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ABSTRACT. Implicit difference schemes for quasilinear parabolic functional differential equations
are presented. Ben- efits of implicit methods are pointed. The attention is focused here on cylindrical
domains. Operators approximating mixed derivatives on irregular grids are introduced. A complete
convergence analysis for methods is presented. Nonlinear estimates of the Perron type for given
functions with respect to functional variables are used. Results obtained in the paper can be applied
to differential integral problems and to equations with deviated variables. Numerical examples

display the results of our investigations.
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1. INTRODUCTION

Parabolic functional differential equations have the following property: difference
schemes for suitable initial boundary value problems are obtained by replacing par-
tial derivatives with difference expressions. Moreover, because differential equations
contain functional variables, some interpolating operators are needed. Then we ob-
tain difference functional initial boundary value problems which satisfy consistency
conditions on classical solutions of original problems. Methods of difference inequali-
ties and simple theorems on recurrent inequalities are used in the investigation of the

stability of nonlinear difference functional equations generated by parabolic problems.

The papers [7]-[9] initiated investigations of implicit difference schemes for non-
linear parabolic equations. Classical solutions of initial boundary value problems of
the Dirichlet type for nonlinear equations without mixed derivatives are approximated
in [7], [8] by solutions of difference schemes which are implicit with respect to the time
variable. The paper [9] deals with initial boundary value problems of the Neumann

type for nonlinear equation with mixed derivatives.

Semilinear parabolic equations with initial boundary conditions of the Dirichlet

type were considered in [18]. It is shown that there are implicit difference schemes
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which are convergent. Classical solutions of quasilinear parabolic differential func-
tional equations and implicit difference methods on rectangular domains are investi-
gated in [3].

High order implicit difference methods for parabolic differential equations without
mixed derivatives are considered in [11]-[13]. In all those papers authors consider
rectangular domains with regular cubic or square space grids (space variable are
two- or three- dimensional). Rectangular domain with non-uniform space grids is

considered in one-dimensional case in [10].

Implicit difference functional inequalities generated by nonlinear parabolic differ-

ential functional equations were investigated in [6].

Various monotone iterative methods and finite difference schemes for computing
of numerical solutions of reaction diffusion equations with time delay were presented

in [14]-[16]. The present paper is motivated by those articles.

That following system of parabolic equations with time delays was investigated
in [15]. Let us suppose that Q2 € R™ is a bounded domain with the boundary 0f2
which is of class C*. The paper concerns the system of nonlinear parabolic equations

with time delay:
ou® — LOyD = fOt z wu,), z€Q, te(0,T], i=1,...,N
and with the initial boundary condition
By = gDt 2), zedQ, te(0,7]), i=1,...,N,

u(t,x) =9 O(t,x), r€Q -1 <t<0, te(0,T), i=1,...,N

where u = (uV(t,2),...,.u™M(t,2)), u, = WV (t — 7, 2),...,u™N(t — 7y,2)). The
operators L and B® are given by

L9y =v . (DOVuD) + v . vuld,  i=1,... N,

By = oD@ 4 g0y G =1, N.

In the above problem the constants (74, ..., 7y) represent time delays in vector func-
tion u, and are positive, v denotes the outward normal vector on 0f2. It is also
assumed that coefficients D@ = DO (¢, z) and v = (i’ ... o), where v\ =
e (t,x) are continuous on [0,7] x Q and D@ is strictly positive on its domain for
every T > 0. Coefficients o) = (¢, 2) and %) = 3% (¢, x) are continuous and such
that oY 4+ 3@ > 0 on [0, 7] x 0. Functions f@, ¢@ and 4@ are known.
Discretizing that system by the finite implicit (with respect to the time variable)
difference method author obtains coupled systems of nonlinear algebraic equations.
Obtained system is analyzed by a method of lower and upper solutions and associated

monotone iterations. Author presents three monotone iterative schemes and shows
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that each one of these iterative schemes converges monotonically to a unique solution

of the finite difference system.

Our aim is to extend that result. We will consider more general differential
equation in which mixed derivatives appear and in which all coefficients depend on
functional variable. In particular we will introduce difference operators approximating
mixed derivatives on irregular grids. Moreover we will propose such implicit difference
scheme, that leads us to linear system of equations which are easily solvable and no
iterative schemes are required. Assumptions on the quasi monotonicity (or mixed
quasi monotonicity) are needed in [14]-[16] for the construction of monotone iterative
processes for finite difference systems. In our implicit difference schemes we omit
the above requirements on the quasi monotonicity. We consider a general class of
quasilinear functional differential systems. It is also important in our considerations
that the Lipschitz condition for given functions is replaced by nonlinear estimates of

the Perron type.

In that article, for reader’s convenience, we will consider one equation instead of
system of N equations, however it will be easily visible that our result is also valid

for system of equations.

We formulate our functional differential problem. For any two metric spaces
X and Y we denote by C(X,Y) the class of all continuous functions defined on X
and taking values in Y. Let M|[n] denote the set of all n x n real and symmetric
matrices. We will use vectorial inequalities, understanding that the same inequalities
hold between their corresponding components. Let () C R™ be a bounded, open and

convex domain with the boundary 0Q and closure Q). Write
E=00,a] xQ, Ey=[-a,0xQ, E=10,a]x09Q
where a > 0, agp € R, Ry = [0, +00). Write ¥ = F x C(EyU E,R) and suppose that
fiX = Mn], f=[filij=tm 9: =R g=(g1,-...9n),

G:X—>R, p: EUOFE — R,
are given functions. We consider the functional differential equation
(L1 dt,z) =Y filt,2,2)0002(t2) + Y gilt, 2,2)0p,2(t,7) + G(t, 2, 2),
ij=1 i=1
with initial boundary condition
(1.2) 2(t,x) = p(t,x) for (t,z) € EgUOE.
For t € [0,a], we write By = [—ag,t] x Q. The function f is said to satisfy

the Volterra condition if for each (t,z) € E and z,z € C(Ey U E,R) such that
z2(1,y) = zZ(1,y) for (1,y) € E; there is f(t,x,z) = f(t,x,2). Note that the Volterra
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condition means that the value of f at a point (¢,z,z) in the space ¥ depends on

(t,z) and on the restriction of z to the set F; only.

In a similar way, we define the Volterra condition for functions g ang G. We
assume that f, g and G satisfy the Volterra condition and we consider classical
solutions of (1.1), (1.2).

We are interested in establishing a method of numerical approximation of classical
solutions of problem (1.1), (1.2) by means of solutions of associated difference func-
tional equations and in estimating of the difference between exact and approximate

solutions. We consider implicit difference schemes for (1.1), (1.2).

It is clear that the results presented in [3], [6]-[9], [18], are not applicable to
problems (1.1), (1.2).

In this paper we analyze differential system with initial boundary condition od
Dirichlet type, however we are convinced that our results can be also extended in the

case of mixed initial boundary conditions.

The paper is organized as follows. In Section 2 we construct a class of implicit
difference schemes for (1.1), (1.2). The existence and uniqueness of approximate so-
lutions, which are not so obvious as in the case of the explicit methods, are proved in
Section 3. In Section 4, which is the main part of the paper, we give sufficient condi-
tions for the convergence of implicit difference schemes. Finally, numerical examples

are presented in the last part of the paper.

For the bibliography on the existence of solutions of parabolic functional differ-

ential problems and applications see the papers [2], [17] and the monograph [19].

We give examples of differential functional equation which can be derived from

(1.1) by specializing the function f, g and G.

Example 1.1. Assume that f: E x R — M|n], f = {fij}m:l,.__,n, g: ExR—R",
G="(1,---,0n), G : EXR — Rand ¢ = (¢o,91,...,%,) : E — R are given
functions and ¥y (t,z) <t, ¥(t,x) € Ey U E for (t,x) € E. Write

f(t,a:,w) = f(t,x,w(w(t,:c))), g(tvwi) = g(taxaw(i/}(ﬂﬂ?))),

G(t,z,w) =G(t,x,w(Y(t, x))).

Then (1.1) reduces to the equation with deviated variables

Ozt x) = Y fis(t, 2, 2(4(t, 2)))0r,, 2(t, @)

ij=1

+ Zgi(t, x, 2(Y(t, )0y, 2(t, x) + G(t, x, 2(Y(t, x))).
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Example 1.2. For the above f, § and G and given set E; . C [—ao,t] x Q we put

fit.aw) = fto, [

Et,a:

G(t,z,w) =G <t,x,/ z(T, s)d7’ds> )
Et,z

Then (1.1) is the integral differential system

Opz(t,x) = Z fij <t,:c,/ z(7‘,5)d7‘d3> Or,a,;%(t, 1)
Et,ac

4,j=1

+ Zgi (t,x,/E (T, s)des) Oy, 2(t, ) + G (t,x,/E Z(T,S)deS) .
i=1 ta t

It is clear that more complicated equations with deviated variables and differential

z(7,8)drds), ¢g(t,z,w) =g (t,m,/ z(, S)deS) ,
Et,z

integral equations can be obtained from (1.1) by suitable definitions f, g and G.

2. DISCRETIZATION OF MIXED PROBLEMS

We will denote by F(X,Y) the class of all functions defined on X and taking
values in Y, where X and Y are arbitrary sets. We will denote by N and Z the set of

natural numbers and the set of integers, respectively. For x,y € R", U € M|[n] where

r=(21,..., %), Y= (Y1, .-, Yn), U = [wijli,j=1,..n We write
el =D lal, Ul =) fuyl.
i=1 ij=1
We define a mesh on @ in the following way. Suppose that h = (hy, ..., hy), h; > 0 for
1 <i < n, stand for steps of the mesh for spatial variables. For m = (my,...,m,) €
Z" we write 2™ = (myhy, ..., myh,) and (see Fig. 1)

Ry ={z™: mecZ", Qn=QnNRY, Q,=QNRY,

Let hg stand for steps of the mesh for the time variable and put »’ = (hg,h). For

r € 7 we write t() = rhg and
I, ={t":0<r <N}, Iyp, ={t":—N, <r <0},

where N and Ny are such constants that Nhy < a < (N + 1)hg and Nohg = ag. Set
e; =(0,...,0,1,0,...,0) € R™ with 1 standing on the i — th place and i = 1,... n.
Write J = {(3,7) : 4,5 =1,...,n,i # j}. For 2™ € R} we put

Aﬁm) = {zmte) i =1, n}u{zme) i=1,... n},
AYY = almtete) (4 5y € JY U {ammeme) s (4, 5) € JYu {atmmete) s (4, 5) € J}
and A™ = A U AU The following introduced sets are illustrated at Fig. 2
Int Qy = {z™ € Qy: A™ C Qp}, 0Qn=Qn\Int Q.
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We will approximate partial derivatives 0, = (0, - - ., Or,) and O = [Op;a;)ij=1,..n

with difference operators § = (d1,...,d,) and 6 = [0i)ij=1...n. We will calculate
the difference expressions §z(t, (™) and 6 z(¢(") | (™)) for each point (¢, 2(™)
I, % Qp. Then we need additional mesh points on the set Q. For 2™ € @, we

define illustrated at Fig. 3 coefficients

Q(m) =max{r € (0,1] : 2™ + 7hie; € Q}, i=1,...,n,
92(1”) = max{r € (0,1] : 2" — 7he; € Q}, i=1,...,n,
QZ(T]_ = max{7 € (0,1] : ™ 4 Thie; — Thye; € Q},  (i,7) € J,
Gz(mH = max{r € (0,1] : ™ — Thie; + Thye; € Q},  (i,j) € J,
QZ(TJL- = max{7 € (0,1] : 2" + Thie; + Thie; € QY,  (i,5) € J,
Gﬁ?f = max{r € (0,1] : ™ — Thie; — Thje; € Q}, (i,5) € J.

For simplicity of notation we write 0, , 6;_, 0;,;_, 0; ;. , 0;_;,, 0;_;_ instead of

o™ gt gt gtm) gm) gm) P following sets are illustrated at Fig. 4

i 0 Vi 0 Yy Yig gy Vi gy i g

D {z €0Q : there are z™ € Q, and i € {1,...,n}

such that z = z(™ —|—01+helora:—:c —0;_hie;},
5(2) {z €0Q : there are 2™ € Q), and (4, j) € J such that x = 2™ +6; ;. (heit+hje;)

or x =™ —0; ; (hie; +hje;)) or @ = 2™ + 60, ; (hie; — hje;)
and S, = S,(Ll) U S}(LQ). Write X, = Q, U Sy, and

Ep = Iny X Xp, Eop = Iong X Xn, OoEw = Iy X Spy, Erp = Eyn N (Egp U Epy).
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Coefficients 61, 05, and 01,5, o€ S}(Ll), °c S,(f)

For z : Egw U Ep — R, p, & € [—1,1] and for 2™ € Q) we put z(mmtretée) —
Z(t(r),x(m"’_uei'i'gej))? (i,7) € J.

We formulate now a difference initial boundary value problem corresponding to
(1.1), (1.2). We first observe that solutions of difference equation are defined on
the set Eyp U Ep and equation (1.1) contains the functional variable z which is
an element of the space C(Fy U E,R). Then we need an interpolating operator
Ty : F(Eogp U Ep,R) — C(Ey U E,R). In the next part of the paper we formulate

additional assumptions on T},. Let us denote by
S0, 5= (Byeenrdn), 6P =[Sl
difference operators corresponding to the partial derivatives
Oty Op = (Onyy -5 00,)s  Ona = [Onya;)ij=1,. .-

Write

Fy [Z](T’m) = Z fij(t(r)a 37(m)7Th' [Z])(Sijz(rﬂ’m)

ij=1

+ ) gt 2 Ty [2])8:20 T 4 G, 2 Ty [2]).
=1

We approximate classical solutions of (1.1), (1.2) with solutions of the implicit
difference equation
(2.1) 8oz = F[2]™,

with initial boundary condition

(22) Z(T’m) = SO](Z/,’m) on EO.h’ U 8()Eh/
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where ¢y Eop UJgEp — R is a given function. It is important that the numbers
82T 5,2k bm) e < j <, appear in (2.1). Set

1
h_o(z(r+1,m) i Z(r,m)>.

Suppose that z : EgUER — Ris asolution of (2.1), (2.2) on set E,. ;. We will calcu-
late the numbers z(t*+Y | z) for # € @}, in the following way. Let J,(fof) (2], J,(LffT) (2] € J
be defined by

Fozrm) =

T = {(i,5) € T+ fii(#D, 2™ Tu[2]) > 0}, JG™ =) = J\ SO,

The definitions of the difference operators 9, §(? falls naturally into two parts. In the

first part we assume that (t7+) 2(™) € I, x Int Q. In the second case we define
§2r+bm) and 6@ for (U x(™) € I, x oQp.

L. For (tT+Y 2y e [, x Int @), we put

L 1
5 2(rHtm) = - (2(7’+1,m+6i) - z(T—‘rl,m)) 67 2 (rHm) = W (2(r+1,m) _ Z(T—f—l,m—ei)) 7
and
(23) 5iz(r+l,m) — % (5?Z(r+1,m) + 5;Z(r+1’m)) ,
(2.4) 52T = g g H(rtm)

where 1 < i < n. The difference expressions 5ijz(’"+1’m) are defined in the

following way:

(2.5) 6;; 2™ = (5j5jz<r+w+5;5j-z<r+1vm)) for (i, j)eJ}(ijT)[z],

1

2
r+1,m 1 — _(r+1m - r+1,m .. r,m

(2.6) 8;; 2T M) = 5 (5i+5j LrHlm 4§ 5;-%( +1, )) for (i,7) € J,(l,v_)[z].

II. We define difference operators §, 8 for (t"+Y, 2(™) € I, x 9,Qy,. Write

(27) 5iz(r+1,m) _ i (Z(r+1,m+0i+hi)i + Z(r—‘rl,m)M . (r+1,m0i_hi)i) :

2h; ;. 6.6, 6
(2.8)
5iiz(r+l,m)
2 1 1 1
_ (r+1,m+0;_ h;) (r+1,m) (r4+1,m—0;_h;)
==z Y — z — +z —_— ],
hzz < 0;. (9i+ +6; ) 0;.0;_ 91»7(01'+ + 01))

where 1 <i <n. If (i,j) € J}(;_’T) [2] then:
(2.9) 5ijZ(T+1,m) — A(fl)z(rﬂ,m) _|_FJ(rm)Z(rH,m—eLL(hi+hj))
+ Gim)z(r+17m+9i+j+ (hi+h;)) + Bim)z(rJrl’m_eLhi)
+ CJ(rm)z(r+l,m+9i+hz‘) + Dgrm)z(rJrl,mij_hj) + EJ(rm)Z(r+1,m+9j+hj)
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where
ASFM) - hilhj (914191_ " ei_jj;iuﬁr ! 0j+19j‘> |
Bl = hih;0;_ (_93 +0;,) o = hih;0; (_921+ +6i)
m —1 " -
D = hih;0;_(0;_ +0;.) B = hih;0;. (05, +0;)
m 1 " !
F = hihib;_; (0;_j_ +0i.j,) G = hihifi, . (6] +0i5,)

If (i,4) € J}(;.’T) [z] then:

(2.10)

5ijz(r+1,m) _ A(_m)Z(TJrl,m) + Fﬁm)Z(T+1’m+0i+j* (hi—hj))
+ Ggm)z(r+l,m+9i_j+ (7hi+hj)) + Bgm)z(r+1,m79¢_ hi) + Cﬁm)z(T+1,m+9i+ hi)

n D(_m)z(r-l-l,m—G;:n)hj) n E(_m)z(r-l-l,m-i-e;T)hj)’

where
A = hilhj (Qz:glz * 9ij+19i+j i Qj:;j) ,
B(_m) - hih;0;_ («911 + ‘9i+>7 C(_m) N hih;b;, (Qlu +0;)
D = hih;0;_(0;_ +0;,) B = hih;0;, (05, +0;_)
m —1 " !
P = hihibi g (0i_j. +0;.5.) G = hihili g, (0i 5, +0i5)

Definitions (2.3)—(2.6) and (2.7)—(2.10) have the following properties:

(i) if we put 6, = 60;, = 1 in (2.7) and (2.8) then we obtain (2.3) and (2.4)
respectively,
(i) if we put 0, =0;, =6, ;, =0;,; =1in (2.9) then we obtain (2.5),

(iii) if we put 6;_ =6, =6, ;_ =0;,;, =1in (2.10) then we obtain (2.6)

+

It follows from the above observation that it is sufficient to use only formulas (2.7)—

(2.10) in next considerations.

Remark 2.1. It follows from (2.5), (2.6) and (2.9), (2.10) that the method of dis-
cretization of the mixed derivatives 0,2, (4,7) € J, at the point (tr+D 2 de-
pends on the sign of the number f;;(t"), (™ Tj,[z]). There are the following conse-

quences of our approach. Consider the nonlinear functional differential equation

(2.11) Ozt x) = F(t,x, 2,0,2(t, 1), Oppz(t, x))
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with the initial boundary condition (1.2) where F': ¥ x R® x M[n] — R is a given
function of the variables (t,z,z,7r,q), r = (r1,...,7), ¢ = [¢ijlij=1,..n. In theorems

77777

concerning difference methods for (2.11), (1.2) it is assumed that the functions
sign 8%.]5(75@,2,7", q), (i,7) € J,

are constant on X x R"™ x M[n], see [5], [7]-[9]. It is important in our considerations

that we have omitted the above assumptions for equation (1.1).

Difference functional problem (2.1), (2.2) is considered as an implicit numerical

method to problem (1.1), (1.2). The corresponding explicit difference scheme has the

form
(2.12) doz(t, ) Z Fiy 0 20 T [2]) 6,2

i,j=1

+Zgz ), 20, Ty [2)6i20™ + G, 20, Ty [2]),
(2.13) 2 — ™) for on Egp U 9yEp .

It is clear that there exists exactly one solution uy : Fyp U Ep — R of problem
(2.12), (2.13). We prove that under natural assumptions on given functions and
on the mesh there exists exactly one solution wuy : Fyp U Ep — R of the implicit
difference scheme (2.1), (2.2). Solutions of (2.1), (2.2) are considered as approximate
solutions of (1.1), (1.2). We give sufficient conditions for the convergence of sequences

of approximate solutions to a classical solution of (1.1), (1.2).

3. SOLVABILITY OF IMPLICIT DIFFERENCE FUNCTIONAL
PROBLEMS

For (t(r), I(m), Z) € Xy = Ey XIF(Eo_h/UEh/, R) write P [Z] = (t(r)7 l‘(m), Ty [Z])
Assumption H[f, g]. Suppose that the functions f : ¥ — M|n] and g : ¥ — R"™ are

such that the following condition is satisfied for ("), 2™, 2) € ¥y
(3.1)

(P[] |+h2fu (Pl Zhh |[fis (P[] 20, i=1,....n,
J#Z

Remark 3.1. Suppose that the functions f : ¥ — M|[n] and g : ¥ — R™ are bounded

on ¥ and that the following condition is satisfied
fu(PU™[2]) — Z ‘fij(P(r’m)[zm >e,e>0,on%y, i=1,...,n.

j=1
i
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If hy = hg = ... = h,, then there exists such gy > 0 that for ||| < ¢ condition (3.1)

is satisfied.

We prove a maximum principle for implicit parabolic difference functional in-

equalities. The difference functional equation

(3.2) 20— Z fig( P(Tm ])(5”2 (rhm) 4 g Zgz perm [Z])(SiZ(TJrl’m)
i=1

i,7=1

is a principal part of (2.1), (2.2). The maximum principle asserts that a solution
of difference functional inequalities corresponding to (3.2) cannot have a positive

maximum (or negative minimum) on the set {t"*V} x Q.

Theorem 3.2. Suppose that Assumption H[f, g/ is satisfied and 0 < r < N — 1 is

fixed. If zp : B, 11 — R satisfies the implicit difference inequality

33) A < he S PO g + by Zgz w])aiz

i,j=1

for (10D )y € [10TDY 5 Qy, and x € X, is such that
2 (10 2) = max {2, (" y), y € X}

and zp (1) 1) > 0 then x € S),.

Proof. Write

n

-2 0. —0.
(r,m) , ,P(r,m) , iy i
|:fn Zh])@ 92+h12 +gz( [zh])—291+62 hz‘|
=1
1 1 1 1
£ S (P ) - - ]
z%J ’ 0,0 0 j 0. 050, | hihy
1 2
B('F m) : P(r,m) , 4 ; P(T,m) ,
() = 9 [Zh])%wh. 9i+(9¢++0¢,)h?f ( [zn])
2
_ rm) ,
Z‘fz] Zh ‘ hihj9i+((9i+—i—9i_)
j?'fi
1 2
B(T,m) S— P(r,m) , ; /
() = 9l [zh])%;h, ST 5 i (PU™ [24])
2

vl hih,0;_(6;_ +6;.)
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Let us suppose that ("1, z) € {tU*V} x Q). We conclude from (3.3) that

2 (0T 2) < hozp (0D 2 {BW + Z B + Z B

[ 1 1 1 1

+ hy fi'(P(r’m) [Zh/]) +
(.j)€§m>[ | ’ 10y (0 +0i5.)  Oij (0 +0i5,)] hihy
i, i z

[ -1 —1 1 1
£ ho Fy (P 2] ¥ }
(Z. j)€§m> ” ’ 10iyj (Oiyy +0i5,) 00, (0i; +0; ;)] hily

what contradicts our assumption that z(¢"*V, ) > 0. This proves the theorem. [

Remark 3.3. Suppose that Assumption H|[f,g] is satisfied. Then Theorem 3.2 as-
serts that solutions of the implicit difference inequality (3.3) cannot have a positive
maximum on FEj. It is clear that solutions of inverse implicit difference inequalities

cannot have a negative minimum on Fj,.

Lemma 3.4. Suppose that f : ¥ — M[n], g : X - R", G: X = R, pp : Egp U
O Ew — R and Assumption H[f, g] is satisfied. Then there is exactly one solution
up : Egp U Epy — R of problem (2.1), (2.2).

Proof. Suppose that 0 < r < Ny — 1 is fixed and that u, is a solution of problem
(2.1), (2.2) on E, . Consider the difference problem

(3.4) Sz ™ = Z Fi (80, 20 T [ ]) 85520

i,7=1

+ Zgz , Th/ [U}u])é Zp (r+1,m) + G( m) Th/ [uh/])
(35) Z}(Z; m = gO;Z:’m) on EO.h’ U ath/.

It follows from Theorem 3.2 that the problem consisting of difference equation (3.2)
with P [u;,] instead of P"™)[z] and boundary condition

ZrHm) — 0 for (10D M)y € S,

has exactly one solution z,(lfﬂ ™ = 0 on {t+1)} x Q. Then there is exactly one
solution ug,ﬂ ™ on {t0+DY} x Qy,, of (3.4), (3.5) and wyy is defined on E, ;. Since uy
is given by (2.1) on Ey ) then we obtain the Lemma by induction with respect to r,

OS?”SN(). ]

:O,
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4. CONVERGENCE OF IMPLICIT DIFFERENCE METHODS

Let us introduce seminorms || - || and || - ||, for functions z : Ey U £ — R and

zp + Eop U E — R respectively in the following way:
|z||: = max{|z(7,2)| : (1,z) € Ex}, 0<t<q,
|zp || py = max{|z(7,z)| : (1,2) € B}, 0<1r <N,
Assumption H[T}/]. The operator T}, satisfies the conditions

1) if we IF(EO.h’ U Eh/,R), then Th’ [w] € C(Eo U E,R),
2) for any functions w,w € F(Eyp U Ep, R) we have

1T fw] = Twlw]lle < flw = @[y,

3) if the function w : EgUE — R is of class C? then there is a function 5 : H — R,
such that

o < A(R)

and limy_oJ(h') = 0 where wy, is the restriction of w to the set Eqp U Ejp.

[w = T fww]|

Remark 4.1. The above condition 2) states that T}, satisfies the Lipschitz condition
with the constant L = 1. The meaning of the condition 3) is that Ty [wy] is an

approximation of w and the error of the approximation is estimated by J(h').

Assumption H[f, g, G]. Estimates (3.1) are satisfied and

1) v: EgUE — R is the solution of (1.1), (1.2) and v is of class C* on Ey U E and

the numbers ¢, ¢y € Ry are obtained by the relations
|0, v(t, )| < e, [Opa,v(t,z)] < on B, 4,j=1,...,n

2) there are 0y, 01,09 € C([0,a] x Ry, R, ) such that
(i) they are nondecreasing with respect to both variables,
(i) the function o(t,p) = oo(t,p) + cro1(t,p) + ca0a(t, p), (t,p) € [0,a] X Ry,
satisfies the condition: the maximal solution of the Cauchy problem

(4.1) ¢'(t) =a(t, (1)), ¢(0) =0,

is ((t) = 0 for ¢ € [0, al,
4) the estimates

Hf(taxa Z) - f(t>x72)H§ 02<t7 H’Z - ’?Ht)a Hg(t,x,z) - g(t,x,i)“ﬁ Ul(ta ||Z - EHI‘/)a

‘G(t,l’,Z) o G(t,x,Z)‘S 00(t7 HZ o ZHt)
are hold on .
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Remark 4.2. Let F': ¥ x R" x M[n] — R be defined by

F(t,z,z,r,q) = watmzq”%—Zg,txz)n—l—G(txz)

5,j=1

where r = (1,...,7m), ¢ = [¢jlij=1...n.- If Assumption H[f, g, G] is satisfied then we

have the estimate
‘F(t,I,Z,T, Q) - F(t,ﬂ?, Z,T, Q)| < U(ta ||’Z - ZHt)
where (t,x,2) € ¥, Z € (EyU E,R) and ||r|| < ¢1, ||g|| < ¢z and o is a comparison

function of the Perron type. The paper [1] contains results on comparison functions.

Now we prove a theorem on the convergence of method (2.1), (2.2).

Theorem 4.3. Suppose that Assumptions H[f, g, G| and H[T}] are satisfied and

1) there is ¢y > 0 such that fLJLj_1 <cy t,j=1,...,n,
2) the function up : Ep U Egp U OgEp — R is a solution of (2.1), (2.2) and there

is ap 1 R — R such that

(4.2) ™ —u7™| < ag(R) on Eop U8By and lim ag(R) = 0.

h/—0

Then there exists a function o : R — R such that we have

(4.3) |u(rm) — vh, ™| < a(h) on Ey and I}/lmoa(h') 0

where vy 15 the restriction of v to the set Ej.

Proof. Note that the existence of uy follows from Lemma 3.4. Let zp = up — vy, We
construct a difference equation for z,. Let 'y : By — R, I'gp @ OgEp U Egp — R
be defined by the relations

501),(17;’m) = Fh’ [Uh/](r,m) + Fg:’m) on Eh’a

U;:;,m) - SO;;m) + F(()T}Z/n) on 80Eh/ U EO.h’-
One can observe that there is v : R'*" — R, such that

|F§;7m)’ S ’Y(hl) on Eh/; }}/Hn() ")/(h/) = 0.

Then we have

502: Tm) Z fl] t(r Th’ [U,h/D(SZ]Z(TJrl m)

=1

+ Z gi(t"), 2™ Thluw )bz ™™ + A™ +T5™,
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where
r,m r m r+1l,m
AL = ST A0, 2, Tolup]) — Fut, o, Tl o)
i,j=1
+ Z gi(t "), 2™, Ty fup]) = gi(#7), 2™, Ty fon]))5,0p ™
+ G(t(r ,iU ), Th/ [uh/]) — G(t(r), l‘(m), Th/ [Uh/])
and consequently
Z}(Lv;-}-l,m)(l . hoB(T’m ) (rm + ho Z (r+1 m-+0;hie; B(Tm + ho Z (r—l—lm O;hie; B(:m)
i=1 i=1
(r4+1,m~+6;__ ;. (hie;+hje;)) 1
+ hg Fig (PT™ [up]) 2 o
N ;@ ’ " hiljb;, . (0;_j_ +0;,5,)
(Zvj)eJh/tJr (2]
(7"+1,m—9i7j7 (hiei—f—hjej-)) ].
+ h i Up!| )2y,
0 Z fJ( [ h]) h hihjez‘,j, (Qi,j, + 9i+j+>
)€ (2]
(r+1,m+0; _;, (—hie;+hje;)) —1
+ ho Fig (PT™ [up]) 2 '
N ;ﬂ ! " hihj0i (0 +0i_j,)
('L?])E‘Ih/t_ [Zh’]
(r+1,m+0;, j_(hie;—hje;)) —1
tho Y (PO )z e e

(@)€T ™ (2]

+ hoAUT™ 4 BT (™)

Note that ||A§:;’m)|] < o(t, | Tw[un]

defined by
(r)

g =

where 0 < r < N. From inequalities B((;’_T))

(r,m) (r,m) (rym)
B —I—B( )—f—B(l 0

o

)T [20]

max{ |z (¢,

Fi (P u,

hihib;_j, (0i ;- +0;_j.)

— Thlvw]|lym)- Let function 527:) : I, — Ry be

I))|, r < r, X € Xh/},

> 0, B((:T)) > 0, and from relation

1
hih;0;, ;. 0+ 9i+j+)

(hieit+hje;))

,])Z(T+1,m+0i+j+

1
Z Fi (PO [, ]) 2 tm =0 (hicithie;)
(i)™ (2] hih;0; ;_ (0i_j_ +0i.5,)
9 ,Jr
—1
fis (P [1y]) 2 HbmF0isy (Shieithie;))
('j)e%”’[ ] J hihi0ij_(0i - +0i_j,)
b n.— Zn’
Z fij(P( ™) [uh/])z(r"'l’m"'e%ﬁ(hiei—hjej)) —1 —0

(i) €17 ™ (2]

hihjel?]# (‘91417 + 91?14)
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we conclude that

sgﬂ) < 5,(;) + hoO’(t,Z‘:g)) + hoy(R'), r=0,1,...,N —1.
Let us denote by w : [0,a] — R, the maximal solution of the Cauchy problem
(4.4) () =o(t,w(t)) +v(h), w(0)=a(h).

Then
}}llrr% wp(t) =0  uniformly on [0, al.
It is easy to see that wy satisfies the recurrent inequality

wp ™ > w4 hoo (), wil)) + hoy(),0 <7 < N = 1.

This gives 55:;) < w;(:;) for 0 < r < N and assertion is satisfied with a(h') = wy(a).
This proves the theorem. O]

Remark 4.4. If £ = [0,a] x [-b,b] where [—b,b] C R", b = (by,...,b,), b;i > 0 for
1 <4 < n, then the interpolating operator T}, presented in [4], Chapter 5, satisfies
Assumption H[T}]. The construction given in [4] can be easy extended on the set £

considered in the paper.
Remark 4.5. Suppose that Assumption H[f, g, G] is satisfied with
o(t,p) = Lp, (t,p) € [0,a] x Ry  where L € R,.

Then we have assumed that f, g and G satisfy the Lipschitz condition with respect
to the functional variable. We obtain the following error estimates

La_l
L

.m ,m a - (&
luly™ — o™ || < ag(R')e® + 7 (h')

on Ey if L >0,

and
Hus'm) - U;(Z/m)H < ap(h') + ay(h') on Ep if L = 0.

The above inequalities follows from (4.3) with a(h’) = wy(a) where wy : [0,a] — Ry

is a solution of the problem
¢'(t) = LC(t) +4(h),  ¢(0) = an(h).

Remark 4.6. There are the following consequences of Theorem 4.3. In classical
theorems concerning explicit difference methods for (2.12), (2.13) it is assumed that
(see [5])

n

(4.5) 1—2hp %fii(t,x) +hy Y ﬁ|flj(t,x)| >0, (t,r)€E.

=1t (i.g)e]

It is important in our considerations that we have omitted the above assumption.
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5. NUMERICAL EXAMPLES

Results presented in that paper are applied to differential equation with deviated

variable and to the differential integral problem. Let n = 2 and
Q={(r,y) eR?:4a? +¢* <1}, E=10,1]xQ, FEy=[-a0]xQ.

Initial boundary value problems considered in the present section have solutions on
E.

Example 5.1. Consider the following differential equation containing deviated vari-

ables

1
(5.1) Oz(t,x,y) = Opp2(t,x,y) — §8zyz(t,x, Y) + Oyyz(t, z,y) + 2(t ° Y)

'y
+2(t 2, y) f(ta,y) — ftzy) + f(2(t2,y))
and the initial boundary condition
(5.2) z(t,x,y) =e ' on GE U Ey
where
F(t,x,y) = 42 +y® —t(10—4a? — 2 +1+4t (1622 +y°> —22y)), f(t,x,y) = e ty?=1)-1,

0; p=0,
f(p) = qplmpl; pe(0,e),
pi p=e
The solution of (5.1), (5.2) is known, it is v(t, z, y) = e!(4*+v’~D-1,

Remark 5.2. Write

Glt,2.y.2) = = (1. 5.9) + 2t 0, 9)f(t2.) = flt.2.9) + (o).
Then

G(t,2,y,2) = G(t,x,y,2)| < Ll[z = z[| + [|z — Z[|s| In ||z — 2]
It follows that condition 2) of Assumption H[f, g, G] is satisfied with

o(t,p) = Lp+ p|lnp|.

Let us denote by uy : Ej — R the solution of implicit difference problem cor-
responding to (5.1), (5.2). Let 4y : Ep — R be a numerical approximation of .
Let numbers eg) be the arithmetical means of the errors with fixed t). We give
experimental values of the above defined errors for hy = 0.01, h; = 0.01, hy = 0.01 in

the following table:
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Table 1

t) 10.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

e 19.107°5-107%*[8-107%]1-103|1-103|1-1073|1-1073|1-1073|1-10"3 | 1-1073

Note, that the function f and the steps of the mesh do not satisfy condition (4.5),
which is necessary for the explicit method to be convergent. In our numerical example

the average errors of the explicit method exceeded 10%4.

Example 5.3. Let us consider the differential integral equation

(5.3)

O0i2(t, x,y) = 0pa2(t, x,y) + Opy2(t, 2,y) + Oyy2(t, z,y)

+ 2t (/y sz(t,x,s)ds — 4/x sz(t, s, y)ds) + z2(t,x,y)g(t, z,y) + §(t, z,y)
0 0
and the initial boundary condition
(5.4) z(t,z,y) = e ' on OE U E
where
g(t,z,y) = 40 + y* — t(10 + 4¢(162% + y* + 22y)), §= e V(M — W)

The solution of (5.3), (5.4) is known, it is exactly the same that in previous example.

Let us denote by uy, : E;, — R the solution of implicit difference problem corre-
sponding to (5.3), (5.4). In Table II we give experimental values of ¢, for hy = 0.01,
hy = 0.01, hy = 0.01:

Table 11

t) 10.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

e 19.107°[5-107*{8-107*|1-1073 | 1-1073 | 1-1073 | 1-1073 [ 1-1073 [ 1-1073 | 1-1073

In the considered case condition (4.5) is not satisfied and the explicit method is

not convergent. The average errors exceeded 1034
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