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ABSTRACT. In this paper, we consider a continuous time filtering of a multi-dimensional Langevin

stochastic differential system driven by a fractional Brownian motion process. It is shown that this

filtering problem is equivalent to an optimal control problem involving convolutional integrals in its

dynamical system. Then, a novel approximation scheme is developed and applied to this optimal

control problem. It yields a sequence of standard optimal control problems. The convergence

of the approximate standard optimal control problem to the optimal control problem involving

convolutional integrals in its system dynamics is established. Two numerical examples are solved by

using the method proposed. The results obtained clearly demonstrate its efficiency and effectiveness.
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1. INTRODUCTION

Fractional Brownian motion (FBM) has been received with an increasing interest

in many research fields in the past several decades, due to the early works of Man-

delbrot and his collaborators. See, for examples, [23, 24, 25]. FBM allows a model to

take into account the long-memory dependency, a notable property which is absent

in the standard Brownian motion (BM). Since then, FBM, as a governing noise, has

been applied to a variety of fields, from hydrology [24], network and telecommunica-

tion traffics [1, 30], to economics and finance [9, 28]. In this paper, we are concerned

with a continuous time filtering of a multi-dimensional linear system driven by FBM

in control theory.

The study of filtering has been around for several decades. It goes back as early

as 1960, when Kalman [17] dealt with a problem posed by Gauss on the estimation

of the satellite orbits. Later in 1961, Kalman and Bucy [18] studied the filtering

problem involving linear continuous-time processes. It has been used in various areas
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arise in physical sciences, engineering, economics and social sciences. Its aim is to

extract the best information on the state process based on the measured data. For

further details, see, for example, [2, 4, 8, 14]. However, most of the filtering problems

in the literature are concerned with noises characterized by standard BMs. There

are only few results on the filtering problems which are given by FBM processes.

In [11, 19, 20], only one dimensional differential equation is considered. In [3], the

study is extended to a multi-dimensional case where both the state and observation

are governed by respective linear stochastic differential equations which are driven by

FBM processes. Our study is based on the fundamental results established in [3].

The filtering problem in the presence of FBM can be transformed (see [3]) into

an equivalent deterministic optimal control problem, where its system dynamic is de-

scribed by nonlinear ordinary differential equations involving convolutional integrals.

It is very difficult to solve such an optimal control problem directly. The aim of this

paper is to develop a computational scheme for solving this problem. First, as in [3],

this filtering problem is transformed into a deterministic optimal control problem,

where its system dynamic is described by nonlinear differential equations involving

convolutional integrals. Then, a novel approximation scheme, supported by rigorous

mathematical analysis, is developed to solve this optimal control problem.

We first introduce some background knowledge on FBM. For further details on

FBM, see, for example, [5, 6, 15, 26], and for details on filtering problems, see [2,

29]. Let (Ω,F , P ) be a probability space and H ∈ (0, 1). B is an n−dimensional

Brownian motion with covariance matrix Q ∈ M+
s (n× n), where M+

s (n× n) denotes

the class of all n × n real symmetric positive definite matrices. Define

(1.1) BH(t) =

∫ t

0

KH(t, θ)dB(θ),

with KH being a kernel depending on the parameter H . Let it be chosen as:

(1.2) KH(t, s) =
(t − s)H− 1

2

Γ(H + 1
2
)

F

(

1

2
− H, H −

1

2
, H +

1

2
, 1 −

t

s

)

1(0,t)(s),

where Γ is a gamma function and F is a hypergeometric function. BH is a Rn−valued

Gaussian random process with mean and covariance matrix given by

(i) E{BH(t)} = 0;

(ii) E{(BH(t), ξ)(BH(s), η)} =
∫ t

0

∫ s

0
ϕH(τ − θ)(Qξ, η)dτ dθ for all ξ, η ∈ R

n.

From (ii), it follows that

(1.3) E{(BH(t), ξ)2} = t2H(Qξ, ξ), ξ ∈ R
n, t ∈ R+,

where R+ = {t ∈ R : t ≥ 0}.

The rest of the paper is organized as follows. In Section 2, we formulate the

filtering problem which is driven by a FBM process. As in [3], this filtering problem is
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shown to be equivalent to a deterministic optimal control problem with convolutional

integrals appeared in its system dynamics. In Section 3, we construct a sequence of

approximate optimal control problems, where their system dynamics are expressed

by ordinary differential equations. The convergence properties of the approximation

scheme are established in Section 4. Numerical simulation is presented in Section 5,

while Section 6 concludes the paper.

2. LINEAR FILTERING WITH FBM

Consider the following FBM dynamical system:

(2.1a) dx(t) = Ax(t)dt + Ξ1dBH1
(t)

(2.1b) x(0) = x0,

where x(t) ∈ R
n, and {A,Ξ1} are n × n and n × d constant matrices, respectively.

This model is known as the fractional Ornstein-Uhlenbeck process and it has a wide

range of applications, see, for example, [7, 10, 12, 13].

The measurement dynamics is given by

(2.2a) dy(t) = Hx(t)dt + Ξ2dBH2
(t)

(2.2b) y(0) = 0,

where y(t) ∈ R
m, and {H,Ξ2} are m×n and m×m constant matrices, respectively.

{BH1
(t), t ≥ 0} and {BH2

(t), t ≥ 0} are FBM processes taking values in R
d and R

m,

respectively.

Let {Fy
t , t ≥ 0} be an increasing family of subsigma algebras of the sigma algebra

F induced by the random process {y(t), t ≥ 0}. From [3], the basic filtering problem

is to find a process z(t) so that for each t ≥ 0, z(t) is Fy
t -adapted satisfying

(1)E{z(t)} = E{x(t)}, t ≥ 0; and(2.3a)

(2)E{‖ x(t) − z(t) ‖2} is minimum for t ≥ 0,(2.3b)

where ‖ · ‖ denotes the usual Euclidean norm. That is, for a vector v ∈ R
n,

(2.4) ‖v‖ =

(

n
∑

i=1

(vi)
2

)
1

2

.

Furthermore, for a matrix A ∈ R
n×m, we define

(2.5) ‖A‖ = (

n
∑

i=1

m
∑

j=1

(Aij)
2)

1

2

and

(2.6) ‖A‖∞ = max
1≤i,j≤n

|Ai,j|.
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Such a z is known as the best unbiased-minimum variance (UMV) linear filter driven

by the observation process y. It is expressed in the form of the following stochastic

differential equations

(2.7a) dz(t) = GΓz(t)dt + Γdy(t), t ≥ 0,

(2.7b) z(0) = x̂0 ≡ Ex0,

where GΓ and Γ ∈ D are constant matrices with appropriate dimensions, which are

to be determined, and

(2.8) D =

{

Γ : ‖Γ‖∞ = max
1≤i,j≤n

|Γi,j| ≤ M

}

,

with M > 0 being a fixed constant. Let

(2.9) e(t) = x(t) − z(t), t ≥ 0.

Then,

de = dx − dz

= (A − ΓH)edt + (A − ΓH −GΓ)z(t)dt

+ Ξ1dBH1
(t) − ΓΞ2dBH2

(t)

(2.10a)

(2.10b) e(0) = e0 ≡ x0 − x̂0.

Choose GΓ = A− ΓH. Then, it follows from (2.7) that

(2.11a) dz(t) = (A − ΓH)z(t)dt + Γdy(t), t ≥ 0,

(2.11b) z(0) = x̂0.

The error equation (2.10a) with initial condition (2.10b) is reduced to

(2.12a) de = (A − ΓH)e(t)dt + Ξ1dBH1
(t) − ΓΞ2dBH2

(t),

(2.12b) e(0) = e0.

Let {Φ(t, s), 0 ≤ s ≤ t < ∞} denote the transition operator corresponding to

GΓ = A − ΓH. With this operator, the solution of (2.12) can be written as:

(2.13) e(t) = Φ(t, 0)e0 +

∫ t

0

Φ(t, θ)Ξ1dBH1
(θ) −

∫ t

0

Φ(t, θ)ΓΞ2dBH2
(θ).

The transition operator Φ is governed by

(2.14a)

(

∂

∂t

)

Φ(t, s) = GΓΦ(t, s)

and

(2.14b) Φ(t, t) = I.
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Since GΓ is a constant matrix, we have

(2.15) Φ(t, s) = eGΓ(t−s) = eGΓte−GΓs.

We need Lemma 3.1 of [3], which is quoted below.

Lemma 1. For each Γ ∈ D, the error covariance matrix K is the solution of the

system described by the following differential equations.

K̇(t) = GΓK(t) + KGT
Γ + eGΓt

{
∫ t

0

ϕH1
(t − s)e−GΓsΞ1ds

}

QΞT
1

+ eGΓt

{
∫ t

0

ϕH1
(t − s)e−GΓsΞT

1ds

}

QT Ξ1

+ eGΓt

{
∫ t

0

ϕH2
(t − s)e−GΓsΓΞ2ds

}

Q0Ξ
T
2 ΓT

+ eGΓt

{
∫ t

0

ϕH2
(t − s)e−GΓsΓTΞT

2 ds

}

QT
0 Ξ2Γ

(2.16a)

with initial condition

(2.16b) K(0) = K0,

where Q ∈ M+
s (d × d) and Q0 ∈ M+

s (m × m) are covariance matrices of BH1
(t) and

BH2
(t), respectively, and GΓ = A− ΓH.

Now, the filtering problem is transformed into the following equivalent optimal

control problem.

Problem (P). Given the dynamic system

K̇(t) = GΓK(t) + KGT
Γ + eGΓt

{
∫ t

0

ϕH1
(t − s)e−GΓsΞ1ds

}

QΞT
1

+ eGΓt

{
∫ t

0

ϕH1
(t − s)e−GΓsΞT

1ds

}

QT Ξ1

+ eGΓt

{
∫ t

0

ϕH2
(t − s)e−GΓsΓΞ2ds

}

Q0Ξ
T
2ΓT

+ eGΓt

{
∫ t

0

ϕH2
(t − s)e−GΓsΓTΞT

2ds

}

QT
0 Ξ2Γ,

(2.17a)

(2.17b) K(0) = K0,

find a Γ ∈ D such that the cost function

(2.18) J(Γ) =

∫ T

0

trace{Σ(t)K(t)}dt

is minimized, where Σ(t) is a weighting matrix-valued function, which is positive

definite and symmetric for each t ∈ [0, T ], and T is the terminal time.
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This optimal control problem is very difficult to solve, because of the appearance

of convolutional integrals in its system dynamics. In the next section, an approx-

imation scheme is developed, which will then be used to approximate this optimal

control problem into a sequence of optimal control problems involving only ordinary

differential equations. Each of these standard approximate optimal control problems

can be solved by the control parameterizations technique used in conjunction with

the time scaling transform reported in [21, 31]. In particular, the optimal control

software package, MISER 3.3 [16], can be used for this purpose.

3. APPROXIMATION METHOD

In this section, we propose an approximation scheme to construct a sequence of

approximate problems (P(N)) which are governed by ordinary differential equations.

First, the kernels ϕH1
(t − s) and ϕH2

(t − s) in (2.16) are approximated by using

an expansion of Chebyshev series. By doing this, the convolutional integrals are

approximated by respective ordinary differential equations. In this way, Problem (P)

is approximated by a sequence of optimal control problem involving only ordinary

differential equations. Each of which can be solved by using many efficient numerical

methods available in the literature.

We approximate the kernels ϕH1
(t − s) and ϕH2

(t − s) by a finite expansion of

Chebyshev series as follows:

(3.1) ϕH1
(t) ≈ ϕN

H1
(t) =

N
∑

i=1

αN
i ki(t)

and

(3.2) ϕH2
(t) ≈ ϕN

H2
(t) =

N
∑

i=1

βN
i ki(t)

where

(3.3)

ki (t) = T̄i−1(t) = Ti−1

(

2t

T
− 1

)

= cos

[

(i − 1) cos−1

(

2t

T
− 1

)]

, 0 ≤ t ≤ T,

are basis functions obtained from the shifted Chebyshev series. They satisfy the

system of ordinary differential equations with constant coefficients,

(3.4) k̇i(t) =

N
∑

j=1

aijkj(t),

with initial condition

(3.5) ki(0) = T̄i−1(0) = Ti−1(−1) = (−1)i−1,
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where aij , αN
i and βN

i , i = 1, . . . , N , j = 1, . . . , N , are, given respectively, by

(3.6) aij =



















0, j ≥ i

[2(i − 1)/T ][1 − (−1)i−j ], j 6= 1

[(i − 1)/T ][1 + (−1)i], j = 1

(3.7) αN
i =























1

N

N
∑

j=1

ϕH1
(tj), i = 1

2

N

N
∑

j=1

T̄i−1(tj)ϕH1
(tj), i = 2, . . . , N

and

(3.8) βN
i =























1

N

N
∑

j=1

ϕH2
(tj), i = 1

2

N

N
∑

j=1

T̄i−1(tj)ϕH2
(tj), i = 2, . . . , N,

while

(3.9) tj =
T

2
+

T

2
cos

[

(2j − 1)π

2N

]

, j = 1, . . . , N.

With ϕH1
(t) and ϕH2

(t) being, respectively, approximated by ϕN
H1

(t) and ϕN
H2

(t) in

(2.17), we obtain

K̇N(t) = GΓKN(t) + KNGT
Γ + eGΓt

{
∫ t

0

ϕN
H1

(t − s)e−GΓsΞ1ds

}

QΞT
1

+ eGΓt

{
∫ t

0

ϕN
H1

(t − s)e−GΓsΞT
1ds

}

QTΞ1

+ eGΓt

{
∫ t

0

ϕN
H2

(t − s)e−GΓsΓΞ2ds

}

Q0Ξ
T
2ΓT

+ eGΓt

{
∫ t

0

ϕN
H2

(t − s)e−GΓsΓT ΞT
2ds

}

QT
0 Ξ2Γ

(3.10)

Now, Problem (P) is approximated by a sequence of optimal control problems (P(N))

defined below.

Problem (P(N)). Given the dynamical system (3.10) with initial condition

(3.11) KN (0) = K0,

find a Γ ∈ D such that the cost function

(3.12) J(Γ) =

∫ T

0

trace{Σ(t)KN(t)}dt
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is minimized.

Define

(3.13) w1,i(t) =

∫ t

0

ki(t − s)e−GΓsΞ1ds, i = 1, . . . , N,

(3.14) w2,i(t) =

∫ t

0

ki(t − s)e−GΓsΞT

1 ds, i = 1, . . . , N,

(3.15) w3,i(t) =

∫ t

0

ki(t − s)e−GΓsΓΞ2ds, i = 1, . . . , N.

and

(3.16) w4,i(t) =

∫ t

0

ki(t − s)e−GΓsΓT ΞT
2ds, i = 1, . . . , N.

Taking the time derivative on both sides of (3.13), it follows from (3.4) that

ẇ1,i(t) = ki(0)e−GΓtΞ1 +

∫ t

0

N
∑

j=1

aijkj(t − s)e−GΓsΞ1ds

= ki(0)e−GΓtΞ1 +

N
∑

j=1

aijw1,j(t),

(3.17a)

with

(3.17b) w1,i = 0.

Similarly, we have

(3.18a) ẇ2,i(t) = ki(0)e−GΓtΞT
1 +

N
∑

j=1

aijw2,j(t),

with

(3.18b) w2,i = 0,

(3.19a) ẇ3,i(t) = ki(0)e−GΓtΓΞ2 +

N
∑

j=1

aijw3,j(t),

with

(3.19b) w3,i = 0,

and

(3.20a) ẇ4,i(t) = ki(0)e−GΓtΓTΞT
2 +

N
∑

j=1

aijw4,j(t),

with

(3.20b) w4,i = 0.
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Since

η1(t) =

N
∑

i=1

αN
i

∫ t

0

ki(t − s)e−GΓsΞ1ds +

N
∑

i=1

αN
i

∫ t

0

ki(t − s)e−GΓsΞT
1ds

=
N
∑

i=1

αN
i (w1,i(t) + w2,i(t)),(3.21)

and

η2(t) =

N
∑

i=1

βN
i

∫ t

0

ki(t − s)e−GΓsΓΞ2ds +

N
∑

i=1

βN
i

∫ t

0

ki(t − s)e−GΓsΓT ΞT
2ds

=

N
∑

i=1

βN
i (w3,i(t) + w4,i(t)),(3.22)

(3.10) is now approximated by the following system of ordinary differential equations

K̇N = GΓK
N(t) + KNGT

Γ + eGΓt

N
∑

i=1

αN
i w1,i(t)QΞT

1

+ eGΓt

N
∑

i=1

αN
i w2,i(t)Q

TΞ1

+ eGΓt

N
∑

i=1

βN
i w3,i(t)Q0Ξ

T
2ΓT

+ eGΓt

N
∑

i=1

βN
i w4,i(t)Q

T
0 Ξ2Γ,(3.23)

ẇ1,i(t) = ki(0)e−GΓtΞ1 +

N
∑

j=1

aijw1,j(t),(3.24)

ẇ2,i(t) = ki(0)e−GΓtΞT
1 +

N
∑

j=1

aijw2,j(t),(3.25)

ẇ3,i(t) = ki(0)e−GΓtΓΞ2 +
N
∑

j=1

aijw3,j(t),(3.26)

ẇ4,i(t) = ki(0)e−GΓtΓTΞT
2 +

N
∑

j=1

aijw4,j(t),(3.27)

k(0) = k0,(3.28)

w1,j(0) = 0, w2,j = 0, w3,j(0) = 0, w4,j = 0(3.29)

Let the optimal control problem with its system dynamics governed by (3.23)–(3.27)

with initial conditions (3.28)–(3.29) be referred to as Problem (P̂ (N)). Problem

(P(N)) is equivalent to Problem (P̂ (N)), as (3.10) with initial condition (3.11) is

equivalent to (3.23)–(3.27) with initial conditions (3.28)-(3.29).
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Remark 1. The system of differential equations (3.23)–(3.27) with initial conditions

(3.28)–(3.29) is much easier to solve than the system of differential equations involving

convolutional integrals given by (3.10) with initial condition (3.11).

4. ANALYSIS OF METHOD

In this section, we shall discuss some convergence properties relating to the ap-

proximation of Problem (P) by the sequence of approximate problems (P̂ (N)). We

need Lemma 4.6 of [31], which is quoted below

Lemma 2. Let RN
1 (t) = ϕH1

(t) − ϕN
H1

(t) and RN
2 (t) = ϕH2

(t) − ϕN
H2

(t). Then,

‖RN
1 ‖∞ ≤

C(N)(πT
4

)m(N − m)!

N !
‖ϕ

(m)
H1

‖∞

= O(C(N)N−m)

(4.1)

and

‖RN
2 ‖∞ ≤

C(N)(πT
4

)m(N − m)!

N !
‖ϕ

(m)
H2

‖∞

= O(C(N)N−m)

(4.2)

where m ≤ N − 1, C(N) = 2
π

log N + 2 and ‖RN
i ‖∞ = max0≤t≤T ‖RN

i (t)‖ for i = 1, 2.

Theorem 1. Let RN
1 and RN

2 be as defined in Lemma 2. Suppose that K(t) and

KN(t) are the error covariance matrices for Problem (P ) and (P (N)), respectively.

Then

lim
N→∞

‖KN − K‖∞ = 0.

Proof. Define uN(t) = K(t)−KN(t). By taking the time derivative of uN , and using

(2.16) and (3.10), we obtain

u̇N (t) =GΓuN(t) + uN (t)GT
Γ + eGΓt{

∫ t

0

RN
1 (t − s)e−GΓsΞ1ds}QΞT

1

+ eGΓt{

∫ t

0

RN
1 (t − s)e−GΓsΞT

1ds}QΞ1

+ eGΓt{

∫ t

0

RN
2 (t − s)e−GΓsΓΞ2ds}Q0Ξ

T
2ΓT

+ eGΓt{

∫ t

0

RN
2 (t − s)e−GΓsΓT ΞT

2ds}QT
0 Ξ2Γ

(4.3a)

with initial condition

(4.3b) uN(0) = 0.
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Let

βN (t) = eGΓt

{
∫ t

0

RN
1 (t − s)e−GΓsΞ1ds

}

QΞT
1

+ eGΓt

{
∫ t

0

RN
1 (t − s)e−GΓsΞT

1ds

}

QΞ1

+ eGΓt

{
∫ t

0

RN
2 (t − s)e−GΓsΓΞ2ds

}

Q0Ξ
T
2ΓT

+ eGΓt

{
∫ t

0

RN
2 (t − s)e−GΓsΓT ΞT

2ds

}

QT
0 Ξ2Γ

(4.4)

Then, we have

‖βN(t)‖

≤ ‖eGΓt‖

{
∫ t

0

‖RN
1 (t − s)‖‖e−GΓs‖‖Ξ1‖ds

}

‖Q‖‖ΞT
1‖

+ ‖eGΓt‖

{
∫ t

0

‖RN
1 (t − s)‖‖e−GΓs‖‖ΞT

1‖ds

}

‖Q‖‖Ξ1‖

+ ‖eGΓt‖

{
∫ t

0

‖RN
2 (t − s)‖‖e−GΓs‖‖Γ‖‖Ξ2‖ds

}

‖Q0‖‖Ξ
T
2‖‖Γ

T‖

+ ‖eGΓt‖

{
∫ t

0

‖RN
2 (t − s)‖‖e−GΓs‖‖ΓT‖‖ΞT

2‖ds

}

‖QT
0 ‖‖Ξ2‖‖Γ‖.

(4.5)

From Lemma 2, it follows that for any ε > 0, there exists an N0 such that for all

N > N0, we have

(4.6) ‖RN
1 ‖∞ ≤ ε

and

(4.7) ‖RN
2 ‖∞ ≤ ε.

Furthermore, since A,H,Ξ1, and Ξ2 are all constant matrices and eGΓt, e−GΓt and

βN(t) are all continuous on [0, T ], there exists a constant M̃ such that

‖A‖∞ = max
1≤i,j≤n

|Ai,j| ≤ M̃, ‖H‖∞ = max
1≤i,j≤n

|Hi,j| ≤ M̃,

‖eGΓ‖∞ = max
0≤t≤T

‖eGΓt‖∞ ≤ M̃, ‖e−GΓ‖∞ = max
0≤t≤T

‖e−GΓt‖∞ ≤ M̃,

‖Ξ1‖∞ = max
1≤i,j≤n

|Ξ1(i,j)| ≤ M̃, ‖Ξ2‖∞ = max
1≤i,j≤n

|Ξ2(i,j)| ≤ M̃

and ‖βN‖∞ = max
0≤t≤T

‖βN(t)‖ ≤ M̃,

where T is the terminal time of the process x(t).



506 M. MISIRAN, C. WU, Z. LU, AND K. L. TEO

Thus, (4.5) is reduced to

‖βN(t)‖ ≤ ‖eGΓt‖{

∫ t

0

ε‖e−GΓs‖‖Ξ1‖ds}‖Q‖‖ΞT
1‖

+ ‖eGΓt‖{

∫ t

0

ε‖e−GΓs‖‖ΞT
1‖ds}‖Q‖‖Ξ1‖

+ ‖eGΓt‖{

∫ t

0

ε‖e−GΓs‖‖Γ‖‖Ξ2‖ds}‖Q0‖‖Ξ
T
2‖‖Γ

T‖

+ ‖eGΓt‖{

∫ t

0

ε‖e−GΓs‖‖ΓT‖‖ΞT
2‖ds}‖QT

0 ‖‖Ξ2‖‖Γ‖

≤ 4TεM̃ = εM̄,

(4.8)

for all N > N0, where M̄ = 4TM̃ . From (4.3) and (4.4), we have

u̇N(t) = GΓu
N (t) + uN (t)GT

Γ + βN(t)

uN(0) = 0,
(4.9)

with GΓ = A − ΓH. Taking integration, we obtain

(4.10) uN (t) =

∫ t

0

GΓu
N(s)ds +

∫ t

0

uN(s)GT
Γds +

∫ t

0

βN(s)ds.

Note that

(4.11) ‖GΓ‖∞ = max
1≤i,j≤n

|GΓ(i,j)| ≤ ‖A‖∞ + M‖H‖∞,

where M is as defined in (2.8). Thus, for N > N0,

‖uN(t)‖ = ‖

∫ t

0

GΓu
N(s)ds +

∫ t

0

uN(s)GT
Γds +

∫ t

0

βN(s)ds‖

≤

∫ t

0

‖GΓ‖‖u
N(s)‖ds +

∫ t

0

‖uN (s)‖‖GT
Γ‖ds +

∫ t

0

‖βN(s)‖ds.

≤ 2(‖A‖∞ + M‖H‖∞)

∫ t

0

‖uN(s)‖ds + εM̄.

(4.12)

Therefore, by Gronwall’s inequality, we have

‖uN‖∞ ≤ M̄ε exp(|2(‖A‖∞ + M‖H‖∞)|T )

for N > N0. Since ε > 0 is arbitrary, it follows that ‖uN‖∞ → ∞ as N → ∞. This

completes the proof.

From Theorem 1, we observe that Problem (P(N)) converges to the original

problem (P ) as N → ∞. Thus, to solve Problem (P), we will solve a sequence of

Problem (P(N)), where each of which involves only system of ordinary differential

equations. There are several efficient optimization techniques that can be used. For

example, the optimal control software, MISER 3.3, is applicable for this purpose.
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5. NUMERICAL SIMULATION

In this section, we present some numerical examples to illustrate the applicability

of our proposed method.

Example 5.1. Consider a system which is governed by the following stochastic dif-

ferential equation:

dx = xdt + dBH1
(t) , t ∈ [0, 1](5.1a)

x (0) = 0,(5.1b)

The measurement dynamics is given by

dy = 2xdt + dBH2
(t) , t ∈ [0, 1](5.2a)

y (0) = 0.(5.2b)

Then, the filter system becomes

dz = (1 − 2r) z (t) dt + rdy (t) , t ≥ 0,(5.3a)

z (0) = x̂0 ≡ E{x0}(5.3b)

where r ∈ [−10, 10] is the parameter to be determined.

Suppose that the statistics of this system are given as follows:

H1 = H2 = 0.8, Q = Q0 = 0.01.

Then, r can be obtained by solving the following optimal control problem.

(5.4) min
r

J (r) =

∫ 1

0

k (t) dt

subject to

(5.5a) k̇ (t) = 2 (1 − 2r) k (t) + 0.04

∫ t

0

ϕH1
(t − s) e(1−2r)(t−s)ds

(5.5b) k (0) = E
{

(x0 − x̂0)
2} .

Let this problem be referred to as Problem (Q). We construct the corresponding ap-

proximate optimal control Problem (Q(N))with N = 7, 13 and 19. The corresponding

values of the optimal parameter r∗ and the cost obtained are: {9.59496, 0.000428209},

{9.7218, 0.000433229} and {9.9543, 0.000403976}, respectively. The time histories of

the approximate states are plotted in Fig. 1. From Fig. 1, we see that the convergence

is very fast with respect to N , and KN with N = 19 can be regarded as the solution

of system (5.5) with r∗ = 9.9543.
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Figure 1. The state k(t) with N = 7, N = 13 and N = 19.

Example 5.2. Consider a dynamical system given by the following stochastic differ-

ential equations defined on [0, 1].

dx =

[

0 1

1 1

]

xdt +

[

0 0

0 1

]

dBH1
(t) ,(5.6a)

x (0) = [0 0]T .(5.6b)

The measurement system is given by

dy =

[

1 0

0 1

]

xdt +

[

0 1

0 1

]

dBH2
(t) ,(5.7a)

y (0) = [0 0]T .(5.7b)

Then, the filter system becomes

dz =

([

0 1

1 1

]

−

[

γ1 γ2

γ3 γ4

][

1 0

0 1

])

zdt +

[

γ1 γ2

γ3 γ4

]

dy,(5.8a)

z (0) = x̂0 = E{x0}.(5.8b)

Suppose that H1 = H2 = 0.8, and that Q = Q0 is an identity matrix. Then,

Q̃ (s, t) =

[

0 0

0 1

]

and Q̃0 (s, t) =

[

0 1

0 1

]

.(5.9)

Now we suppose that

Γ =

[

γ1 γ2

γ3 γ4

]

, Σ =

[

1 0

0 1

]

,(5.10)

where γi ∈ [−10, 10], i = 1, . . . , 4, are the parameters to be selected by solving the

following optimal control problem.

(5.11) min
Γ

J(Γ) =

∫ 1

0

trace{ΣK}dt
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subject to

K̇(t) = GΓ(t)K(t) + KGT
Γ(t) + eGΓt{

∫ t

0

ϕH1
(t − s)e−GΓsQ̃(s, t)ds}

+ eGΓt{

∫ t

0

ϕH1
(t − s)e−GΓsQ̃T (s, t)ds}

+ eGΓt{

∫ t

0

ϕH2
(t − s)e−GΓsΓ(s)Q̃0(s, t)ds}ΓT (t)

+ eGΓt{

∫ t

0

ϕH2
(t − s)e−GΓsΓT (s)Q̃T

0 (s, t)ds}Γ(t),

(5.12a)

(5.12b) K(0) = K0,

where

GΓ (t) =

[

−γ1 1 − γ2

1 − γ3 1 − γ4

]

, eGΓt = exp{

∫ t

0

[

−γ1 1 − γ2

1 − γ3 1 − γ4

]

}dt,

e−GΓt = exp{−

∫ t

0

[

−γ1 1 − γ2

1 − γ3 1 − γ4

]

}dt,

Q̃, Q̃0 and Γ from (5.9) and (5.10), respectively.

Let this problem be referred to as Problem (Q). We now construct the approxi-

mate optimal control Problem (Q(N)) with N = 5. Then, the optimal control software

package, MISER 3.3, is used to solve such an approximate optimal control problem.

The optimal Γ∗ obtained is:

Γ∗ (t) =

[

9.9965 1.12784

1.14684 9.9965

]

,

and the optimal cost obtained is 0.104372705.

The time histories of the components of the state K∗, i.e., the solution of the sys-

tem (5.12) with N = 5 corresponding to Γ = Γ∗ are plotted in Fig. 2 and Fig. 3.

For N = 13, the optimal cost obtained is 0.105569817 and the optimal Γ∗ solution

obtained is

Γ∗ =

[

9.9987 1.1603

1.11603 9.9987

]

.

The time histories of the components of the corresponding K∗ are plotted in Fig 4

and Fig 5.

From these examples, we can say that the method proposed is efficient. The

figures show that the error covariance matrices converge very fast with respect to the

observation data. These imply that if more observation data is available, then the es-

timation of x(t) will be more accurate. The large error that can be seen occurs earlier
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Figure 2. The state K∗(t) with N = 5.
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Figure 3. Zoom of the state K∗(t) with N = 5.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

K(1,1)(t)
K(1,2)(t)=K(2,1)(t)
K(2,2)(t)

Figure 4. The state K∗(t) with N = 13.

are basically caused by the fact that the initial error covariance matrices considered

in these examples are large.

6. CONCLUSION

In this paper, we study the filtering problem in multi-dimensional linear system

driven by a FBM process. We first showed that this filtering problem is equivalent to

a deterministic optimal control problem involving convolutional integrals in its system
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Figure 5. Zoom of the state K∗(t) with N = 13.

dynamics. A computational scheme is developed, where we approximate the kernels

appeared in the convolutional integrals by respective finite expansions of Chebyshev

polynomials. With this approximation, the dynamical system that contains convo-

lutional integrals is approximated by a sequence of systems involving only ordinary

differential equations. The convergence of this approximation scheme was established.

From the numerical simulation study, we observed that the method proposed is highly

efficient.
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