈ H1(x). If a retraction

r : Y → U exists then it is easy to construct the H as Corollary 2.1 shows. It is

also possible to construct a H in certain situations when a retraction described above

does not exist. As an example consider a subclass of the Ad maps, namely the acyclic

(AC) maps. We say a map F ∈ cAC(Y, Y ) if F ∈ AC(Y, Y ) is a compact map. Let

Y , U , u0, Λ and (2.1) be as above with Ad replaced by AC and cAd replaced by cAC.

Now let

D =
{

x ∈ U : x ∈ Λt(x) for some t ∈ [0, 1]
}

.

Note D 6= ∅ (since u0 ∈ U) is closed and compact and D ∩ (Y \U) = ∅. Thus there

exists a continuous map σ : Y → [0, 1] with σ(D) = 1 and σ(Y \U) = 0. Define
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H : Y × [0, 1]→ K(Y ) by

H(x, t) =

{

Λ(x, tσ(x)), x ∈ U

{u0}, x ∈ Y \U.

Clearly H : Y × [0, 1] → K(Y ) is an upper semicontinuous compact map with H ∈

cAC(Y × [0, 1], Y ), H(x, 0) = {u0} for each x ∈ Y and x /∈ Ht(x) for x ∈ ∂U and

t ∈ (0, 1] (to see this note if there exists an x ∈ ∂U and t ∈ (0, 1] with x ∈ Ht(x) then

x ∈ Λ(x, tσ(x)) = Λtσ(x)(x) so x ∈ D which implies σ(x) = 1 and so x ∈ Λt(x), a

contradiction). Thus H satisfies the statement of Theorem 2.1 and since (2.1) holds

then H1 has a fixed point x ∈ U . Thus x ∈ H1(x) = Λσ(x)(x) so x ∈ D which implies

σ(x) = 1 and so x ∈ Λ1(x).

Remark 2.4. By a space we mean a Hausdorff topological space. Let Q be a class of

topological spaces. A space Y is an extension space for Q (written Y ∈ ES(Q)) if

∀X ∈ Q, ∀K ⊆ X closed in X, any continuous function f0 : K → Y extends to a

continuous function f : X → Y . Recall [1, 5] if X ∈ ES(compact) and F ∈ Uκ
c (X, X)

a compact map, then F has a fixed point. Consequently we have the following result:

if Y ∈ ES(compact) then any map Φ ∈ cAd(Y, Y ) has a fixed point so trivially (2.1)

holds (notice the condition that Φ ∼= {p} in cAd(Y, Y ) in (2.1) does not play any role

in this example). Condition (2.1) was discussed in [6] and we refer the reader to that

paper.

Remark 2.5. Let Y be a metric space. By the Arens–Eells theorem we know we can

embed Y can as a closed subset (again we call it Y ) of a normed space E (recall the

Arens–Eells theorem states that any metric space can be isometrically embedded as

a closed subset in a normed linear space). Now if we assume























for any Φ ∈ cAd(Y, Y ) and any p ∈ Y with Φ ∼= {p}

in cAd(Y, Y ) there exists a Φ∗ ∈ cAd(E, E) with a

fixed point, and suppose also any fixed point of Φ∗

is a fixed point of Φ,

then (2.1) holds.

Definition 2.3. We say F ∈ cP(Y, Y ) if F ∈ P(Y, Y ) is a compact map.

Definition 2.4. If F ∈ cP(Y, Y ) and p ∈ Y then we say F ∼= {p} in cP(Y, Y )

if there exists an upper semicontinuous compact map Ω : Y × [0, 1] → K(Y ) with

Ω ∈ cP(Y × [0, 1], Y ), Ω1 = F and Ω0 = {p} (here Ωt(x) = Ω(x, t)).

The next two results follow the same argument above.

Theorem 2.2. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Suppose there exists an upper semicontinuous compact map H :

Y × [0, 1] → K(Y ) with H ∈ cP(Y × [0, 1], Y ), H(x, 0) = {u0} for each x ∈ Y and
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x /∈ Ht(x) for x ∈ ∂U and t ∈ (0, 1]. In addition assume the following property holds:

(2.2)

{

for any Φ ∈ cP(Y, Y ) and any p ∈ Y with Φ ∼= {p}

in cP(Y, Y ) we have that Φ has a fixed point in Y.

Then H1 has a fixed point in U .

Corollary 2.2. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Suppose there exists a retraction (continuous) r : Y → U and

assume there exists an upper semicontinuous compact map Λ : U × [0, 1] → K(Y )

with Λ ∈ cP(U × [0, 1], Y ), Λ(x, 0) = {u0} for each x ∈ U and x /∈ Λt(x) for x ∈ ∂U

and t ∈ (0, 1]. In addition assume (2.2) holds. Then Λ1 has a fixed point in U .

Remark 2.6. There is a similar remark as in Remark 2.2 for the cP maps.

Definition 2.5. We say F ∈ cUk
c (Y, Y ) if F ∈ Uk

c (Y, Y ) is a compact map.

Definition 2.6. If F ∈ cUk
c (Y, Y ) and p ∈ Y then we say F ∼= {p} in cUk

c (Y, Y )

if there exists an upper semicontinuous compact map Ω : Y × [0, 1] → K(Y ) with

Ω ∈ cUk
c (Y × [0, 1], Y ), Ω1 = F and Ω0 = {p} (here Ωt(x) = Ω(x, t)).

The next two results follow the same argument above.

Theorem 2.3. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Suppose there exists an upper semicontinuous compact map H :

Y × [0, 1] → K(Y ) with H ∈ cUk
c (Y × [0, 1], Y ), H(x, 0) = {u0} for each x ∈ Y and

x /∈ Ht(x) for x ∈ ∂U and t ∈ (0, 1]. In addition assume the following property holds:

(2.3)

{

for any Φ ∈ cUk
c (Y, Y ) and any p ∈ Y with Φ ∼= {p}

in cUk
c (Y, Y ) we have that Φ has a fixed point in Y.

Then H1 has a fixed point in U .

Corollary 2.3. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Suppose there exists a retraction (continuous) r : Y → U and

assume there exists an upper semicontinuous compact map Λ : U × [0, 1] → K(Y )

with Λ ∈ cUk
c (U × [0, 1], Y ), Λ(x, 0) = {u0} for each x ∈ U and x /∈ Λt(x) for x ∈ ∂U

and t ∈ (0, 1]. In addition assume (2.3) holds. Then Λ1 has a fixed point in U .

Remark 2.7. There is a similar remark as in Remark 2.2 for the cUk
c maps.
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