
Dynamic Systems and Applications 19 (2010) 545-556

BOUNDED SOLUTIONS FOR A DERIVATIVE DEPENDENT

BOUNDARY VALUE PROBLEM ON THE HALF-LINE
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ABSTRACT. This paper is devoted to the existence of bounded solutions to a nonlinear second-

order boundary value problem on the positive half-line where the nonlinearity depends on the first

derivative. We employ topological degree theory combined with the method of upper and lower so-

lutions on compact domains to prove existence of solution on truncated domains. Solutions are then

extended to unbounded domains using sequential arguments. A uniqueness result is also obtained

and two illustrative examples end the paper.
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1. INTRODUCTION

In this note, we are concerned with the existence of solutions to the following

boundary value problem

(1.1)

{
−x′′(t) + a(t)x(t) = f(t, x(t), x′(t)), t > 0,

x(0) = x0, x bounded on [0,∞),

where x0 is a given real number, the nonlinearity f : I ×R
2 −→ R is continuous, and

the function a : I → (0,∞) is continuous and satisfies

(H0) ∃ a0 ∈ I, a(t) ≥ a0, ∀ t ≥ 0.

Here I refers to the positive half-line. Boundary value problems (BVPs for short) on

unbounded intervals arise in many applications in physics, combustion theory, biol-

ogy,. . . (see e.g. the monographs by Agarwal and O’Regan [1, 2] and the references

therein). During the last couple of years, BVPs on unbounded intervals have been

intensively studied. The particular case of ordinary differential equations with con-

stant coefficients has recently attracted the attention of many researchers. Indeed, in

this case, the Green’s function associated with the corresponding BVP can be com-

puted explicitly and its main properties derived. As a consequence, the BVP may

be transformed into an integral equation of Hammerstein type and thus arguments
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from fixed point theory in Banach spaces can be applied. For instance, various BVPs

associated with the generalized Fisher-like equations

−x′′(t) + cx′(t) + λx(t) = h(t, x(t)) and − x′′(t) + k2x(t) = h(t, x(t))

on the half and the whole real line are discussed in [7, 8, 9]. Notice that the main diffi-

culty in dealing with BVPs on unbounded intervals is the lack of compactness for such

problems. To overcome this difficulty, very recent papers make use of some compact-

ness criteria on unbounded domains such that Corduneanu [6], Fréchet-Kolmogorov

[17] and Zima [20] criteria, extending the classical Ascoli-Arzéla theorem. In addition,

the method of upper and lower solutions turns out to be a powerful tool in dealing

with such BVPs. In [3], this method was used to study a class of second-order BVP

on infinite interval; see also [4, 16]. In [10, 16, 19], the authors appeal to this method

to discuss some singular BVPs on the half-line. In these works, upper and lower solu-

tions are first sought on bounded intervals; then sequential arguments are developed

to extend the obtained solutions on unbounded domains. Recall that on bounded

intervals of the real line, the method of upper and lower solutions is well developed

in the recent book by De Coster and Habets [11].

However, when the ordinary differential equation has time varying coefficients,

deep investigation is needed to find a Green’s function and then study its fundamental

properties. In case of Problem (1.1), the Green’s function together with its main

properties are investigated in [12, 13, 14]. This equation has the particularity that

it is of limit-point case (see [5] for more details on the limit-point and the limit-

circle cases in ordinary differential equations). This means that the corresponding

homogeneous problem has only the trivial solution, which in turn implies existence

and uniqueness of the Green’s function. When f = f(t, x) does not depend on the

first derivative, Problem (1.1) is studied in [15] and existence of multiple solutions is

obtained.

Our aim, in this work, is to consider the more general case of a derivative depend-

ing nonlinearity f = f(t, x, x′). For this purpose, further to the assumptions in [15],

the additional assumption (H3) both with a Nagumo-Bernstein type assumption (H2)

will be considered; this extends by the way some known results for BVPs on bounded

domains for which a rich bibliography is available (see e.g. [11] and the references

therein). In Section 2, we will first discuss Problem (1.1) on a bounded interval (0, b)

providing estimates for possible solutions and their first derivatives. Such a priori es-

timates are exploited in Section 3 to prove existence of solution on (0, b). To this end,

we shall appeal to the topological degree of Leray and Schauder (se e.g. [18] for the

main properties). Sequential arguments are then used to extend the obtained solution

to the half-line and a uniqueness result is provided under an additional hypothesis

(H4). We end this paper with two illustrative examples in Section 4. Throughout this
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paper, Ck(I × R
2,R) will refer to the space of functions whose k − th derivatives are

continuous on I×R
2 and CBk(I,R) denotes the space of functions whose derivatives,

up to the order k, are bounded and continuous on I. For each x ∈ CB(I,R), denote

by ‖x‖ = sup
t∈I

|x(t)|.

2. THE PROBLEM ON A TRUNCATED DOMAIN

2.1. Preliminaries. Let b > b0 for some fixed b0 > 0 and consider the problem on a

bounded domain

(2.1)

{
−x′′(t) + a(t)x(t) = f(t, x(t), x′(t)), 0 < t < b,

x(0) = x0, x′(b) = 0.

Definition 2.1. (a) We say that αb is a C0-lower solution of Problem (2.1) if αb ∈

C0([0, b]), α′
b(b) exists, and for each t ∈ (0, b), there exists an open interval It ⊂ (0, b)

with t ∈ It and a function αt ∈ C2(It) such that





αt(t) = αb(t),

αt(s) ≤ αb(s), s ∈ It,

−α′′
t (s) + a(s)αt(s) ≤ f(s, αt(s), α

′
t(s)), s ∈ It,

αb(0) ≤ x0, α′
b(b) < 0.

(b) A function βb is a C0-upper solution of Problem (2.1) if βb ∈ C0([0, b]), β ′
b(b)

exists, and for each t ∈ (0, b), there exists an open interval It ⊂ (0, b) with t ∈ It and

a function βt ∈ C2(It) such that




βt(t) = βb(t),

βt(s) ≥ βb(s), s ∈ It,

−β ′′
t (s) + a(s)βt(s) ≥ f(s, βt(s), β

′
t(s)), s ∈ It,

βb(0) ≥ x0, β ′
b(b) > 0.

The following auxiliary lemmas will be crucial in the sequel.

Lemma 2.2 ([14], Theorem 2.3). Let a ∈ C(I) satisfy (H0). Then there exists a

unique Green’s function G = G(t, s) such that u0(t) =
∫ ∞

0
G(t, s)ds is the unique

solution of the problem

{
x′′(t) − a(t)x(t) = 1, t > 0,

x(0) = 0, x(t) bounded on (0,∞).

Moreover G satisfies the integrability property:

∫ ∞

0

|G(t, s)|ds <
1

a0
, ∀ t ≥ 0.
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Lemma 2.3 ([14], Lemma 3.2). Let a ∈ C(I) satisfy (H0). Then, for any real number

x0, the problem
{
x′′(t) − a(t)x(t) = 0, t > 0,

x(0) = x0, x(t) bounded on (0,∞)

has a unique solution p0 which satisfies

|p0(t)| ≤ |x0|, ∀ t ≥ 0.

It follows that for any bounded and continuous function h on I, the problem
{
x′′(t) − a(t)x(t) = h, t > 0,

x(0) = x0, x(t) bounded on (0,∞)

has the unique solution u with the representation

u(t) = p0(t) +

∫ ∞

0

G(t, s)h(s)ds, t > 0.

Finally consider G(b; t, s) the Green’s function associated with the right focal problem
{
x′′(t) − a(t)x(t) = 0, 0 < t < b,

x(0) = 0, x′(b) = 0,

and pb(t) is the unique solution of the problem
{
x′′(t) − a(t)x(t) = 0, 0 < t < b,

x(0) = x0, x′(b) = 0.

2.2. General assumptions and modified problem. We first enunciate some as-

sumptions:

(H1) There exist α, β ∈ CB1(0,∞), (α ≤ β) and b0 > 0 such that for each b > b0

the functions αb := α|[0,b]
and βb := β|[0,b]

are C0-lower and upper solutions of Prob-

lem (2.1) respectively and

(2.2) f(t, α(t), α′(t)) ≤ 0 ≤ f(t, β(t), β ′(t)), t ∈ (0, b).

(H2) There exist c ≥ 0, q : (0,∞) → I integrable and ψ : I → [1,∞) continuous, with
1
ψ

integrable over bounded intervals and
∫ ∞

0
ds
ψ(s)

= +∞ such that

(2.3) |f(t, x, y)| ≤ ψ(|y|)(q(t) + c|y|), ∀ (t, x, y) ∈ Dβ
α × R,

where Dβ
α is defined by

Dβ
α := {(t, x) ∈ (0,∞) × R : α(t) ≤ x ≤ β(t)}.

(H3)

A :=

∫ ∞

0

a(t) max(|α(t)|, |β(t)|) dt <∞.
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Let Q :=
∫ ∞

0
q(t)dt and K0 := max{‖α‖, ‖β‖}. (H2) implies the existence of a real

number K1 such that K1 > max{‖α′‖, ‖β ′‖} and

(2.4)

∫ K1

0

ds

ψ(s)
> Q+ 2cK0 + A.

For t ∈ [0, b], define the truncation function f̃ by

f̃(t, x, y) =





f(t, β(t), TK1(y)), β(t) < x,

f(t, x, TK1(y)), α(t) ≤ x ≤ β(t),

f(t, α(t), TK1(y)), x < α(t),

where

TK(y) =





−K, y < −K,

y, −K ≤ y ≤ K,

K, K < y,

is the truncation function at level K. Then consider the family of problems

(2.5)

{
−x′′(t) + a(t)x(t) = λf̃(t, x(t), x′(t)), t ∈ (0, b),

x(0) = x0, x′(b) = 0,

where the parameter λ lies in the interval [0, 1].

2.3. A priori bounds on solutions. We prove two results giving estimates on

solutions of Problem (2.5) and on their first derivatives respectively.

Proposition 2.4. Under Assumption (H1), all possible solutions of Problem (2.5)

satisfy the estimates

αb(t) ≤ x(t) ≤ βb(t), ∀ t ∈ [0, b].

Proof. Suppose, on the contrary that there is some t0 ∈ [0, b] such that xb(t0) −

αb(t0) = mint(x− αb)(t) < 0. We have:

(a) t0 6= 0 since (x− αb)(0) = x0 − αb(0) ≥ 0.

(b) t0 6= b since (x − αb)
′(b) = −α′

b(b) > 0 and if (x− αb) achieves its minimum at

t0 = b, then (x− αb)
′(b) ≤ 0, which is a contradiction.

(c) So t0 ∈ (0, b). By definition of a C0− lower-solution, there exists an open interval

It0 with t0 ∈ It0 ⊂ (0, b) and a function αt0 ∈ C2(It0) such that αt0(t0) = αb(t0),

αt0(s) ≤ αb(s) and α′′
t0
(s) − a(s)αt0(s) + f(s, αt0(s), α

′
t0
(s)) ≥ 0, on It0 . As a

consequence, we have the estimates:

(x′′ − α′′
t0
)(t0) = a(t0)x(t0) − λf̃(t0, x(t0), x

′(t0)) − α′′
t0
(t0)

≤ a(t0)x(t0) − λf̃(t0, x(t0), x
′(t0)) − a(t0)αt0(t0) + f(t0, αt0(t0), α

′
t0
(t0))

= a(t0)(x− αb)(t0) − λf̃(t0, x(t0), x
′(t0)) + f(t0, αb(t0), α

′
b(t0))

= a(t0)(x− αb)(t0) + (1 − λ)f(t0, αb(t0), α
′
b(t0))] < 0,
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where the last inequality follows from the first inequality in (2.2). Since the

function x− αt0 achieves its minimum at t0, we deduce that

(x′′ − α′′
t0
)(t0) ≥ 0,

leading to a contradiction. Similarly, we can prove that x(t) ≤ βb(t), for all

t ∈ [0, b].

Proposition 2.5. Under Assumptions (H1)–(H3), all possible solutions of Prob-

lem (2.5) satisfy the estimate

‖x′‖ ≤ K1,

where K1 is as defined by (2.4).

Proof. Let x be a solution of Problem (2.5). Suppose, on the contrary, that there

exists τ ∈ (0, b) such that |x′(τ)| ≥ K1. Then, there exist t0, t1 (t0 < t1) such that

either one of the following situations holds:




x′(t0) = 0, x′(t1) = K1, and 0 < x′(t) < K1, for t ∈ (t0, t1);

x′(t0) = K1, x
′(t1) = 0, and 0 < x′(t) < K1, for t ∈ (t0, t1);

x′(t0) = 0, x′(t1) = −K1, and −K1 < x′(t) < 0, for t ∈ (t0, t1);

x′(t0) = −K1, x
′(t1) = 0, and −K1 < x′(t) < 0, for t ∈ (t0, t1).

For simplicity, we only study the first case. By Proposition 2.4, we have since x′(t) > 0

on (t0, t1),

|x′′(t)| − a(t)|x(t)| ≤ |x′′(t) − a(t)x(t)|

= λ|f̃(t, x(t), x′(t))|

= λ|f(t, x(t), x′(t))|

≤ ψ(x′(t))(q(t) + cx′(t)).

Since ψ(s) ≥ 1, for all s ∈ I, we infer that

|x′′(t)| ≤ ψ(x′(t))(q(t) + cx′(t)) + a(t)|x(t)|

≤ ψ(x′(t))(q(t) + cx′(t) + a(t)|x(t)|)

and so
x′′(t)

ψ(x′(t))
≤ q(t) + cx′(t) + a(t)|x(t)|.

Integrating from t0 to t1 yields
∫ K1

0

ds

ψ(s)
=

∫ t1

t0

x′′(t)

ψ(x′(t))
dt

≤

∫ t1

t0

[q(t) + cx′(t) + a(t) max{|α(t)|, |β(t)|}]dt ≤ Q+ 2cK0 + A,

which is a contradiction to the definition of K1 in (2.4).
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3. THE PROBLEM ON THE HALF LINE

3.1. Existence result. Our main existence result in this paper is

Theorem 3.1. Let Assumptions (H0)–(H3) hold. Then Problem (1.1) has at least

one solution x such that, for each b > 0,

αb(t) ≤ x(t) ≤ βb(t), ∀ t ∈ [0, b].

Moreover, if f is bounded, then x has the representation:

x(t) = p0(t) +

∫ ∞

0

G(t, s)f(s, x(s), x′(s))ds.

Proof. Let b > 0. We first use the Leray-Schauder topological degree to prove ex-

istence of solution on the bounded interval [0, b). Then a diagonalization process is

employed to ensure the solution can be extended to [0,∞).

Step 1. Problem (2.1) has at least one solution in C1[0, b].

Define the linear operator L : D(L) −→ C0[0, b] by Lx(t) = x′′(t) − a(t)x(t)

with D(L) = {x ∈ C2[0, b] : x(0) = x0, x
′(b) = 0} and the Nemytskii operator

N : C1[0, b] −→ C0[0, b] by Nx(t) = f̃(t, x(t), x′(t)). Notice that solving Problem

(2.5) is equivalent to proving existence of a fixed point for the abstract nonlinear

operator Hλ := λL−1N , for λ = 1, where the map

Hλ : C1[0, b] −→ C1[0, b]

is defined by

(3.1) (Hλx)(t) = λpb(t) + λ

∫ b

0

G(b; t, s)f̃(s, x(s), x′(s))ds.

Set

Ω = {x ∈ C1[0, b] : ‖x‖1 < K}

with K := K0 +K1 + 1 and

‖x‖1 = max

(
sup

0≤t≤b
|x(t)|, sup

0≤t≤b
|x′(t)|

)
.

It is clear that Hλ is compact (see e.g., [6, 17]). By Propositions 2.4 and 2.5 and the

definition of Ω, Hλ has no fixed point on ∂Ω for all λ ∈ [0, 1]. Since H0 = 0, it follows

that 1 = deg(I − H0,Ω, 0) = deg(I − H1,Ω, 0). As a consequence, H1 := L−1N

has a fixed point in Ω, i.e. Problem (2.5) has at least one solution xb ∈ C1[0, b]

for λ = 1. By Propositions 2.4 and 2.5 and the definition of f̃ , we obtain that

f(t, xb(t), x
′
b(t)) = f̃(t, xb(t), x

′
b(t)) and then xb is a solution of Problem (2.1).

Step 2. Problem (1.1) has at least one solution in C1[0,∞).
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We will use a diagonalization argument. Let xb be a solution of Problem (2.1).

Define

ub(t) =

{
xb(t), 0 ≤ t ≤ b,

xb(b), t > b.

Notice first that K is independent of b, so the family {ub, for b ∈ (0,∞)} is uniformly

bounded in C1[0,∞). In addition, for any t0, t1 ∈ (0,∞) (t0 < t1), we have

u′b(t0) − u′b(t1) =

∫ t1

t0

u′′b (s)ds

≤

∫ t1

t0

[a(s)ub(s) + ψ(|u′b(s)|)(q(t) + c|u′b(s)|)]ds(3.2)

≤

∫ t1

t0

a(s) max{|α(s)|, |β(s)|}ds+K2

∫ t1

t0

q(s)ds

+ cK1K2(t1 − t0),

where K2 := sup
0≤s≤K1

ψ(s). Let {bi} be an increasing sequence of real numbers such

that lim
i→∞

bi = +∞. The family {ubi}i∈N is uniformly bounded in C1[0, b1], so it is

relatively compact in C0[0, b1]. Moreover, it is equicontinuous from (3.2), (H3) and

the fact that q is integrable. This implies that {u′bi} is relatively compact in C0[0, b1].

The Arzéla-Ascoli lemma guarantees the existence of a subsequence ∆1 ⊂ N
∗ and a

function ω1 ∈ C1[0, b1] such that the sequence {ujbi}, for i ∈ ∆1, converges uniformly

to ωj1 on [0, b1], for j = 0, 1.

Consider now the family {ubi}, i ∈ ∆1\{1} defined on the interval [0, b2]. By the

same argument, there exists a subsequence ∆2 ⊂ ∆1\{1} and a function ω2 ∈ C1[0, b2]

such that the sequence {ujbi}, i ∈ ∆2 converges uniformly to ωj2 on [0, b2], for j = 0, 1.

By induction, we obtain, for any integer k, the existence of ∆k ⊂ ∆k−1\{k − 1}

and a function ωk ∈ C1[0, bk] such that {ujbi}, i ∈ ∆k converges uniformly to ωjk on

[0, bk], for j = 0, 1. Note that ωk = ωk−1 on [0, bk−1]. Finally, define the function

x(t) =
⋃

k∈N

ωk(t).

Then x is a solution of Problem (1.1) since x(0) = ω1(0) = x0, ‖x‖ < K. Moreover,

for any fixed t ∈ (0,∞), we can choose bi > t. Then

x′′(t) = ω′′
bi
(t) = f(t, ωbi(t), ω

′
bi
(t)) = f(t, x(t), x′(t)),

which completes the proof of the theorem.

Remark 3.2. (a) By Lemmas 2.2 and 2.3 together with (3.1), any solution of Prob-

lem (2.5) satisfies the estimate

|xb(t)| ≤ |pb(t)| +N/a0,
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where N = max f̃(t, x, y) for t ∈ [0, b] and x, y ∈ R
2.

(b) Assume that for each M > 0, there exists a function fM : R
+ → R

+ continuous,

bounded such that |f(t, x, y)| ≤ fM(t), for t ≥ 0, |x| + |y| ≤ M . Then any solution

of Problem (1.1) satisfies

|x(t)| ≤ |x0| + FM/a0, ∀ t ≥ 0

where FM = sup
t≥0

fM(t).

3.2. Uniqueness result. The following result complements Theorem 3.1.

Theorem 3.3. Assume that f = f(t, x, y) is continuously differentiable in x, y for

each t ≥ 0. Assume that Assumptions (H0)–(H3) hold together with

(H4) f(t, x, y) is nonincreasing in x for each t and y fixed,

and f(t, x, y) nonincreasing in y for each t and x fixed.

Then Problem (1.1) has a unique solution x such that, for each b ∈ (0,∞),

αb(t) ≤ x(t) ≤ βb(t), ∀ t ∈ [0, b].

Proof. Suppose that there exist two distinct solutions x1, x2 to Problem (1.1) and let

z = x1 − x2. By the Mean Value Theorem, there exist θ, ϕ such that

f(t, x2, x
′
2) = f(t, x1, x

′
1) − z

∂f

∂y
(t, θ, ϕ) − z′

∂f

∂z
(t, θ, ϕ).

Assume that z(t1) > 0 for some t1 and that z has a positive maximum at some

t0 <∞. Then

0 ≥ z′′(t0) = a(t0)z(t0) + f(t0, x2(t0), x
′
2(t0)) − f(t0, x1(t0), x

′
1(t0))

= (a(t0) −
∂f

∂y
(t0, θ, ϕ))z(t0) −

∂f

∂z
(t0, θ, ϕ)z′(t0)

= (a(t0) −
∂f

∂y
(t0, θ, ϕ))z(t0) > 0,

leading to a contradiction. Hence sup z(t) = limt→∞ z(t). Let

T = sup{t ≥ 0, z(t) ≤ 0} <∞.

Then z satisfies
{

−z′′(t) + a(t)z(t) = f(t, x1(t), x
′
1(t)) + f(t, x2(t), x

′
2(t)) t > T,

z(T ) = 0, z bounded on (0,∞).

We claim that z′(t) is positive, increasing on [T,+∞). On the contrary, assume that

there exists some T1 > T such that z′′(T1) = 0. Let T1 = inf{t ≥ 0, z′′(t) = 0}; then



554 S. DJEBALI AND S. ZAHAR

z′(t) > 0 on [T, T1]. Since z(T ) = 0, it follows that z(t) > 0 on [T, T1]. Thus, for

t = T1, we have that

0 = z′′(T1) =

(
a(T1) −

∂f

∂y
(T1, θ, ϕ)

)
z(T1) −

∂f

∂z
(T1, θ, ϕ)z′(T1) > 0,

leading to a contradiction. Hence for t ∈ (T,+∞)

z(t) ≥ z(T ) + z′(T )(t− T ).

This is a contradiction to the boundedness of z, which completes the proof of the

theorem.

4. EXAMPLES

4.1. Example 1. Consider the problem

(4.1)

{
−x′′(t) + a(t)x(t) = x(t) − x′(t), t > 0,

x(0) = 1, x bounded on [0,∞),

where

a(t) =

{
t+ 1, t ≥ 2

3, 0 ≤ t ≤ 2.

Then a(t) ≥ a0 = 3 and the functions α(t) = −e−t, β(t) = e−t are lower and upper

solutions respectively. Then Assumptions (H0)–(H3) are satisfied. As a consequence,

Problem (4.1) has at least one solution x such that

−e−t 6 x(t) 6 e−t, ∀ t ≥ 0.

In particular, we know the limit lim
t→+∞

x(t) = 0.

4.2. Example 2. Consider the problem

(4.2)

{
−x′′(t) + a(t)x(t) = q(t)(−x′)σ(t), t > 0,

x(0) = x0, x bounded on [0,∞),

where 0 < σ = 1
2p+1

< 1, a(t) := k1
(t+ 1

2
)n

(1+t)n , and

q(t) := −
m(m+ 1)k2

(mk2)σ
(1 + t)−m−2+mσ+σ +

k1k2

(mk2)σ

(
t+

1

2

)n

(1 + t)−m−n+mσ+σ

for some positive constants k1, k2 and some positive integers m,n, p satisfying




m > 1+σ
1−σ

k1 > m(m+ 1)2n

k2 > x0 > 0.

Then it is clear that f(t, x, y) = q(t)(−y)σ satisfies a Nagumo condition in the argu-

ment y since

f(t, x, y) ≤ q(t)(1 + |y|)σ.
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We take c = 0 and ψ(s) = (1 + s)σ noting that q is integrable on (0,+∞) since

m > 1+σ
1−σ

. Moreover β(t) = k2
(1+t)m is a positive upper-solution while α(t) = 0 is a

lower-solution, hence α ≤ β. Finally, using the fact that
(
t+ 1

2

)n
(1 + t)−n ≥ 2−n, we

obtain that

f(t, α(t), α′(t)) ≤ 0 ≤ f(t, β(t), β ′(t)), ∀ t > 0

as well as

A := k1k2

∫
(t+ 1

2
)n

(1 + t)n+m
dt <∞.

Therefore all Assumptions (H0) − (H3) are met and Problem (4.2) has at least

one solution x such that

0 6 x(t) 6
k2

(1 + t)m
, ∀ t ≥ 0.
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