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1. INTRODUCTION

Recently, much attention has been paid to the existence of solutions for fractional

differential equations due to its wide application in engineering, electrochemistry,

economics and other fields, see for instance the monographs of Kilbas et al [31],

Lakshmikantham et al. [33], Miller and Ross [37], Podlubny [41] and the papers of

Agarwal et al [1], Benchohra et al [13, 14], Chang and Nieto [18], Delbosco and

Rodino [19], Diethelm et al [20], Furati and Tatar [21, 22], Gaul et al. [23], Glockle

and Nonnenmacher [24], Lakshmikantham and Devi [34], Mainardi [35], Metzler et

al. [36], Yu and Gao [46] and the references therein. Jaradat et al. [30] studied the

existence and uniqueness of mild solutions for a class of initial value problem for a

semilinear integrodifferential equation involving the Caputo’s fractional derivative.

Functional differential and partial differential equations arise in many areas of

applied mathematics and such equations have received an increasing interest in recent

years. A good guide to the literature for functional differential equations is the books

by Hale [26] and Hale and Verduyn Lunel [27], Kolmanovskii and Myshkis [32] and

Wu [45] and the references therein.

In a series of papers (see [9, 10, 15, 16]) the authors considered some classes

of initial value problems for functional differential equations involving the Riemann-

Liouville and Caputo fractional derivatives of order 0 < r ≤ 1. In [11, 12] some classes

of semilinear functional differential equations involving the Riemann-Liouville have
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been considered. For more details on the geometric and physical interpretation for

fractional derivatives of both the Riemann-Liouville and Caputo types see [28, 42].

In this paper we consider a semilinear functional differential equation of fractional

order of the form

(1.1) Dry(t) = Ay(t) + f(t, yt), t ∈ J = [0, b], 0 < r ≤ 1

(1.2) y(t) = φ(t), t ∈ [−ρ, 0],

where Dr is the standard Riemann-Liouville fractional derivative, f : J × C([−ρ, 0],

E) → E is a given function, A is a closed linear operator (possibly unbounded),

φ : [−ρ, 0] → E a given continuous function with φ(0) = 0 and (E, | · |) a Banach

space. For any function y defined on [−ρ, b] and any t ∈ J we denote by yt the element

of C([−ρ, 0], E) defined by

yt(θ) = y(t+ θ), θ ∈ [−ρ, 0].

Here yt(·) represents the history of the state from time t− ρ, up to the present time

t.

The reason for studying equation (1.1) is that it appear in mathematical models of

viscoelasticity [43], and in other fields of science [29, 42]. Equation (1.1) is equivalent

to solve an integral equation of convolution type. It is also of interest to explore the

neighborhood of the diffusion (r = 1).

In this paper we use the technique of measures of noncompactness. It is well

known that this method provides an excellent tool for obtaining existence of solutions

of nonlinear differential equations. this technique works fruitfully for both integral

and differential equations, details are found in Akhmerov et al. [3], Benchohra et al.

[17], Alvàrez [4], Banas̀ et al. [5, 6, 7, 8], Guo et al. [25], Mönch [38], Mönch and

Von Harten [39], and Szufla [44]. As far as we know there is a few number of papers

related to fractional differential equations on Banach spaces (see [17, 34]). This paper

initiates the application of the measure of noncompactness to semilinear fractional

differential equations with finite delay.

2. PRELIMINARIES

For application in what follows, we first state the following definitions, lemmas

and some notations. Denote by C(J,E) the Banach space of continuous functions

J → E, with the usual supremum norm

‖y‖∞ = sup{|y(t)|, t ∈ J}.

For ψ ∈ C([−ρ, 0], E) the norm of ψ is defined by

‖ψ‖C = sup{|ψ(θ)|, θ ∈ [−ρ, 0]}.
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B(E) denotes the Banach space of bounded linear operators from E into E, with

norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}.

Let L1(J,E) be the Banach space of measurable functions y : J → E which are

Bochner integrable, equipped with the norm

‖y‖L1 =

∫

J

|y(t)|dt.

In all our paper we suppose that the operator A : D(A) ⊂ E → E is the infinitesimal

generator of a C0-semigroup {T (t)}t≥0. Denote by

M = sup{‖T (t)‖B(E) : t ∈ J}.

For a given set V of functions v : [−ρ, b] → E, let us denote by

V (t) = {v(t) : v ∈ V }, t ∈ [−ρ, b]

and

V (J) = {v(t) : v ∈ V, t ∈ [−ρ, b]}.

Now let us recall some fundamental facts of the notion of Kuratowski measure of

noncompactness.

Definition 2.1 ([6]). Let E be a Banach space and ΩE the bounded subsets of E.

The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ǫ > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ǫ}; here B ∈ ΩE .

Properties: The Kuratowski measure of noncompactness satisfies some properties (for

more details see [6])

(a) α(B) = 0 ⇔ B is compact (B is relatively compact).

(b) α(B) = α(B).

(c) A ⊂ B ⇒ α(A) ≤ α(B).

(d) α(A+B) ≤ α(A) + α(B)

(e) α(cB) = |c|α(B); c ∈ R.

(f) α(conv B) = α(B).

For completeness we recall the definition of Riemann-Liouville fractional primitive

and fractional derivative.

Definition 2.2 ([31, 41]). The Riemann-Liouville fractional primitive of order r > 0

of a function h : (0, b] → E is defined by

Ir
0h(t) =

1

Γ(r)

∫ t

0

(t− s)r−1h(s)ds,

provided the right side is pointwise defined on (0, b], and where Γ is the gamma

function.
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Definition 2.3 ([31, 41]). The Riemann-Liouville fractional derivative of order r ∈

(0, 1] of a continuous function h : (0, b] → E is defined by

drh(t)

dtr
=

1

Γ(1 − r)

d

dt

∫ t

0

(t− s)−rh(s)ds

=
d

dt
I1−r
0 h(t).

Definition 2.4. A map f : J × C([−ρ, 0], E) → E is said to be Carathéodory if

(i) t 7−→ f(t, u) is measurable for each u ∈ C([−ρ, 0], E);

(ii) u 7−→ f(t, u) is continuous for almost all t ∈ J .

For our purpose we will only need the following fixed point theorem, and the

important Lemma.

Theorem 2.5 ([2, 38]). Let D be a bounded, closed and convex subset of a Banach

space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the

implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.6 ([44]). Let D be a bounded, closed and convex subset of the Banach space

C(J,E), G a continuous function on J×J and f a function from J×C([−ρ, 0], E) →

E which satisfies the Carathéodory conditions and there exists p ∈ L1(J,R+) such that

for each t ∈ J and each bounded set B ⊂ C([−ρ, 0], E) we have

lim
k→0+

α(f(Jt,k ×B)) ≤ p(t)α(B); here Jt,k = [t− k, t] ∩ J.

If V is an equicontinuous subset of D, then

α

({
∫

J

G(s, t)f(s, ys)ds : y ∈ V

})

≤

∫

J

‖G(t, s)‖p(s)α(V (s))ds.

3. THE MAIN RESULT

Before stating our main result in this section for problem (1.1)–(1.2) we give the

definition of the mild solution.

Definition 3.1 ([30]). We say that a continuous function y : [−ρ, b] → E is a mild

solution of problem (1.1)–(1.2) if y(t) = φ(t), t ∈ [−ρ, 0], and

y(t) =
1

Γ(r)

∫ t

0

(t− s)r−1T (t− s)f(s, ys)ds, t ∈ J.

Let us list some conditions on the functions involved in the IVP (1.1)–(1.2).

(H1) The semigroup {T (t)}t∈J is compact for t > 0.

(H2) f : J × C([−ρ, 0], E) → E satisfies the Carathéodory conditions.
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(H3) There exists a function p ∈ C(J,R+) such that

|f(t, u)| ≤ p(t)(‖u‖C + 1), for each t ∈ J, and each u ∈ C([−ρ, 0], E).

(H4) For each t ∈ J and each bounded set B ⊂ C([−ρ, 0], E) we have

lim
h→0+

α(f(Jt,h × B)) ≤ p(t)α(B); here Jt,h = [t− h, t] ∩ J.

Let p∗ = supt∈J p(t). Our main result reads as follows

Theorem 3.2. Assume that assumptions (H1)–(H4) hold. If

(3.1)
Mp∗br

Γ(r + 1)
< 1,

then the the problem (1.1)–(1.2) has at least one mild solution.

Proof. We shall reduce the existence of solutions of (1.1)–(1.2) to a fixed point prob-

lem. Consider the operator N : C([−ρ, b], E) → C([−ρ, b], E) defined by

N(y)(t) =

{

φ(t), t ∈ [−ρ, 0],
1

Γ(r)

∫ t

0
(t− s)r−1T (t− s)f(s, ys)ds, t ∈ [0, b].

Clearly, the fixed points of the operator N are solution of the problem (1.1)–(1.2).

Let r0 > 0 be such that

r0 ≥
Mp∗br

Γ(r + 1) −Mp∗br
,

and consider the set

Dr0
= {y ∈ C([−ρ, b], E) : ‖y‖∞ ≤ r0}

Clearly, the subset Dr0
is closed, bounded and convex. We shall show that N satisfies

the assumptions of Theorem 2.5. The proof will be given in three steps.

Step 1: N is continuous.

Let us consider a sequence {yn} such that yn → y in C([−ρ, b], E). Then for each

t ∈ J

|N(yn)(t) −N(y)(t)| ≤

∣

∣

∣

∣

1

Γ(r)

∫ t

0

(t− s)r−1T (t− s)[f(s, yns
) − f(s, ys)]ds

∣

∣

∣

∣

≤
Mbr

Γ(r + 1)
‖f(., yn.

) − f(., y.)‖∞.

Since f is of Carathéodory type, then by the Lebesgue dominated convergence theo-

rem we have

‖N(yn) −N(y)‖∞ ≤
Mbr

Γ(r + 1)
‖f(., yn.

) − f(., y.)‖∞ → 0 as n 7→ ∞.

Step 2: N maps Dr0
into itself.
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For each y ∈ Dr0
, by (H3) and (3.1) we have for each t ∈ J

|N(y)(t)| =

∣

∣

∣

∣

1

Γ(r)

∫ t

0

(t− s)r−1T (t− s)f(s, ys)ds

∣

∣

∣

∣

≤
Mp∗(r0 + 1)

Γ(r)

∫ t

0

(t− s)r−1ds

≤
Mbrp∗(r0 + 1)

Γ(r + 1)
≤ r0.

Step 3: N(Dr0
) is bounded and equicontinuous.

By Step 2, it is obvious that N(Dr0
) ⊂ Dr0

is bounded. For the equicontinuity

of N(Dr0
). Let τ1, τ2 ∈ J , τ1 < τ2. Thus if ǫ > 0 and ǫ ≤ τ1 ≤ τ2 we have for any

y ∈ Dr0

|N(y)(τ2) −N(y)(τ1)| ≤
1

Γ(r)

∣

∣

∣

∣

∫ τ1−ǫ

0

[

(τ2 − s)r−1T (τ2 − s)

− (τ1 − s)r−1T (τ1 − s)
]

f(s, ys)ds
∣

∣

+
1

Γ(r)

∣

∣

∣

∣

∫ τ1

τ1−ǫ

[

(τ2 − s)r−1T (τ2 − s)

− (τ1 − s)r−1T (τ1 − s)
]

f(s, ys)ds
∣

∣

+
1

Γ(r)

∣

∣

∣

∣

∫ τ2

τ1

(τ2 − s)r−1T (τ2 − s)f(s, ys)ds

∣

∣

∣

∣

≤
Mp∗(r0 + 1)

Γ(r)

(

∣

∣

∣

∣

∫ τ1−ǫ

0

[

(τ2 − s)r−1 − (τ1 − s)r−1
]

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ τ1−ǫ

0

(τ2 − s)r−1T (τ1 − ǫ− s) (T (τ2 − τ1 − ǫ) − T (ǫ)) ds

∣

∣

∣

∣

+

∫ τ1

τ1−ǫ

(

(τ2 − s)r−1 − (τ1 − s)r−1
)

ds

+

∫ τ2

τ1

(τ2 − s)r−1ds

)

≤
Mp∗(r0 + 1)

Γ(r)

(

∫ τ1−ǫ

0

[

(τ2 − s)r−1 − (τ1 − s)r−1
]

ds

+ ‖T (τ2 − τ1 − ǫ) − T (ǫ)‖B(E)

∫ τ1−ǫ

0

(τ2 − s)r−1ds

+

∫ τ1

τ1−ǫ

(

(τ2 − s)r−1 − (τ1 − s)r−1
)

ds

+

∫ τ2

τ1

(τ2 − s)r−1ds

)

.
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As τ1 → τ2 and ǫ sufficiently small, the right-hand side of the above inequality tends

to zero, since T (t) is a strongly continuous operator and the compactness of T (t) for

t > 0 implies the continuity in the uniform operator topology ([40]).

Now let V be a subset of Dr0
such that V ⊂ conv(N(V ) ∪ {0}). V is bounded

and equicontinuous and therefore the function v → v(t) = α(V (t)) is continuous on

[−ρ, b]. By (H4), Lemma 2.6 and the properties of the measure α we have for each

t ∈ [−ρ, b]

v(t) ≤ α(N(V )(t) ∪ {0}) ≤ α(N(V )(t))

≤
1

Γ(r)

∫ t

0

(t− s)r−1‖T (t− s)‖B(E)p(s)α(V (s))ds

≤
M

Γ(r)

∫ t

0

(t− s)r−1p(s)v(s) ≤ ‖v‖∞
Mp∗br

Γ(r + 1)
.

This means that

‖v‖∞

(

1 −
Mp∗br

Γ(r + 1)

)

≤ 0.

By (3.1) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each t ∈ [−ρ, b], and then

V (t) is relatively compact in E. In view of the Ascoli-Arzelà theorem, V is relatively

compact in Dr0
. Applying now Theorem 2.5 we conclude that N has a fixed point

which is a mild solution for the problem (1.1)–(1.2).

3.1. AN EXAMPLE. As an application of our results we consider the following

partial functional differential equation of the form

(3.2)

{

∂r

∂tr
z(t, x) = ∂2

∂x2z(t, x) +Q(t, z(t − ρ, x)),

x ∈ [0, π], t ∈ [0, 1], r ∈ (0, 1],

(3.3) z(t, 0) = z(t, π) = 0, t ∈ [0, 1]

(3.4) z(t, x) = φ(t, x), t ∈ [−ρ, 0], x ∈ [0, π],

where ρ > 0, φ : [−ρ, 0] × [0, π] → R is continuous and Q : [0, 1] × R → R is a given

function.

Let

y(t)(x) = z(t, x), t ∈ [0, 1], x ∈ [0, π],

F (t, φ)(x) = Q(t, φ(θ, x)), θ ∈ [−ρ, 0], x ∈ [0, π],

φ(θ)(x) = φ(θ, x), θ ∈ [−ρ, 0], x ∈ [0, π].

Take E = L2[0, π] and define A : D(A) ⊂ E → E by Aw = w′′ with domain

D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.
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Then

Aw =
∞
∑

n=1

n2(w,wn)wn, w ∈ D(A)

where ( , ) is the inner product in L2 and wn(s) =
√

2
π

sinns, n = 1, 2, . . . is the or-

thogonal set of eigenvectors in A. It is well known (see [40]) that A is the infinitesimal

generator of an analytic semigroup T (t), t ∈ [0, 1] in E and is given by

T (t)w =
∞
∑

n=1

exp(−n2t)(w,wn)wn, w ∈ E.

Since the analytic semigroup T (t) is compact, there exists a constant M ≥ 1 such

that

‖T (t)‖B(E) ≤M.

Also assume that there exists σ ∈ C[0, 1],R+) with Mσ∗

Γ(r+1)
< 1 such that

|Q(t, w(t− r, x))| ≤ σ(t)(|w| + 1),

where σ∗ = supt∈[0,1] σ(t).

We can show that problem (1.1)–(1.2) is an abstract formulation of problem (3.2)–

(3.4). Since all the conditions of Theorem 3.2 are satisfied, the problem (3.2)–(3.4)

has a solution z on [−ρ, 1] × [0, π].
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