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ABSTRACT. An optimal control problem is studied for a predator-prey system with logistic

growth rate of the prey and a prey-dependent functional response of the predator. The control

function has two components and signifies the rate of mixture between the individuals of the species.

The form of the optimal control is determined according to Pontryagin’s maximum principle. It is

bang-bang and the number of switchings points depends on the choice of some specific parameters.
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1. INTRODUCTION

Consider the predator-prey system

{
y′

1 = ry1

(
1 −

y1

k

)
− my2h (qy1)

y′

2 = ny2h (qy1) − ly2, t ≥ 0,

where y1, y2 are the densities of prey and predators, respectively and r, k, m, n, l, q > 0

are given parameters. The growth rate of the prey, f (y1) = ry1 (1 − y1/k) is logistic

and the predator’s functional response h depends only on the prey density. The

functional response represents the prey consumption rate per predator as a fraction

of the maximal consumption rate m. Parameters n and r denote the maximal per

capita birth rates of predators and prey, respectively, l is the per capita predator death

rate, and k is the prey carrying capacity. Constant q shows how fast the consumption

rate saturates the predator when the prey density increases (see [4], [9]).

We work under the following hypothesis:

(H) h ∈ C1 ([0,∞)), h (0) = 0, h′ (ay1) > 0, (∀) y1 > 0.

This model takes into account several well-known types of functional responses which

depend only on the prey density y1:
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• h (y1) = by1 (Holling type I). It is a linear function in y1 and models the behavior

of passive predators (for example, spiders). The number of caught prey is pro-

portional to the prey density. This is the original functional response introduced

by V. Volterra.

• h (y1) = by1

1+my1

(Holling type II). This is the most frequently studied functional

response and has been used in many works to fit ecological data. At low prey

densities, predators spend most of their time on search, whereas at high prey

densities, predators spend most of their time on prey handling. Predators of

this type cause maximum mortality at low prey density. For example, small

mammals destroy most of gypsy moth pupae in sparse populations of gypsy

moth. However in high-density defoliating populations, small mammals kill a

negligible proportion of pupae.

• h (y1) =
by2

1

1+my2

1

(Holling type III). It is employed if the predators are more efficient

at higher prey densities and less efficient at lower prey densities. For example,

many predators respond to chemicals emitted by prey and increase thus their

activity. Polyphagous vertebrate predators (e.g., birds) can switch to the most

abundant prey species by learning to recognize it visually.

• h (y1) = k
(
1 − e−by1

)
(Ivlev functional response). The equation describes a

cyrtoid or type II functional response because the feeding rate declines with

increasing resource abundance until it reaches a constant rate k. Ivlev’s equation

describes the effect of consumer satiation on the rate of resource consumption

in a similar way to Holling’s disk equation; i.e., it describes a type II functional

response.

If we put ỹ1 = y1/k, ỹ2 = my2/rk, t̃ = rt and denote a = qk, b = n/r, c = l/r (see

[5]), the above system can be written in the simpler form (after dropping the tildes)

{
y′

1 = y1 (1 − y1) − y2h (ay1)

y′

2 = by2h (ay1) − cy2, t ≥ 0.

The parameters a, b, c are positive. We study this system on a finite time interval

[0, T ]. Other problems connected with ordinary differential systems from population

dynamics are treated in the papers [6, 7, 9] and in the monographs [4] and [10].

One introduces two control variables u and v, such that 0 ≤ u (t) ≤ 1, 0 < v0 ≤

v (t) ≤ 1 a.e. on [0, T ], which represent the rate of mixture of the prey and predators

(for u) and of prey individuals only (for v). More exactly, 1−u is the separation rate

between prey and predators, while 1−v is the separation rate between the individuals

of prey population. The constant v0 is positive; this shows that the prey individuals

can not be separated completely at any moment. The dynamics of the controlled
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ecosystem on [0, T ] is described by the differential system

(1.1)





y′

1 = y1 (1 − vy1) − uy2h (ay1)

y′

2 = bu y2h (ay1) − cy2

, t ∈ [0, T ] .

We add to this system some initial conditions

(1.2) y1 (0) = y0
1 > 0, y2 (0) = y0

2 > 0.

The Cauchy problem admits a unique local solution y = (y1, y2) defined on an

interval [0, δ), δ ∈ (0, T ]. By a comparison result, we get y1 > 0, y2 > 0. Since the

conditions imposed on h imply that h (ay1) > 0 for y1 > 0, then from (1.1)–(1.2) we

infer that y1 (t) ≤ y0
1e

t ≤ y0
1e

T , (∀) t ∈ [0, δ) and therefore, y2 (t) ≤ y0
2e

b
R

δ

0
h(ay1)ds ≤

y0
2e

bTh(ay0

1
eT ), (∀) t ∈ [0, δ). So y = (y1, y2) is bounded on its maximal interval of

definition. Consequently, y = (y1, y2) is defined on the entire [0, T ], it is positive and

bounded.

The aim of the paper is to study an optimal control problem associated with

problem (1.1)–(1.2), namely:

Problem (P ) : Minimize the cost functional

(1.3) J (y1, y2, u, v) = −[αy1 (T ) + βy2 (T )] −

∫ T

0

[k1y1 (t) + k2y2 (t)]dt,

subject to the state system (1.1) and to constraints (1.2), 0 ≤ u (t) ≤ 1, 0 < v0 ≤

v (t) ≤ 1 a.e. on [0, T ]. The constants α, β, k1 and k2 are supposed to be non-negative,

not all of them zero at the same time. Problem (1.1)–(1.3) is also referred to as a

control problem of Bolza.

This problem contains in itself some special classes of optimal control problems

associated with system (1.1)–(1.2). For example, if we take α = β = 1 and k1 = k2 =

0, the goal is to minimize the functional

JM (y1, y2, u, v) = −y1 (T ) − y2 (T ) ,

subject to the state system (1.1) and to constraints (1.2), 0 ≤ u (t) ≤ 1, 0 < v0 ≤

v (t) ≤ 1 a.e. on [0, T ]. In other words, we have to find necessary optimality conditions

such that, in the end of the time interval [0, T ], the total density of the two populations

is maximal. In the literature, a problem of this type is called the control problem of

Mayer.

If α = β = 0 and k1 = k2 = 1, then we have to minimize

JL (y1, y2, u, v) = −

∫ T

0

[y1 (t) + y2 (t)]dt,

subject to (1.1)–(1.2) and 0 ≤ u (t) ≤ 1, 0 < v0 ≤ v (t) ≤ 1 a.e. on [0, T ]. This cost

functional is of Lagrange type.
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In the next section, one applies Pontryagin’s maximum principle to find necessary

optimality conditions for problem (1.1)–(1.3) and to establish the form of the optimal

control. We show that u is bang-bang and v = v0 on [0, T ]. According to the sign of

a specific constant, in Section 3 we find the number of the switchings of u.

For linear growth rate of the prey f (y1) = ry1 and linear predator’s functional

response h (i.e., Holling type I functional response), such problem was analyzed by

S. Yosida ([15, 16]). A Mayer optimal control problem for an ecosystem composed

by three species was studied in [1]. Other optimal control problems in population

dynamics can be found in [3, 8, 11, 14]. For general theory in the optimal control

field the reader may refer to [2, 12, 13].

2. NECESSARY OPTIMALITY CONDITIONS

In this section we find necessary optimality conditions for problem (P ).

Under hypothesis (H), h is obviously positive for all y1 > 0. Since the solution

y = (y1, y2) of the Cauchy problem (1.1)–(1.2) is bounded, we can take a compact

target set at t = T and then apply Theorem 1.2, page 43, [2], to deduce the existence

of an optimal solution (y1, y2, u, v) for the optimal control problem (P ).

To find the form of the optimal control (u, v), we apply Pontryagin’s maximum

principle. The Hamiltonian function is

(2.1) H (y, p, u, v) = y1p1 − cy2p2 − vy2
1p1 + uy2h (ay1) (bp2 − p1) + (k1y1 + k2y2) ,

where p = (p1, p2) is the solution of the adjoint system

(2.2)





p′1 = −
∂H

∂y1
= −p1 − k1 + 2vy1p1 + au y2h

′ (ay1) (p1 − bp2)

p′2 = −
∂H

∂y2
= cp2 − k2 + uh (ay1) (p1 − bp2) , t ∈ [0, T ] ,

subjected to the transversality conditions

(2.3) p1 (T ) = α, p2 (T ) = β.

If y1, y2, p1, p2 are considered fixed, since h (ay1) > 0, the maximum of H is

reached when

(2.4) u (t) =

{
0, bp2 − p1 < 0

1, bp2 − p1 > 0
, v (t) =

{
v0, p1 > 0

1, p1 < 0
,

for almost all t ∈ [0, T ]. This implies that

(2.5) u (t) (p1 − bp2) (t) ≤ 0 a.e. t ∈ [0, T ] .
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Observe that the solution of the linear boundary value problem p′ = f (t) p+g (t),

t ∈ [0, T ], p (T ) = pT is given by

(2.6) p (t) = e−
R

T

t
f(s)ds

{
pT −

∫ T

t

g (s) e
R

T

s
f(θ)dθds

}
, t ∈ [0, T ] .

Regarding the first equation from (2.2)–(2.3) as a linear equation in p1 with

f (t) = −1 + 2vy1, g (t) = [au y2h
′ (ay1) (p1 − bp2) − k1] (t) ,

one gets

(2.7)

p1 (t) = e
R

T

t
(1−2vy1)ds

{
α −

∫ T

t

[au y2h
′ (ay1) (p1 − bp2) − k1] (s) e−

R

T

s
(1−2vy1)dθds

}
,

and similarly

(2.8)

p2 (t) = e−c(T−t)

{
β −

∫ T

t

[u (s) h (ay1 (s)) (p1 − bp2) (s) − k2] e
c(T−s)ds

}
, t ∈ [0, T ] .

Then we can state the following auxiliary result.

Lemma 2.1. Under hypothesis (H), the second component of the control function

(u, v) is v (t) = v0 for all t ∈ [0, T ].

Proof. By (2.7)–(2.8) one obtains that p1 (t) ≥ 0 and p2 (t) ≥ 0 on [0, T ]. The limit

case p1 (t) = 0 holds for some point t ∈ [0, T ) if and only if α = 0, k1 = 0, and u = 0

a.e. on [t, T ]. Similarly p2 (t) = 0 if and only if β = 0, k2 = 0, u = 0 a.e. on [t, T ].

Since α, β, k1, k2 are not all zero, we deduce that p1 (t), p2 (t) cannot be zero at the

same time.

We show that p1 (t) > 0. Indeed, supposing that p1 (t) = 0, one derives that

p2 (t) > 0. Since u = 0 a.e. on [t, T ], this together with (2.4), gives a contradiction in

the sign of bp2 − p1. Therefore v (t) = v0 for all t ∈ [0, T ]. The lemma is proved.

3. THE NUMBER OF SWITCHINGS FOR u

This section is devoted to the number of switching points of the control u.

The form of u can be found in each of the following cases: bβ < α, βb = α,

bβ > α. From the adjoint system (2.2) with v = v0 we get

(3.1) (bp2 − p1)
′ = bcp2+p1+k1−bk2−2v0y1p1−u (bp2 − p1) [bh (ay1) − ay2h

′ (ay1)] ,

for all t ∈ [0, T ]. To establish the exact form of the component u of the optimal

control, we impose the following additional hypotheses:

(3.2) c + 1 − 2v0y
max
1 > 0, k1 − bk2 ≥ 0,

where ymax
1 = sup{y1 (t), t ∈ [0, T ]}.

The following simple lemma is the crucial point in the proof of our main result.
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Lemma 3.1. Assume that α, β, k1, k2 are non-negative constants, not all zero. Let

Φ (t) = bp2 (t)−p1 (t) be the switching function for the optimal control u. If conditions

(3.2) hold, then whenever Φ (τ) = 0 it follows that Φ′ (τ) > 0.

Proof. If Φ (τ) = 0, by (3.1) we derive that

Φ′ (τ) = p1 (τ) (c + 1 − 2v0y1 (τ)) + k1 − bk2.

Inequality p1 (τ) > 0 together with (3.2) leads to Φ′ (τ) > 0, as claimed.

Now we are able to find the number of switchings for u.

Theorem 3.2. Suppose that condition (3.2) holds. If (u, v) is the optimal control of

the problem (P ), then v = v0 on [0, T ] and for u we have two possibilities:

I) If bβ ≤ α, then u (t) = 0, (∀) t ∈ [0, T ]. The corresponding optimal state is the

solution of (1.1)–(1.2) with u = 0 and v = v0.

II) If bβ > α, then u has at most one switching time. If actually there exists a

switching time τ ∈ (0, T ), then u is bang-bang and has the form

u (t) =





0, t ∈ [0, τ ]

1, t ∈ (τ, T ].

Otherwise u (t) = 1, (∀) t ∈ [0, T ].

Proof. Case 1. Let first bβ < α. In view of (2.3), we have Φ (T ) = bβ − α < 0.

It follows that Φ = bp2 − p1 < 0 at least in a left neighbourhood of T . Let (τ, T ]

be the maximal interval with this property. Then the optimal control is u (t) = 0

on (τ, T ]. We show that τ = 0. Indeed, if this is not the case, then τ > 0 and

Φ (τ) = (bp2 − p1) (τ) = 0. By Lemma 3.1, we obtain that Φ′ (τ) > 0. This means

that function Φ cannot change its sign at the left side of τ . Consequently, τ = 0 and

u = 0 on the whole interval [0, T ].

Case 2. Assume that bβ = α. Then Φ (T ) = (bp2 − p1) (T ) = 0. In view of

Lemma 3.1, it follows that Φ′ (T ) > 0. This implies that Φ is increasing in a left

neighbourhood of T and Φ (t) < 0 for t < T , t close to T . As in the first case, we find

that u = 0 on [0, T ].

Case 3. Let bβ > α. Then Φ = bp2 − p1 > 0 on a left neighbourhood of T . We

put

τ = inf {s ∈ [0, T ] , (bp2 − p1) (t) > 0, (∀) t ∈ (s, T ]} .

If τ = 0, then u = 1 on [0, T ].

If τ ∈ (0, T ), then Φ (τ) = 0, Φ > 0 on (τ, T ] and then u = 1 on (τ, T ]. Making

use of Lemma 3.1, one derives that τ is a switching for u. Thus Φ < 0 in a left

neighbourhood (τ1, τ) of τ , which can be chosen maximal. The control u is 0 on this

interval.
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If τ1 > 0, then Φ (τ1) = 0. Applying again Lemma 3.1, we get Φ′ (τ1) > 0. This

contradicts the fact that Φ (t) < 0 on (τ1, τ) and Φ (τ1) = 0. The conclusion is that

τ1 = 0, i.e. u (t) = 0 on [0, τ ]. The theorem is proved.

Remark 3.3. Observe that, in order to minimize the cost functional (1.3), the prey

individuals should have the smallest degree of mixture (their rate of separation is

1 − v0). Concerning u, we have two situations. If bβ ≤ α, then the prey and

predators are completely separated on the whole time interval. If bβ > α, then prey

and predators should be either not separated at all (u = 1), or completely separated

on a time interval [0, τ ] (here u = 0) and next completely mixed on (τ, T ] (where

u = 1).
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