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1. INTRODUCTION

In the original paper of S. Hilger [9] and further textbooks by M. Bohner and

A. Peterson [7, 8], the single variable time scale calculus was developed in order

to create a theory of, so-called, dynamic equations, that can unify and extend the

theories of differential equations and difference equations. Next in [1, 2, 4, 3, 5, 6], the

authors introduced and investigated some topics of multivariable time scale analysis

to prepare an instrument for developing a theory of partial dynamic equations. The

present paper continues those papers of the authors and introduces surface integration

over time scale surfaces.

The paper is organized as follows. In Section 2, for the convenience of the reader,

we present some essentials of the two-variable time scales calculus. In Section 3, we

introduce the concept of a surface parametrized by time scale parameters and give an

integral formula for computation of its area. In Section 4, we define a surface delta

integral on time scales and give sufficient conditions for the existence of this integral

and also offer a formula for its evaluation. Finally, in Section 5, we end with some

concluding remarks.

2. TWO-VARIABLE TIME SCALES CALCULUS

A time scale is an arbitrary nonempty closed subset of the real numbers. For

a general introduction to one-variable time scale calculus and notations we refer the
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reader to [7, 8, 9]. In the present paper we deal with two-variable time scales calculus.

Therefore, in this section, following [1, 2], we fix some notions and notation related

to the two-variable time scales calculus.

Let T1 and T2 be two time scales and put T1 × T2 = {(t, s) : t ∈ T1, s ∈ T2},
the Cartesian product of the time scales T1 and T2, which is a complete metric space

with the Euclidean metric (distance) d defined by

d((t, s), (t′, s′)) =
√

(t− t′)2 + (s− s′)2 for (t, s), (t′, s′) ∈ T1 × T2.

Hence, we have for T1 × T2 the usual concepts related to general metric spaces. For

instance, given δ > 0, the δ-neighborhood Uδ(t0, s0) of a point (t0, s0) ∈ T1 × T2 is

the set of all points (t, s) ∈ T1 × T2 such that d((t0, s0), (t, s)) < δ. Let σ1 and σ2 be

the forward jump operators on T1 and T2, respectively. The first-order partial delta

derivatives of a function f : T1 × T2 → R at a point (t0, s0) ∈ T
κ
1 × T

κ
2 are defined to

be
∂f(t0, s0)

∆1t
= lim

t→t0

t6=σ1(t0)

f(σ1(t0), s0) − f(t, s0)

σ1(t0) − t

and
∂f(t0, s0)

∆2s
= lim

s→s0

s 6=σ2(s0)

f(t0, σ2(s0)) − f(t0, s)

σ2(s0) − s
.

These derivatives will be denoted also by f∆1

(t0, s0) and f∆2

(t0, s0), respectively.

Suppose a < b are points in T1, c < d are points in T2, [a, b) is a half-closed

bounded interval in T1, and [c, d) is a half-closed bounded interval in T2,

[a, b) = {t ∈ T1 : a ≤ t < b}, [c, d) = {s ∈ T2 : c ≤ s < d}.

In what follows, all ocurring intervals will be time scale intervals. Let us introduce a

time scale “rectangle” (or “delta rectangle”) in T1 × T2 by

R = [a, b) × [c, d) = {(t, s) : t ∈ [a, b), s ∈ [c, d)}.

The area (measure) of the rectangle R is defined to be

m(R) = (b− a)(d− c).

Let

{t0, t1, . . . , tn} ⊂ [a, b), where a = t0 < t1 < . . . < tn = b,

{s0, s1, . . . , sl} ⊂ [c, d), where c = s0 < s1 < . . . < sl = d.

The numbers n and l may be arbitrary positive integers. We call the collection of

intervals

P1 = {[ti−1, ti) : 1 ≤ i ≤ n}
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a ∆-partition (or delta partition) of [a, b) and denote the set of all ∆-partitions of

[a, b) by P([a, b)). Similarly, the collection of intervals

P2 = {[sj−1, sj) : 1 ≤ j ≤ l}

is called a ∆-partition of [c, d), and the set of all ∆-partitions of [c, d) is denoted by

P([c, d)). Let us set

(2.1) Rij = [ti−1, ti) × [sj−1, sj), where 1 ≤ i ≤ n, 1 ≤ j ≤ l.

We call the collection

(2.2) P = {Rij : 1 ≤ i ≤ n, 1 ≤ j ≤ l}

a ∆-partition of R, generated by the ∆-partitions P1 and P2 of [a, b) and [c, d),

respectively, and write P = P1 × P2. The rectangles Rij , 1 ≤ i ≤ n, 1 ≤ j ≤ l, are

called the subrectangles of the partition P . The set of all ∆-partitions of R is denoted

by P(R).

We will need the following auxiliary result (see [8, Lemma 5.7] for the proof) for

making a limit process in getting time scale integrals from time scale integral sums.

Lemma 2.1. For any δ > 0 there exists at least one P1 ∈ P([a, b)) generated by a set

{t0, t1, . . . , tn} ⊂ [a, b), where a = t0 < t1 < . . . < tn = b,

so that for each i ∈ {1, 2, . . . , n},

either ti − ti−1 ≤ δ or ti − ti−1 > δ and σ1(ti−1) = ti.

We denote by Pδ([a, b)) the set of all P1 ∈ P([a, b)) that posses the property

indicated in Lemma 2.1. Similarly we define Pδ([c, d)). Further, by Pδ(R) we denote

the set of all P ∈ P(R) such that

P = P1 × P2, where P1 ∈ Pδ([a, b)) and P2 ∈ Pδ([c, d)).

Definition 2.2. Let Ω ⊂ T1 × T2. A point u = (t, s) ∈ T1 × T2 is called a boundary

point of Ω if every open (two-dimensional) ball B(u, r) = {v ∈ T1 × T2 : d(u, v) < r}
of radius r and center u contains at least one point of Ω and at least one point of

(T1 × T2) \ Ω. The set of all boundary points of Ω is called the boundary of Ω, and

it is denoted by ∂Ω.

Definition 2.3. Let Ω ⊂ T1×T2. A point u = (t, s) ∈ T1×T2 is called a ∆-boundary

point of Ω if every rectangle of the form V = [t, t′) × [s, s′) ⊂ T1 × T2 with t′ ∈ T1,

t′ > t and s′ ∈ T2, s
′ > s, contains at least one point of Ω and at least one point of

(T1 × T2) \ Ω. The set of all ∆-boundary points of Ω is called the ∆-boundary of Ω,

and it is denoted by ∂∆Ω.
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For i = 1, 2, let us introduce the set T
0
i as follows: If Ti has a finite maximum

t∗, then T
0
i = Ti \ {t∗}, otherwise T

0
i = Ti. Briefly we will write T

0
i = Ti \ {maxTi}.

Evidently, for every point t ∈ T
0
i there exists an interval of the form [α, β) ⊂ Ti (with

α, β ∈ Ti and α < β) that contains the point t.

Obviously, each ∆-boundary point of Ω is a boundary point of Ω, but the converse

is not necessarily true. Each ∆-boundary point of Ω must belong to T
0
1 × T

0
2. Note

also that any rectangle of the form Ω = [a, b) × [c, d) ⊂ T1 × T2, where a, b ∈ T1,

a < b and c, d ∈ T2, c < d, has no ∆-boundary point, i.e., ∂∆Ω = ∅, the empty set.

If T1 = T2 = Z, then any set Ω ⊂ Z × Z has no boundary as well as no ∆-boundary

points. For other examples of the ∆-boundary see [2, 4].

Definition 2.4. Let Ω ⊂ T
0
1 × T

0
2 be a bounded set and let ∂∆Ω be its ∆-boundary.

Let R = [a, b) × [c, d) be a rectangle in T1 × T2 such that Ω ∪ ∂∆Ω ⊂ R. Further,

let P(R) denote the set of all ∆-partitions of R of type (2.1), (2.2). For every

P ∈ P(R) define J∗(Ω, P ) to be the sum of the areas of those subrectangles of P

which are entirely contained in Ω, and let J∗(Ω, P ) be the sum of the areas of those

subrectangles of P each of which contains at least one point of Ω∪∂∆Ω. The numbers

J∗(Ω) = sup{J∗(Ω, P ) : P ∈ P(R)} and J∗(Ω) = inf{J∗(Ω, P ) : P ∈ P(R)}

are called the (two-dimensional) inner and outer Jordan ∆-measure of Ω, respectively.

The set Ω is called Jordan ∆-measurable if J∗(Ω) = J∗(Ω), in which case this common

value is called the Jordan ∆-measure of Ω, and it is denoted by J(Ω).

For any bounded set Ω ⊂ T
0
1 × T

0
2 we have

J∗(∂∆Ω) = J∗(Ω) − J∗(Ω).

Hence Ω is Jordan ∆-measurable if and only if its ∆-boundary ∂∆Ω has Jordan ∆-

measure zero.

Note that every rectangle R = [a, b) × [c, d) ⊂ T1 × T2, where a, b ∈ T1, a < b

and c, d ∈ T2, c < d, is Jordan ∆-measurable with the Jordan ∆-measure J(R) =

(b− a)(d − c). The ∆-boundary of R is empty and therefore has Jordan ∆-measure

zero.

Now we define double ∆-integrals over Jordan ∆-measurable sets. Let Ω ⊂
T

0
1 × T

0
2 be a bounded Jordan ∆-measurable set and f : Ω → R be a function.

Further, let R = [a, b) × [c, d) ⊂ T1 × T2 be a rectangle such that Ω ⊂ R. To

define the double ∆-integral of f over Ω, we begin with a ∆-partition P ∈ P(R) of

type (2.1), (2.2) and assume that P = {R1, R2, . . . , RN} (every partition (2.2) can be

labeled in this form, and the order in which those subrectangles are labeled makes

no difference). Some of the subrectangles of P will lie entirely within Ω, some will be

outside of Ω, and some will lie partly within and partly outside Ω. We consider the
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collection P ′ = {R1, R2, . . . , Rk} of all those subrectangles in P that lie completely

within the set Ω. This collection P ′ is called an inner ∆-partition of the set Ω. By

choosing an arbitrary point (ξi, ηi) in the ith subrectangle Ri of P ′ for i ∈ {1, . . . , k},
we obtain a selection for the inner ∆-partition P ′. Let us denote by m(Ri) the area

of Ri: If Ri = [ti, t
′
i) × [si, s

′
i), then m(Ri) = (t′i − ti)(s

′
i − si). Then this selection

gives the sum

Λ =

k
∑

i=1

f(ξi, ηi)m(Ri).

We call Λ a Riemann ∆-sum of f , corresponding to the inner ∆-partition P ′ of Ω,

determined by the partition P ∈ P(R).

Definition 2.5. We say that f is Riemann ∆-integrable over Ω ⊂ T
0
1 × T

0
2 if there

exists a number I with the property that for each ε > 0 there exists a number

δ > 0 such that |Λ − I| < ε for every Riemann ∆-sum Λ of f corresponding to any

inner ∆-partition P ′ = {R1, R2, . . . , Rk} of Ω, determined by a partition P ∈ Pδ(R),

independent of the choice of the points (ξi, ηi) ∈ Ri for 1 ≤ i ≤ k. The number I is

called the Riemann double ∆-integral of f over Ω, and it is denoted by
∫ ∫

Ω

f(t, s)∆1t∆2s.

A function f : T1 × T2 → R is said to be continuous at u ∈ T1 × T2 if for every

ε > 0 there exists δ > 0 such that |f(u) − f(v)| < ε for all points v ∈ T1 × T2

satisfying d(u, v) < δ. If u is an isolated point of T1 ×T2, then our definition implies

that every function f : T1 × T2 → R is continuous at u ∈ T1 × T2. For, no matter

which ε > 0 we choose, we can pick δ > 0 so that the only point v ∈ T1 × T2 for

which d(u, v) < δ is v = u; then |f(u) − f(v)| = 0 < ε. In particular, every function

f : Z × Z → R is continuous at each point of Z × Z.

The following theorem gives conditions sufficient for the existence of the Riemann

double ∆-integral.

Theorem 2.6. Suppose Ω ⊂ T
0
1 × T

0
2 is a bounded Jordan ∆-measurable set. Every

function f : Ω → R continuous on the closure Ω of Ω is Riemann ∆-integrable over

Ω.

3. SURFACE AREAS

Let Ω ⊂ T1 × T2 and let

ϕ : Ω → R, ψ : Ω → R, χ : Ω → R

be continuous (in the time scale topology) functions on Ω. Consider the xyz-space,

i.e., the set of all ordered triples (x, y, z) of real numbers x, y, and z. Each such triple
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determines a point of the space, and the numbers x, y, and z are the coordinates of

that point.

Definition 3.1. The triple of functions

(3.1) x = ϕ(t, s), y = ψ(t, s), z = χ(t, s), (t, s) ∈ Ω ⊂ T1 × T2

is said to define a (time scale continuous) surface S. The points (x, y, z) with the

coordinates x, y, and z defined by (3.1) are called the points of the surface, and the

set of all points of the surface, i.e., the range of the mapping (3.1), is referred to as

simply the surface (when no ambiguity can arise).

Let S be a (time scale continuous) surface with equation (3.1). It is convenient

to use vector notation, and we write the system (3.1) in the form

(3.2) −→r = −→r (t, s) = ϕ(t, s)−→e1 + ψ(t, s)−→e2 + χ(t, s)−→e3 ,

where
−→e1 = (1, 0, 0), −→e2 = (0, 1, 0), −→e3 = (0, 0, 1).

Let P ′ = {R1, R2, . . . , Rk} be an arbitrary inner ∆-partition of Ω, described above in

Section 2, and let us set

Ri = [ti, t
′
i) × [si, s

′
i), i ∈ {1, 2, . . . , k}.

Further, for each i ∈ {1, 2, . . . , k}, we set

−→ui = −→r (t′i, si) −−→r (ti, si) and −→vi = −→r (ti, s
′
i) −−→r (ti, si)

so that

−→ui = u
(1)
i
−→e1 + u

(2)
i
−→e2 + u

(3)
i
−→e3 and −→vi = v

(1)
i
−→e1 + v

(2)
i
−→e2 + v

(3)
i
−→e3

with

u
(1)
i = ϕ(t′i, si) − ϕ(ti, si), u

(2)
i = ψ(t′i, si) − ψ(ti, si), u

(3)
i = χ(t′i, si) − χ(ti, si)

and

v
(1)
i = ϕ(ti, s

′
i) − ϕ(ti, si), v

(2)
i = ψ(ti, s

′
i) − ψ(ti, si), v

(3)
i = χ(ti, s

′
i) − χ(ti, si).

The area of the parallelogram spanned by the vectors −→ui and −→vi is equal to |−→ui ×−→vi |,
where

−→ui ×−→vi =

∣

∣

∣

∣

∣

∣

∣

−→e1 −→e2 −→e3
u

(1)
i u

(2)
i u

(3)
i

v
(1)
i v

(2)
i v

(3)
i

∣

∣

∣

∣

∣

∣

∣

is the vector product of the vectors −→ui and −→vi . Let us set

(3.3) A(S, P ′) =
k

∑

i=1

|−→ui ×−→vi | .
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Definition 3.2. The surface S is said to be squarable (or rectifiable) if

sup{A(S, P ′) : P ′ is an inner ∆-partition of Ω} =: A(S) <∞,

where the least upper bound is taken over all possible inner ∆-partitions P ′ of Ω.

The nonnegative real number A = A(S) is called the area of the surface S. If the

supremum (finite) does not exist, then the surface is said to be nonsquarable (or

nonrectifiable).

Let P = [a, b) × [c, d) ⊂ T1 × T2 be a time scale rectangle that contains Ω. Let

P,Q ∈ P(R) and P = P1 × P2, Q = Q1 ×Q2, where

P1, P2 ∈ P([a, b)) and Q1, Q2 ∈ P([c, d)).

We say that Q is a refinement of P if Q1 is a refinement of P1 and Q2 is a refinement

of P2.

Lemma 3.3. Let P,Q ∈ P(R) and Q be a refinement of P . Suppose that P ′ and Q′

are inner ∆-partitions of Ω, determined by P and Q, respectively. Then A(S, P ′) ≤
A(S,Q′).

Proof. An induction argument shows that we may assume that Q′ has only one more

element than P ′. If P ′ is given by

P ′ = {R1, R2, . . . , Rk},

then there is some j ∈ {1, 2, . . . , k} such that Q′ is given by

Q′ = {R1, . . . , Rj−1, R
(1)
j , R

(2)
j , Rj+1, . . . , Rk},

where R
(1)
j ∪ R(2)

j = Rj. Assume that

Rj = [tj , t
′
j) × [sj, s

′
j), R

(1)
j = [tj , τj) × [sj, s

′
j), R

(2)
j = [τj , t

′
j) × [sj , s

′
j),

where τj ∈ T1 and tj < τj < t′j. Let us put

−→uj = −→r (t′j , sj) −−→r (tj , sj),
−→vj = −→r (tj, s

′
j) −−→r (tj, sj),

−→uj1 = −→r (τj , sj) −−→r (tj , sj),
−→vj1 = −→r (τj , s

′
j) −−→r (τj , sj),

−→uj2 = −→r (t′j , sj) −−→r (τj , sj).

Then

A(S,Q′) − A(S, P ′) = |−→uj1 ×−→vj | + |−→uj2 ×−→vj1| − |−→uj ×−→vj | .
Next, we have

−→vj1 = −→vj and −→uj1 + −→uj2 = −→uj .

Therefore

|−→uj ×−→vj | = |−→uj1 ×−→vj + −→uj2 ×−→vj |
≤ |−→uj1 ×−→vj | + |−→uj2 ×−→vj | = |−→uj1 ×−→vj | + |−→uj2 ×−→vj1| ,
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and we get that A(S,Q′) − A(S, P ′) ≥ 0.

Now we present sufficient conditions for squarability of surfaces and give a formula

for evaluating their areas.

Theorem 3.4. Let the functions ϕ, ψ, and χ be continuous and have continuous first

partial delta derivatives in the closure of the region Ω ⊂ T
0
1 × T

0
2. Suppose that the

region Ω is bounded and Jordan ∆-measurable. Then the surface S defined by the

parametric equations in (3.1) is squarable and its area A(S) can be evaluated by the

formula

(3.4) A(S) =

∫ ∫

Ω

∣

∣

∣

−→r ∆1 ×−→r ∆2

∣

∣

∣
∆1t∆2s =

∫ ∫

Ω

√
EG− F 2∆1t∆2s,

where

E =

(

∂−→r
∆1t

)2

=

∣

∣

∣

∣

∂−→r
∆1t

∣

∣

∣

∣

2

=

(

∂ϕ

∆1t

)2

+

(

∂ψ

∆1t

)2

+

(

∂χ

∆1t

)2

,

G =

(

∂−→r
∆2s

)2

=

∣

∣

∣

∣

∂−→r
∆2s

∣

∣

∣

∣

2

=

(

∂ϕ

∆2s

)2

+

(

∂ψ

∆2s

)2

+

(

∂χ

∆2s

)2

,(3.5)

F =
∂−→r
∆1t

· ∂
−→r

∆2s
=

∂ϕ

∆1t

∂ϕ

∆2s
+
∂ψ

∆1t

∂ψ

∆2s
+

∂χ

∆1t

∂χ

∆2s
.

Proof. First we show that the surface S is squarable. Let P ′ = {R1, R2, . . . , Rk} be

an arbitrary inner ∆-partition of Ω and let

Ri = [ti, t
′
i) × [si, s

′
i) for i ∈ {1, 2, . . . , k}.

In order to make further calculations shorter, let us put

θ1(t, s) = ϕ(t, s), θ2(t, s) = ψ(t, s), θ3(t, s) = χ(t, s).

Then we have, for p = 1, 2, 3,

u
(p)
i = θp(t

′
i, si) − θp(ti, si), v

(p)
i = θp(ti, s

′
i) − θp(ti, si),

and

|−→ui ×−→vi |2 ≤ |−→ui |2 |−→vi |2 =

3
∑

p=1

∣

∣

∣
u

(p)
i

∣

∣

∣

2
3

∑

p=1

∣

∣

∣
v

(p)
i

∣

∣

∣

2

=
3

∑

p=1

|θp(t
′
i, si) − θp(ti, si)|2

3
∑

p=1

|θp(ti, s
′
i) − θp(ti, si)|2 .(3.6)

For each p = 1, 2, 3, applying to the function θp(t, s) the mean value theorem (see

[1, Theorem 4.6]), we get that there exist points ξip, ξ
′
ip in [ti, t

′
i) and points ηip, η

′
ip in

[si, s
′
i) such that

θ∆1

p (ξip, si)(t
′
i − ti) ≤ θp(t

′
i, si) − θp(ti, si) ≤ θ∆1

p (ξ′ip, si)(t
′
i − ti),(3.7)

θ∆2

p (ti, ηip)(s
′
i − si) ≤ θp(ti, s

′
i) − θp(ti, si) ≤ θ∆2

p (ti, η
′
ip)(s

′
i − si).(3.8)
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Further, by the assumption of the theorem, the derivatives θ∆1

p and θ∆2

p are bounded

on Ω for p = 1, 2, 3. Then there is a finite positive constant C such that

(3.9)
∣

∣

∣
θ∆1

p (t, s)
∣

∣

∣
≤ C and

∣

∣

∣
θ∆2

p (t, s)
∣

∣

∣
≤ C for all (t, s) ∈ Ω and p = 1, 2, 3.

Consequently, we get from (3.7) and (3.8) that

|θp(t
′
i, si) − θp(ti, si)| ≤ C(t′i − ti), |θp(ti, s

′
i) − θp(ti, si)| ≤ C(s′i − si)

for all i ∈ {1, 2, . . . , k} and p = 1, 2, 3, and we find from (3.3), using (3.6) and

assuming Ω ⊂ R = [a, b) × [c, d) ⊂ T1 × T2,

A(S, P ′) ≤ 3C2

k
∑

i=1

(t′i − ti)(s
′
i − si) ≤ 3C2(b− a)(d− c).

This shows that the set

{A(S, P ′) : P ′ is an inner ∆-partition of Ω}

is bounded, and hence by Definition 3.2, the surface S is squarable.

Now we prove that the area A(S) of the surface S can be evaluated by the formula

(3.4). Let us put

(3.10) I =

∫ ∫

Ω

∣

∣

∣

−→r ∆1

(t, s) ×−→r ∆2

(t, s)
∣

∣

∣
∆1t∆2s

and consider the Riemann ∆-sum

(3.11) Λ =
k

∑

i=1

∣

∣

∣

−→r ∆1

(ξi, ηi) ×−→r ∆2

(ξi, ηi)
∣

∣

∣
m(Ri)

of the ∆-integrable function
∣

∣

∣

−→r ∆1

(t, s) ×−→r ∆2

(t, s)
∣

∣

∣
, corresponding to the inner ∆-

partition P ′ = {R1, R2, . . . , Rk} of Ω and any choice of the points (ξi, ηi) in Ri. Take

an arbitrary ε > 0. Let us show that there is δ > 0 such that

(3.12) |A(S, P ′) − Λ| < ε

4

for every inner ∆-partition P ′ = {R1, R2, . . . , Rk} of Ω, determined by a partition

P ∈ Pδ(R), where R = [a, b)× [c, d) ⊂ T1 ×T2 is a time scale rectangle that contains

Ω.

We have, by (3.3) and (3.11),

A(S, P ′) − Λ =
k

∑

i=1

{

|−→ui ×−→vi | −
∣

∣

∣

−→r ∆1

(ξi, ηi) ×−→r ∆2

(ξi, ηi)
∣

∣

∣
m(Ri)

}

,
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where

−→ui =

3
∑

p=1

u
(p)
i
−→ep ,

−→vi =

3
∑

p=1

v
(p)
i
−→ep ,

−→r ∆1

(ξi, ηi) =
3

∑

p=1

U
(p)
i

−→ep ,
−→r ∆2

(ξi, ηi) =
3

∑

p=1

V
(p)
i

−→ep ,

with

u
(p)
i = θp(t

′
i, si) − θp(ti, si), v

(p)
i = θp(ti, s

′
i) − θp(ti, si),

U
(p)
i = θ∆1

p (ξi, ηi), V
(p)
i = θ∆2

p (ξi, ηi).

From (3.7) and (3.8), we have

0 ≤ θp(t
′
i, si) − θp(ti, si) − θ∆1

p (ξip, si)(t
′
i − ti)

≤
[

θ∆1

p (ξ′ip, si) − θ∆1

p (ξip, si)
]

(t′i − ti),

0 ≤ θp(ti, s
′
i) − θp(ti, si) − θ∆2

p (ti, ηip)(s
′
i − si)

≤
[

θ∆2

p (ti, η
′
ip) − θ∆2

p (ti, ηip)
]

(s′i − si),

and consequently

u
(p)
i = θp(t

′
i, si) − θp(ti, si) = [θ∆1

p (ξip, si) + αip](t
′
i − ti) = u

(p)
i (t′i − ti),

v
(p)
i = θp(ti, s

′
i) − θp(ti, si) = [θ∆2

p (ti, ηip) + βip](s
′
i − si) = v

(p)
i (s′i − si),

where

u
(p)
i = θ∆1

p (ξip, si) + αip, v
(p)
i = θ∆2

p (ti, ηip) + βip,

0 ≤ αip ≤ θ∆1

p (ξ′ip, si) − θ∆1

p (ξip, si) ≤Mip −mip,(3.13)

0 ≤ βip ≤ θ∆2

p (ti, η
′
ip) − θ∆2

p (ti, ηip) ≤ Nip − nip,(3.14)

in which Mip and mip are the supremum and infimum of θ∆1

p on Ri, respectively, and

Nip and nip are the corresponding numbers for θ∆2

p . Thus,

|−→ui ×−→vi | = m(Ri)
∣

∣

∣

−→
ui ×

−→
vi

∣

∣

∣
= m(Ri)

√

x2
i + y2

i + z2
i ,

∣

∣

∣

−→r ∆1

(ξi, ηi) ×−→r ∆2

(ξi, ηi)
∣

∣

∣
=

√

X2
i + Y 2

i + Z2
i ,

where

xi = u
(2)
i v

(3)
i − u

(3)
i v

(2)
i , yi = u

(3)
i v

(1)
i − u

(1)
i v

(3)
i , zi = u

(1)
i v

(2)
i − u

(2)
i v

(1)
i ,

Xi = U
(2)
i V

(3)
i − U

(3)
i V

(2)
i , Yi = U

(3)
i V

(1)
i − U

(1)
i V

(3)
i , Zi = U

(1)
i V

(2)
i − U

(2)
i V

(1)
i .

Therefore, using the inequality (for arbitrary real numbers x, y, z,X, Y, Z)
∣

∣

∣

√

x2 + y2 + z2 −
√
X2 + Y 2 + Z2

∣

∣

∣
≤ |x−X| + |y − Y | + |z − Z| ,
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we get

|A(S, P ′) − Λ| =

∣

∣

∣

∣

∣

k
∑

i=1

{

√

x2
i + y2

i + z2
i −

√

X2
i + Y 2

i + Z2
i

}

m(Ri)

∣

∣

∣

∣

∣

≤
k

∑

i=1

{|xi −Xi| + |yi − Yi| + |zi − Zi|}m(Ri).(3.15)

Next,

xi −Xi = u
(2)
i v

(3)
i − u

(3)
i v

(2)
i − U

(2)
i V

(3)
i + U

(3)
i V

(2)
i

=
[

θ∆1

2 (ξi2, si) + αi2

] [

θ∆2

3 (ti, ηi3) + βi3

]

−
[

θ∆1

3 (ξi3, si) + αi3

] [

θ∆2

2 (ti, ηi2) + βi2

]

− θ∆1

2 (ξi, ηi)θ
∆2

3 (ξi, ηi) + θ∆1

3 (ξi, ηi)θ
∆2

2 (ξi, ηi)

= θ∆1

2 (ξi2, si)θ
∆2

3 (ti, ηi3) − θ∆1

2 (ξi, ηi)θ
∆2

3 (ξi, ηi)

+ θ∆1

3 (ξi, ηi)θ
∆2

2 (ξi, ηi) − θ∆1

3 (ξi3, si)θ
∆2

2 (ti, ηi2)

+ αi2θ
∆2

3 (ti, ηi3) +
[

θ∆1

2 (ξi2, si) + αi2

]

βi3

− αi3θ
∆2

2 (ti, ηi2) −
[

θ∆1

3 (ξi3, si) + αi3

]

βi2.

Hence, taking into account (3.9), (3.13), and (3.14), we get

|xi −Xi| ≤
∣

∣

∣
θ∆1

2 (ξi2, si)θ
∆2

3 (ti, ηi3) − θ∆1

2 (ξi, ηi)θ
∆2

3 (ξi, ηi)
∣

∣

∣

+
∣

∣

∣
θ∆1

3 (ξi, ηi)θ
∆2

2 (ξi, ηi) − θ∆1

3 (ξi3, si)θ
∆2

2 (ti, ηi2)
∣

∣

∣

+ C(αi2 + 3βi3 + αi3 + 3βi2).(3.16)

Further,

θ∆1

2 (ξi2, si)θ
∆2

3 (ti, ηi3) − θ∆1

2 (ξi, ηi)θ
∆2

3 (ξi, ηi)

= θ∆1

2 (ξi2, si)
[

θ∆2

3 (ti, ηi3) − θ∆2

3 (ξi, ηi)
]

+
[

θ∆1

2 (ξi2, si) − θ∆1

2 (ξi, ηi)
]

θ∆2

3 (ξi, ηi)

and
∣

∣

∣
θ∆2

3 (ti, ηi3) − θ∆2

3 (ξi, ηi)
∣

∣

∣
≤ Ni3 − ni3,

∣

∣

∣
θ∆1

2 (ξi2, si) − θ∆1

2 (ξi, ηi)
∣

∣

∣
≤Mi2 −mi2.

Therefore
∣

∣

∣
θ∆1

2 (ξi2, si)θ
∆2

3 (ti, ηi3) − θ∆1

2 (ξi, ηi)θ
∆2

3 (ξi, ηi)
∣

∣

∣
≤ C (Ni3 − ni3 +Mi2 −mi2) .

Similarly, from

θ∆1

3 (ξi, ηi)θ
∆2

2 (ξi, ηi) − θ∆1

3 (ξi3, si)θ
∆2

2 (ti, ηi2)

= θ∆1

3 (ξi, ηi)
[

θ∆2

2 (ξi, ηi) − θ∆2

2 (ti, ηi2)
]

+
[

θ∆1

3 (ξi, ηi) − θ∆1

3 (ξi3, si)
]

θ∆2

2 (ti, ηi2),
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we find that
∣

∣

∣
θ∆1

3 (ξi, ηi)θ
∆2

2 (ξi, ηi) − θ∆1

3 (ξi3, si)θ
∆2

2 (ti, ηi2)
∣

∣

∣
≤ C (Ni2 − ni2 +Mi3 −mi3) .

Therefore, taking into account (3.13) and (3.14), we get from (3.16),

|xi −Xi| ≤ 2C [Mi2 −mi2 +Mi3 −mi3 + 2(Ni2 − ni2 +Ni3 − ni3)] .

Hence

(3.17)
k

∑

i=1

|xi −Xi|m(Ri) ≤ 2C
{

U(θ∆1

2 , P ′) − L(θ∆1

2 , P ′) + U(θ∆1

3 , P ′) − L(θ∆1

3 , P ′)

+2
[

U(θ∆2

2 , P ′) − L(θ∆2

2 , P ′) + U(θ∆2

3 , P ′) − L(θ∆2

3 , P ′)
]}

,

where U and L denote the upper and lower Darboux ∆-sums, respectively. Since the

functions θ∆1

p , θ∆2

p (p = 1, 2, 3) are ∆-integrable over Ω, it follows from (3.17) that for

given ε > 0 there is δ > 0 such that

k
∑

i=1

|xi −Xi|m(Ri) <
ε

12

for every inner ∆-partition P ′ = {R1, R2, . . . , Rk} of Ω, determined by a partition

P ∈ Pδ(R).

Similarly we can show (diminishing δ if necessary) that

k
∑

i=1

|yi − Yi|m(Ri) <
ε

12
and

k
∑

i=1

|zi − Zi|m(Ri) <
ε

12
.

Now (3.12) follows from (3.15).

By definition of the ∆-integral, diminishing δ if necessary, we may assume that

for the same partitions P ′ for which (3.12) is satisfied we have

(3.18) |Λ − I| < ε

4
.

On the other hand, among the partitions P ′ for which (3.12) and (3.18) are satisfied,

we can find a partition P ′ such that

(3.19) |A(S, P ′) −A(S)| < ε

2
.

Indeed, from Definition 3.2 it follows that there is an inner ∆-partition P ′
0 of Ω such

that

(3.20) 0 ≤ A(S) − A(S, P ′
0) <

ε

2
.

Next, we refine the partition P ′
0 so that we get an inner ∆-partition P ′ which is

determined by a partition P ∈ Pδ(R). Then, by Lemma 3.3, A(S, P ′) ≥ A(S, P ′
0),

and (3.20) yields

0 ≤ A(S) −A(S, P ′) <
ε

2
,
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so that (3.19) is shown.

Now using (3.12), (3.18), and (3.19), we get that

|A(S) − I| = |A(S) −A(S, P ′) + A(S, P ′) − Λ + Λ − I|
≤ |A(S) − A(S, P ′)| + |A(S, P ′) − Λ| + |Λ − I|

<
ε

2
+
ε

4
+
ε

4
= ε.

Hence, since ε > 0 is arbitrary, we obtain A(S) = I. This concludes the proof.

Remark 3.5. Let the surface S be given as the graph of a function z = f(x, y),

(x, y) ∈ Ω, where Ω is a bounded and Jordan ∆-measurable subset of T
0
1 × T

0
2 and

f is continuous and has continuous first partial delta derivatives in the closure of Ω.

Then Theorem 3.4 implies (by taking x = t, y = s, and z = f(t, s)) that the surface

S is squarable, and its area A(S) can be evaluated by the formula

A(S) =

∫ ∫

Ω

√

1 + [f∆1(x, y)]
2
+ [f∆2(x, y)]

2
∆1x∆2y.

4. SURFACE DELTA INTEGRALS

Let T1 and T2 be two time scales. For i = 1, 2, let σi and ∆i denote the forward

jump operator and the delta differentiation operator, respectively, on Ti. Let Ω ⊂
T

0
1 × T

0
2 be a bounded and Jordan ∆-measurable set and S a time scale continuous

surface defined by the parametric equations

(4.1) x = ϕ(t, s), y = ψ(t, s), z = χ(t, s), (t, s) ∈ Ω ⊂ T
0
1 × T

0
2,

where the functions ϕ, ψ, and χ are continuous and have continuous first partial delta

derivatives in the closure of the region Ω. Next, let h(x, y, z) be a function that is

defined and continuous on the closure S of the suface S. This means that for each

(x0, y0, z0) ∈ S and each ε > 0 there exists δ > 0 such that

|h(x, y, z) − h(x0, y0, z0)| < ε

whenever (x, y, z) ∈ S and

√

(x− x0)2 + (y − y0)2 + (z − z0)2 < δ.

Let P ′ = {R1, R2, . . . , Rk} be an arbitrary inner ∆-partition of Ω. Denote by Ai the

area of the piece of the surface S corresponding to the piece Ri of Ω. By Theorem 3.4,

the formula

(4.2) Ai =

∫ ∫

Ri

√
EG− F 2∆1t∆2s
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holds, where E, G, and F are defined by (3.5). Take any (ξi, ηi) ∈ Ri for i ∈
{1, 2, . . . , k} and introduce the integral sum (∆-integral sum)

(4.3) Σ =

k
∑

i=1

h(ϕ(ξi, ηi), ψ(ξi, ηi), χ(ξi, ηi))Ai.

Definition 4.1. We say that a number I is the surface ∆-integral of the function h

over the surface S if for each ε > 0 there exists δ > 0 such that |Σ − I| < ε for every

integral sum Σ of h corresponding to any inner ∆-partition P ′ = {R1, R2, . . . , Rk}
of Ω, determined by a partition P ∈ Pδ(R), independent of the choice of the points

(ξi, ηi) ∈ Ri for 1 ≤ i ≤ k, where R = [a, b) × [c, d) ⊂ T1 × T2 is a rectangle that

contains Ω. We denote the number I, symbolically, by

(4.4)

∫ ∫

S

h(x, y, z)∆A.

The following theorem gives conditions sufficient for the existence of the surface

∆-integral.

Theorem 4.2. Suppose that the surface S is given by the parametric equations in

(4.1), where the region Ω ⊂ T
0
1×T

0
2 is bounded and Jordan ∆-measurable, the functions

ϕ, ψ, and χ are continuous and have continuous first partial delta derivatives in the

closure Ω of Ω, and the function h is continuous on the closure S of the surface S.

Then the surface integral (4.4) exists and can be computed by

(4.5)

∫ ∫

S

h(x, y, z)∆A =

∫ ∫

Ω

h(ϕ(t, s), ψ(t, s), χ(t, s))
√
EG− F 2∆1t∆2s,

where E, G, and F are defined by (3.5).

Proof. First of all, note that the double ∆-integral on the right-hand side of formula

(4.5) exists by virtue of Theorem 2.6 and continuity of the integrand. Let R =

[a, b) × [c, d) ⊂ T1 × T2 be a rectangle that contains Ω ∪ ∂∆Ω. Take an arbitrary

ε > 0. Since Ω is Jordan ∆-mesurable, there exists δ > 0 such that for every

partition P ∈ Pδ(R) the sum of areas of subrectangles of P which have a common

point with ∂∆Ω is less than ε (see [2, Lemma 4.18]). Let R1, R2, . . . , Rk be all the

subrectangles of the partition P that are entirely within Ω and Rk+1, Rk+2, . . . , RN

be all the subrectangles of P that are not entirely within Ω and each of which has a

common point with ∂∆Ω (refining the partition P , if necessary, we can assume that

each subrectangle of P that has a common point with Ω belongs to one of these two

types). The collection P ′ = {R1, R2, . . . , Rk} forms an inner ∆-partition of Ω and

N
∑

i=k+1

m(Ri) < ε.
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Taking into account (4.2), we represent the integral sum (4.3) corresponding to this

P ′ in the form

Σ =
k

∑

i=1

H(ξi, ηi)

∫ ∫

Ri

Φ(t, s)∆1t∆2s,

where

H(t, s) = h(ϕ(t, s), ψ(t, s), χ(t, s)),

Φ(t, s) =
√

E(t, s)G(t, s) − F 2(t, s),

for (t, s) ∈ Ω, and H(t, s) = 0, Φ(t, s) = 0, for (t, s) ∈ R \ Ω.

Denote the double ∆-integral on the right-hand side of (4.5) by I and represent

it in the form

I =

∫ ∫

Ω

H(t, s)Φ(t, s)∆1t∆2s =

∫ ∫

R

H(t, s)Φ(t, s)∆1t∆2s

=

k
∑

i=1

∫ ∫

Ri

H(t, s)Φ(t, s)∆1t∆2s+

N
∑

i=k+1

∫ ∫

Ri

H(t, s)Φ(t, s)∆1t∆2s.

Let us estimate the difference

Σ − I =
k

∑

i=1

∫ ∫

Ri

[H(ξi, ηi) −H(t, s)] Φ(t, s)∆1t∆2s

−
N

∑

i=k+1

∫ ∫

Ri

H(t, s)Φ(t, s)∆1t∆2s.

We have

|Σ − I| ≤
k

∑

i=1

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

+
N

∑

i=k+1

∫ ∫

Ri

|H(t, s)|Φ(t, s)∆1t∆2s.(4.6)

Under the conditions imposed on h and ϕ, ψ, χ, the functions H(t, s) and Φ(t, s) are

continuous on Ω. Consequently, these functions are bounded and uniformly continu-

ous on Ω. Therefore

sup {|H(t, s)|Φ(t, s) : (t, s) ∈ Ω} =: M <∞,

and for the above given ε > 0 and δ > 0 (we can diminish δ if necessary),

(4.7) (t, s), (t′, s′) ∈ Ω and |t− t′| ≤ δ, |s− s′| ≤ δ

imply

(4.8) |H(t, s) −H(t′, s′)| < ε.
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Therefore

(4.9)

N
∑

i=k+1

∫ ∫

Ri

|H(t, s)|Φ(t, s)∆1t∆2s ≤M

N
∑

i=k+1

m(Ri) < Mε.

Further, let Ri = [ti, t
′
i) × [si, s

′
i) for i ∈ {1, 2, . . . , k}. We can write

k
∑

i=1

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

=
∑

t′
i
−ti≤δ

s′
i
−si≤δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

+
∑

t′
i
−ti≤δ

s′
i
−si>δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

+
∑

t′
i
−ti>δ

s′
i
−si≤δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

+
∑

t′
i
−ti>δ

s′
i
−si>δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s.

Next, if t′i − ti ≤ δ and s′i − si ≤ δ, then taking into account (4.7), (4.8) and that

(ξi, ηi) ∈ Ri, we have

∑

t′
i
−ti≤δ

s′
i
−si≤δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

< ε
∑

t′
i
−ti≤δ

s′
i
−si≤δ

∫ ∫

Ri

Φ(t, s)∆1t∆2s

≤ ε

k
∑

i=1

∫ ∫

Ri

Φ(t, s)∆1t∆2s ≤ εA(S).

If t′i − ti ≤ δ and s′i − si > δ, then s′i = σ2(si), ηi = si and hence, using also (4.7),

(4.8),
∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

=

∫ σ2(si)

si

∫ t′
i

ti

|H(ξi, si) −H(t, s)|Φ(t, s)∆1t∆2s

=

∫ t′
i

ti

|H(ξi, si) −H(t, si)|Φ(t, si) [σ2(si) − si] ∆1t

< ε

∫ t′
i

ti

Φ(t, si) [σ2(si) − si] ∆1t = ε

∫ ∫

Ri

Φ(t, s)∆1t∆2s
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and therefore,

∑

t′
i
−ti≤δ

s′
i
−si>δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

< ε
∑

t′
i
−ti≤δ

s′
i
−si>δ

∫ ∫

Ri

Φ(t, s)∆1t∆2s

≤ ε

k
∑

i=1

∫ ∫

Ri

Φ(t, s)∆1t∆2s ≤ εA(S).

If t′i− ti > δ and s′i−si ≤ δ, then t′i = σ1(ti), ξi = ti and hence, using also (4.7), (4.8),
∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

=

∫ s′
i

si

∫ σ1(ti)

ti

|H(ti, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

=

∫ s′
i

si

|H(ti, ηi) −H(ti, s)|Φ(ti, s) [σ1(ti) − ti]∆2s

< ε

∫ s′
i

si

Φ(ti, s) [σ1(ti) − ti] ∆2s = ε

∫ ∫

Ri

Φ(t, s)∆1t∆2s

and therefore,

∑

t′
i
−ti>δ

s′
i
−si≤δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

< ε
∑

t′
i
−ti>δ

s′
i
−si≤δ

∫ ∫

Ri

Φ(t, s)∆1t∆2s

≤ ε

k
∑

i=1

∫ ∫

Ri

Φ(t, s)∆1t∆2s ≤ εA(S).

Finally, if t′i − ti > δ and s′i − si > δ, then t′i = σ1(ti), s
′
i = σ2(si), ξi = ti, ηi = si, and

hence

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s

= |H(ti, si) −H(ti, si)|Φ(ti, si) [σ1(ti) − ti] [σ2(si) − si] = 0

and therefore,

∑

t′
i
−ti>δ

s′
i
−si>δ

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s = 0.
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Thus

(4.10)
k

∑

i=1

∫ ∫

Ri

|H(ξi, ηi) −H(t, s)|Φ(t, s)∆1t∆2s < 3εA(S).

Substituting (4.9) and (4.10) in (4.6), we get

|Σ − I| < [3A(S) +M ] ε.

Since ε > 0 was arbitrary, this completes the proof.

5. CONCLUDING REMARKS

1. As is known (see [2, 4]), there are four kinds of time scale double integrals. Ac-

cordingly, four kinds of time scale surface integrals can be defined:

(i) surface ∆∆-integral, which is defined by using partitions consisting of subrect-

angles of the form [α, β) × [γ, δ);

(ii) surface ∇∇-integral, which is defined by using partitions consisting of subrect-

angles of the form (α, β] × (γ, δ];

(iii) surface ∆∇-integral, which is defined by using partitions consisting of subrect-

angles of the form [α, β) × (γ, δ];

(iv) surface ∇∆-integral, which is defined by using partitions consisting of subrect-

angles of the form (α, β] × [γ, δ).

For brevity, we call the first surface integral simply the surface ∆-integral, and in

this paper we have dealt solely with such surface ∆-integrals. Note that for the same

function and the same surface, the above four kinds of surface integrals are in general

different from each other.

2. The area of the same time scale surface S given by (3.1) can be computed by using

any one of the four integrals

A(S) =

∫ ∫

Ω

∣

∣

∣

−→r ∆1 ×−→r ∆2

∣

∣

∣
∆1t∆2s =

∫ ∫

Ω

∣

∣

−→r ∇1 ×−→r ∇2

∣

∣∇1t∇2s

=

∫ ∫

Ω

∣

∣

∣

−→r ∆1 ×−→r ∇2

∣

∣

∣
∆1t∇2s =

∫ ∫

Ω

∣

∣

∣

−→r ∇1 ×−→r ∆2

∣

∣

∣
∇1t∆2s

provided that the conditions of Theorem 3.4 are satisfied accordingly.

3. The problem of independence of surface area from the parametrization of the

surface is proved in the classical case by using the change of variable formula for

double integrals (see, for example, [10, 11]). However, for time scale double integrals,

no change of variable formula has been worked out yet. Further, above in Section 4,

we have considered only the so-called ∆-surface integrals of the first type. The ∆-

surface integrals of the second type as well as time scale analogues of the classical

Gauss’s divergence theorem and Stokes’s theorem await their investigation.
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