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IMPLICIT DIFFERENCE METHODS FOR PARABOLIC FDE ON
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ABSTRACT. Implicit difference schemes for quasilinear parabolic functional differential equations
are presented. Ben- efits of implicit methods are pointed. The attention is focused here on cylindrical
domains. Operators approximating mixed derivatives on irregular grids are introduced. A complete
convergence analysis for methods is presented. Nonlinear estimates of the Perron type for given
functions with respect to functional variables are used. Results obtained in the paper can be applied
to differential integral problems and to equations with deviated variables. Numerical examples
display the results of our investigations.

Key words: functional differential equations, implicit difference

1. INTRODUCTION

Parabolic functional differential equations have the following property: difference

schemes for suitable initial boundary value problems are obtained by replacing par-

tial derivatives with difference expressions. Moreover, because differential equations

contain functional variables, some interpolating operators are needed. Then we ob-

tain difference functional initial boundary value problems which satisfy consistency

conditions on classical solutions of original problems. Methods of difference inequali-

ties and simple theorems on recurrent inequalities are used in the investigation of the

stability of nonlinear difference functional equations generated by parabolic problems.

The papers [7]–[9] initiated investigations of implicit difference schemes for non-

linear parabolic equations. Classical solutions of initial boundary value problems of

the Dirichlet type for nonlinear equations without mixed derivatives are approximated

in [7], [8] by solutions of difference schemes which are implicit with respect to the time

variable. The paper [9] deals with initial boundary value problems of the Neumann

type for nonlinear equation with mixed derivatives.

Semilinear parabolic equations with initial boundary conditions of the Dirichlet

type were considered in [18]. It is shown that there are implicit difference schemes
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which are convergent. Classical solutions of quasilinear parabolic differential func-

tional equations and implicit difference methods on rectangular domains are investi-

gated in [3].

High order implicit difference methods for parabolic differential equations without

mixed derivatives are considered in [11]–[13]. In all those papers authors consider

rectangular domains with regular cubic or square space grids (space variable are

two- or three- dimensional). Rectangular domain with non-uniform space grids is

considered in one-dimensional case in [10].

Implicit difference functional inequalities generated by nonlinear parabolic differ-

ential functional equations were investigated in [6].

Various monotone iterative methods and finite difference schemes for computing

of numerical solutions of reaction diffusion equations with time delay were presented

in [14]–[16]. The present paper is motivated by those articles.

That following system of parabolic equations with time delays was investigated

in [15]. Let us suppose that Ω ∈ Rn is a bounded domain with the boundary ∂Ω

which is of class C1. The paper concerns the system of nonlinear parabolic equations

with time delay:

∂tu
(i) − L(i)u(i) = f (i)(t, x,u,uτ ), x ∈ Ω, t ∈ (0, T ], i = 1, . . . , N

and with the initial boundary condition

B(i)u(i) = g(i)(t, x), x ∈ ∂Ω, t ∈ (0, T ], i = 1, . . . , N,

u(i)(t, x) = ψ(i)(t, x), x ∈ Ω,−τi ≤ t ≤ 0, t ∈ (0, T ], i = 1, . . . , N

where u = (u(1)(t, x), . . . , u(N)(t, x)), uτ = (u(1)(t − τ1, x), . . . , u
(N)(t − τN , x)). The

operators L(i) and B(i) are given by

L(i)u(i) = ∇ · (D(i)∇u(i)) + v(i) · ∇u(i), i = 1, . . . , N,

B(i)u(i) = α(i)∂u(i)
ν + β(i)u(i), i = 1, . . . , N.

In the above problem the constants (τ1, . . . , τN) represent time delays in vector func-

tion uτ and are positive, ν denotes the outward normal vector on ∂Ω. It is also

assumed that coefficients D(i) = D(i)(t, x) and v(i) = (v
(i)
1 , . . . , v

(i)
n ), where v

(i)
ν =

v
(i)
ν (t, x) are continuous on [0, T ] × Ω̄ and D(i) is strictly positive on its domain for

every T > 0. Coefficients α(i) = α(i)(t, x) and β(i) = β(i)(t, x) are continuous and such

that α(i) + β(i) > 0 on [0, T ]× ∂Ω. Functions f (i), g(i) and ψ(i) are known.

Discretizing that system by the finite implicit (with respect to the time variable)

difference method author obtains coupled systems of nonlinear algebraic equations.

Obtained system is analyzed by a method of lower and upper solutions and associated

monotone iterations. Author presents three monotone iterative schemes and shows
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that each one of these iterative schemes converges monotonically to a unique solution

of the finite difference system.

Our aim is to extend that result. We will consider more general differential

equation in which mixed derivatives appear and in which all coefficients depend on

functional variable. In particular we will introduce difference operators approximating

mixed derivatives on irregular grids. Moreover we will propose such implicit difference

scheme, that leads us to linear system of equations which are easily solvable and no

iterative schemes are required. Assumptions on the quasi monotonicity (or mixed

quasi monotonicity) are needed in [14]–[16] for the construction of monotone iterative

processes for finite difference systems. In our implicit difference schemes we omit

the above requirements on the quasi monotonicity. We consider a general class of

quasilinear functional differential systems. It is also important in our considerations

that the Lipschitz condition for given functions is replaced by nonlinear estimates of

the Perron type.

In that article, for reader’s convenience, we will consider one equation instead of

system of N equations, however it will be easily visible that our result is also valid

for system of equations.

We formulate our functional differential problem. For any two metric spaces

X and Y we denote by C(X, Y ) the class of all continuous functions defined on X

and taking values in Y . Let M [n] denote the set of all n × n real and symmetric

matrices. We will use vectorial inequalities, understanding that the same inequalities

hold between their corresponding components. Let Q ⊂ Rn be a bounded, open and

convex domain with the boundary ∂Q and closure Q̄. Write

E = [0, a]× Q̄, E0 = [−a0, 0]× Q̄, ∂0E = [0, a]× ∂Q

where a > 0, a0 ∈ R+, R+ = [0,+∞). Write Σ = E×C(E0 ∪E,R) and suppose that

f : Σ →M [n], f = [fij]i,j=1,··· ,n, g : Σ → Rn, g = (g1, . . . , gn),

G : Σ → R, ϕ : E0 ∪ ∂0E → R,

are given functions. We consider the functional differential equation

(1.1) ∂tz(t, x) =
n∑

i,j=1

fij(t, x, z)∂xixj
z(t, x) +

n∑
i=1

gi(t, x, z)∂xi
z(t, x) +G(t, x, z),

with initial boundary condition

(1.2) z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E.

For t ∈ [0, a], we write Et = [−a0, t] × Q̄. The function f is said to satisfy

the Volterra condition if for each (t, x) ∈ E and z, z̄ ∈ C(E0 ∪ E,R) such that

z(τ, y) = z̄(τ, y) for (τ, y) ∈ Et there is f(t, x, z) = f(t, x, z̄). Note that the Volterra
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condition means that the value of f at a point (t, x, z) in the space Σ depends on

(t, x) and on the restriction of z to the set Et only.

In a similar way, we define the Volterra condition for functions g ang G. We

assume that f , g and G satisfy the Volterra condition and we consider classical

solutions of (1.1), (1.2).

We are interested in establishing a method of numerical approximation of classical

solutions of problem (1.1), (1.2) by means of solutions of associated difference func-

tional equations and in estimating of the difference between exact and approximate

solutions. We consider implicit difference schemes for (1.1), (1.2).

It is clear that the results presented in [3], [6]–[9], [18], are not applicable to

problems (1.1), (1.2).

In this paper we analyze differential system with initial boundary condition od

Dirichlet type, however we are convinced that our results can be also extended in the

case of mixed initial boundary conditions.

The paper is organized as follows. In Section 2 we construct a class of implicit

difference schemes for (1.1), (1.2). The existence and uniqueness of approximate so-

lutions, which are not so obvious as in the case of the explicit methods, are proved in

Section 3. In Section 4, which is the main part of the paper, we give sufficient condi-

tions for the convergence of implicit difference schemes. Finally, numerical examples

are presented in the last part of the paper.

For the bibliography on the existence of solutions of parabolic functional differ-

ential problems and applications see the papers [2], [17] and the monograph [19].

We give examples of differential functional equation which can be derived from

(1.1) by specializing the function f , g and G.

Example 1.1. Assume that f̃ : E × R → M [n], f̃ = {f̃ij}i,j=1,...,n, g̃ : E × R → Rn,

g̃ = (g̃1, . . . , g̃n), G̃ : E × R → R and ψ = (ψ0, ψ1, . . . , ψn) : E → R1+n are given

functions and ψ0(t, x) ≤ t, ψ(t, x) ∈ E0 ∪ E for (t, x) ∈ E. Write

f(t, x, w) = f̃(t, x, w(ψ(t, x))), g(t, x, w) = g̃(t, x, w(ψ(t, x))),

G(t, x, w) = G̃(t, x, w(ψ(t, x))).

Then (1.1) reduces to the equation with deviated variables

∂tz(t, x) =
n∑

i,j=1

f̃ij(t, x, z(ψ(t, x)))∂xixj
z(t, x)

+
n∑

i=1

g̃i(t, x, z(ψ(t, x)))∂xi
z(t, x) + G̃(t, x, z(ψ(t, x))).
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Example 1.2. For the above f̃ , g̃ and G̃ and given set Et,x ⊂ [−a0, t]× Q̄ we put

f(t, x, w) = f̃(t, x,

∫
Et,x

z(τ, s)dτds), g(t, x, w) = g̃

(
t, x,

∫
Et,x

z(τ, s)dτds

)
,

G(t, x, w) = G̃

(
t, x,

∫
Et,x

z(τ, s)dτds

)
.

Then (1.1) is the integral differential system

∂tz(t, x) =
n∑

i,j=1

f̃ij

(
t, x,

∫
Et,x

z(τ, s)dτds

)
∂xixj

z(t, x)

+
n∑

i=1

g̃i

(
t, x,

∫
Et,x

z(τ, s)dτds

)
∂xi
z(t, x) + G̃

(
t, x,

∫
Et,x

z(τ, s)dτds

)
.

It is clear that more complicated equations with deviated variables and differential

integral equations can be obtained from (1.1) by suitable definitions f , g and G.

2. DISCRETIZATION OF MIXED PROBLEMS

We will denote by F(X, Y ) the class of all functions defined on X and taking

values in Y , where X and Y are arbitrary sets. We will denote by N and Z the set of

natural numbers and the set of integers, respectively. For x, y ∈ Rn, U ∈M [n] where

x = (x1, . . . , xn), y = (y1, . . . , yn), U = [uij]i,j=1,...,n we write

||x|| =
n∑

i=1

|xi|, ||U || =
n∑

i,j=1

|uij|.

We define a mesh on Q̄ in the following way. Suppose that h = (h1, . . . , hn), hi > 0 for

1 ≤ i ≤ n, stand for steps of the mesh for spatial variables. For m = (m1, . . . ,mn) ∈
Zn we write x(m) = (m1h1, . . . ,mnhn) and (see Fig. 1)

Rn
h = {x(m) : m ∈ Zn}, Qh = Q ∩ Rn

h, Q̄h = Q̄ ∩ Rn
h,

Let h0 stand for steps of the mesh for the time variable and put h′ = (h0, h). For

r ∈ Z we write t(r) = rh0 and

Ih0 = {t(r) : 0 ≤ r ≤ N}, I0.h0 = {t(r) : −N0 ≤ r ≤ 0},

where N and N0 are such constants that Nh0 ≤ a < (N + 1)h0 and N0h0 = a0. Set

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 standing on the i − th place and i = 1, . . . , n.

Write J = {(i, j) : i, j = 1, . . . , n, i 6= j}. For x(m) ∈ Rn
h we put

A
(m)
1 = {x(m+ei) : i = 1, . . . , n} ∪ {x(m−ei) : i = 1, . . . , n},

A
(m)
2 = {x(m+ei+ej) : (i, j) ∈ J} ∪ {x(m−ei−ej) : (i, j) ∈ J} ∪ {x(m−ei+ej) : (i, j) ∈ J}

and A(m) = A
(m)
1 ∪ A(m)

2 . The following introduced sets are illustrated at Fig. 2

Int Qh = {x(m) ∈ Qh : A(m) ⊂ Q̄h}, ∂0Qh = Qh \ Int Qh.
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Fig. 1 Fig. 2

• ∈ Q̄h ◦ ∈ Int Qh, • ∈ ∂0 Qh

We will approximate partial derivatives ∂x = (∂x1 , . . . , ∂xn) and ∂xx = [∂xixj
]i,j=1,...,n

with difference operators δ = (δ1, . . . , δn) and δ(2) = [δij]i,j=1,...,n. We will calculate

the difference expressions δz(t(r), x(m)) and δ(2)z(t(r), x(m)) for each point (t(r), x(m)) ∈
Ih0 × Qh. Then we need additional mesh points on the set ∂Q. For x(m) ∈ Qh we

define illustrated at Fig. 3 coefficients

θ
(m)
i+

= max{τ ∈ (0, 1] : x(m) + τhiei ∈ Q̄}, i = 1, . . . , n,

θ
(m)
i−

= max{τ ∈ (0, 1] : x(m) − τhiei ∈ Q̄}, i = 1, . . . , n,

θ
(m)
i+j−

= max{τ ∈ (0, 1] : x(m) + τhiei − τhjej ∈ Q̄}, (i, j) ∈ J,

θ
(m)
i−j+

= max{τ ∈ (0, 1] : x(m) − τhiei + τhjej ∈ Q̄}, (i, j) ∈ J,

θ
(m)
i+j+

= max{τ ∈ (0, 1] : x(m) + τhiei + τhjej ∈ Q̄}, (i, j) ∈ J,

θ
(m)
i−j−

= max{τ ∈ (0, 1] : x(m) − τhiei − τhjej ∈ Q̄}, (i, j) ∈ J.

For simplicity of notation we write θi+ , θi− , θi+j− , θi+j+ , θi−j+ , θi−j− instead of

θ
(m)
i+

, θ
(m)
i−

, θ
(m)
i+j−

, θ
(m)
i+j+

, θ
(m)
i−j+

, θ
(m)
i−j−

. The following sets are illustrated at Fig. 4

S
(1)
h = {x ∈ ∂Q : there are x(m) ∈ Qh and i ∈ {1, . . . , n}

such that x = x(m) + θi+hiei or x = x(m) − θi−hiei},

S
(2)
h = {x ∈ ∂Q : there are x(m) ∈ Qh and (i, j) ∈ J such that x = x(m)+θi+j+(hiei+hjej)

or x = x(m) − θi−j−(hiei + hjej)) or x = x(m) + θi+j−(hiei − hjej)

and Sh = S
(1)
h ∪ S(2)

h . Write Xh = Qh ∪ Sh, and

Eh′ = Ih0 ×Xh, E0.h′ = I0.h0 ×Xh, ∂0Eh′ = Ih0 × Sh, Er.h′ = Et(r) ∩ (E0.h′ ∪ Eh′).
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Fig. 3 Fig. 4

Coefficients θ1+, θ2+ and θ1+2+ ◦ ∈ S(1)
h , • ∈ S(2)

h

For z : E0.h′ ∪ Eh′ → R, µ, ξ ∈ [−1, 1] and for x(m) ∈ Qh we put z(r,m+µei+ξej) =

z(t(r), x(m+µei+ξej)), (i, j) ∈ J .

We formulate now a difference initial boundary value problem corresponding to

(1.1), (1.2). We first observe that solutions of difference equation are defined on

the set E0.h′ ∪ Eh′ and equation (1.1) contains the functional variable z which is

an element of the space C(E0 ∪ E,R). Then we need an interpolating operator

Th′ : F(E0.h′ ∪ Eh′ ,R) → C(E0 ∪ E,R). In the next part of the paper we formulate

additional assumptions on Th. Let us denote by

δ0, δ = (δ1, . . . , δn), δ(2) = [δij]i,j=1,...,n

difference operators corresponding to the partial derivatives

∂t, ∂x = (∂x1 , . . . , ∂xn), ∂xx = [∂xixj
]i,j=1,...,n.

Write

Fh′ [z]
(r,m) =

n∑
i,j=1

fij(t
(r), x(m), Th′ [z])δijz

(r+1,m)

+
n∑

i=1

gi(t
(r), x(m), Th′ [z])δiz

(r+1,m) +G(t(r), x(m), Th′ [z]).

We approximate classical solutions of (1.1), (1.2) with solutions of the implicit

difference equation

(2.1) δ0z
(r,m) = Fh′ [z]

(r,m),

with initial boundary condition

(2.2) z(r,m) = ϕ
(r,m)
h′ on E0.h′ ∪ ∂0Eh′
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where ϕh′ : E0.h′ ∪ ∂0Eh′ → R is a given function. It is important that the numbers

δijz
(r+1,m), δiz

(r+1,m), r ≤ i, j ≤ n, appear in (2.1). Set

δ0z
(r,m) =

1

h0

(z(r+1,m) − z(r,m)).

Suppose that z : E0.h′∪Eh′ → R is a solution of (2.1), (2.2) on set Er.h′ . We will calcu-

late the numbers z(t(r+1), x) for x ∈ Qh in the following way. Let J
(r,m)
h′.+ [z], J

(r,m)
h′.− [z] ∈ J

be defined by

J
(r,m)
h′.+ [z] = {(i, j) ∈ J : fij(t

(r), x(m), Th′ [z]) ≥ 0}, J (r,m)
h′.− [z] = J \ J (r,m)

h′.+ [z].

The definitions of the difference operators δ, δ(2) falls naturally into two parts. In the

first part we assume that (t(r+1), x(m)) ∈ Ih0 × Int Qh. In the second case we define

δz(r+1,m) and δ(2) for (t(r+1), x(m)) ∈ Ih0 × ∂0Qh.

I. For (t(r+1), x(m)) ∈ Ih0 × Int Qh we put

δ+
i z

(r+1,m) =
1

hi

(
z(r+1,m+ei) − z(r+1,m)

)
, δ−i z

(r+1,m) =
1

hi

(
z(r+1,m) − z(r+1,m−ei)

)
,

and

(2.3) δiz
(r+1,m) =

1

2

(
δ+
i z

(r+1,m) + δ−i z
(r+1,m)

)
,

(2.4) δiiz
(r+1,m) = δ+

i δ
−
i z

(r+1,m),

where 1 ≤ i ≤ n. The difference expressions δijz
(r+1,m) are defined in the

following way:

(2.5) δijz
(r+1,m) =

1

2

(
δ+
i δ

+
j z

(r+1,m) + δ−i δ
−
j z

(r+1,m)
)

for (i, j) ∈ J (r,m)
h′.+ [z],

(2.6) δijz
(r+1,m) =

1

2

(
δ+
i δ

−
j z

(r+1,m) + δ−i δ
+
j z

(r+1,m)
)

for (i, j) ∈ J (r,m)
h′.− [z].

II. We define difference operators δ, δ(2) for (t(r+1), x(m)) ∈ Ih0 × ∂0Qh. Write

(2.7) δiz
(r+1,m) =

1

2hi

(
z(r+1,m+θi+hi)

1

θi+

+ z(r+1,m) (θi+ − θi−)

θi+θi−

− z(r+1,m−θi−hi)
1

θi−

)
,

δiiz
(r+1,m)

(2.8)

=
2

h2
i

(
z(r+1,m+θi+hi)

1

θi+(θi+ + θi−)
− z(r+1,m) 1

θi+θi−

+ z(r+1,m−θi−hi)
1

θi−(θi+ + θi−)

)
,

where 1 ≤ i ≤ n. If (i, j) ∈ J (r,m)
h′.+ [z] then:

δijz
(r+1,m) = A

(m)
+ z(r+1,m) + F

(m)
+ z(r+1,m−θi−j− (hi+hj))(2.9)

+G
(m)
+ z(r+1,m+θi+j+ (hi+hj)) +B

(m)
+ z(r+1,m−θi−hi)

+ C
(m)
+ z(r+1,m+θi+hi) +D

(m)
+ z(r+1,m−θj−hj) + E

(m)
+ z(r+1,m+θj+hj)
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where

A
(m)
+ =

1

hihj

(
1

θi+θi−

+
−1

θi−j−θi+j+

+
1

θj+θj−

)
,

B
(m)
+ =

−1

hihjθi−(θi− + θi+)
, C

(m)
+ =

−1

hihjθi+(θi+ + θi−)
,

D
(m)
+ =

−1

hihjθj−(θj− + θj+)
, E

(m)
+ =

−1

hihjθj+(θj+ + θj−)
,

F
(m)
+ =

1

hihjθi−j−(θi−j− + θi+j+)
, G

(m)
+ =

1

hihjθi+j+(θ
(m)
i−j−

+ θi+j+)
.

If (i, j) ∈ J (r,m)
h′.− [z] then:

δijz
(r+1,m) = A

(m)
− z(r+1,m) + F

(m)
− z(r+1,m+θi+j− (hi−hj))

(2.10)

+G
(m)
− z(r+1,m+θi−j+ (−hi+hj)) +B

(m)
− z(r+1,m−θi−hi) + C

(m)
− z(r+1,m+θi+hi)

+D
(m)
− z

(r+1,m−θ
(m)
j−

hj) + E
(m)
− z

(r+1,m+θ
(m)
j+

hj),

where

A
(m)
− =

1

hihj

(
−1

θi+θi−

+
1

θi−j+θi+j−

+
−1

θj+θj−

)
,

B
(m)
− =

1

hihjθi−(θi− + θi+)
, C

(m)
− =

1

hihjθi+(θi+ + θi−)
,

D
(m)
− =

1

hihjθj−(θj− + θj+)
, E

(m)
− =

1

hihjθj+(θj+ + θj−)
,

F
(m)
− =

−1

hihjθi+j−(θi−j+ + θi+j−)
, G

(m)
− =

−1

hihjθi−j+(θi−j+ + θi+j−)
,

Definitions (2.3)–(2.6) and (2.7)–(2.10) have the following properties:

(i) if we put θi− = θi+ = 1 in (2.7) and (2.8) then we obtain (2.3) and (2.4)

respectively,

(ii) if we put θi− = θi+ = θi−j+ = θi+j− = 1 in (2.9) then we obtain (2.5),

(iii) if we put θi− = θi− = θi−j− = θi+j+ = 1 in (2.10) then we obtain (2.6)

It follows from the above observation that it is sufficient to use only formulas (2.7)–

(2.10) in next considerations.

Remark 2.1. It follows from (2.5), (2.6) and (2.9), (2.10) that the method of dis-

cretization of the mixed derivatives ∂xixj
z, (i, j) ∈ J , at the point (t(r+1), x(m)) de-

pends on the sign of the number fij(t
(r), x(m), Th′ [z]). There are the following conse-

quences of our approach. Consider the nonlinear functional differential equation

(2.11) ∂tz(t, x) = F̃ (t, x, z, ∂xz(t, x), ∂xxz(t, x))
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with the initial boundary condition (1.2) where F̃ : Σ × Rn ×M [n] → R is a given

function of the variables (t, x, z, r, q), r = (r1, . . . , rn), q = [gij]i,j=1,...,n. In theorems

concerning difference methods for (2.11), (1.2) it is assumed that the functions

sign ∂qij
F̃ (t, x, z, r, q), (i, j) ∈ J,

are constant on Σ× Rn ×M [n], see [5], [7]–[9]. It is important in our considerations

that we have omitted the above assumptions for equation (1.1).

Difference functional problem (2.1), (2.2) is considered as an implicit numerical

method to problem (1.1), (1.2). The corresponding explicit difference scheme has the

form

δ0z(t, x) =
n∑

i,j=1

fij(t
(r), x(m), Th[z])δijz

(r,m)(2.12)

+
n∑

i=1

gi(t
(r), x(m), Th′ [z])δiz

(r,m) +G(t(r), x(m), Th′ [z]),

(2.13) z(r,m) = ϕ(r,m) for on E0.h′ ∪ ∂0Eh′ .

It is clear that there exists exactly one solution ũh′ : E0.h′ ∪ Eh′ → R of problem

(2.12), (2.13). We prove that under natural assumptions on given functions and

on the mesh there exists exactly one solution uh′ : E0.h′ ∪ Eh′ → R of the implicit

difference scheme (2.1), (2.2). Solutions of (2.1), (2.2) are considered as approximate

solutions of (1.1), (1.2). We give sufficient conditions for the convergence of sequences

of approximate solutions to a classical solution of (1.1), (1.2).

3. SOLVABILITY OF IMPLICIT DIFFERENCE FUNCTIONAL

PROBLEMS

For (t(r), x(m), z) ∈ Σh′ = Eh′×F(E0.h′∪Eh′ ,R) write P (r,m)[z] = (t(r), x(m), Th′ [z]).

Assumption H[f, g]. Suppose that the functions f : Σ →M [n] and g : Σ → Rn are

such that the following condition is satisfied for (t(r), x(m), z) ∈ Σh′ :

(3.1)

− 1

2hi

∣∣gi(P
(r,m)[z])

∣∣+ 1

h2
i

fii(P
(r,m)[z])−

n∑
j=1
j 6=i

1

hihj

∣∣fij(P
(r,m)[z])

∣∣ ≥ 0, i = 1, . . . , n,

Remark 3.1. Suppose that the functions f : Σ →M [n] and g : Σ → Rn are bounded

on Σ and that the following condition is satisfied

fii(P
(r,m)[z])−

n∑
j=1
j 6=i

∣∣fij(P
(r,m)[z])

∣∣ ≥ ε, ε > 0, on Σh′ , i = 1, . . . , n.
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If h1 = h2 = . . . = hn then there exists such ε0 > 0 that for ‖h‖ < ε0 condition (3.1)

is satisfied.

We prove a maximum principle for implicit parabolic difference functional in-

equalities. The difference functional equation

(3.2) z(r+1,m) = h0

n∑
i,j=1

fij(P
(r,m)[z])δijz

(r+1,m) + h0

n∑
i=1

gi(P
(r,m)[z])δiz

(r+1,m)

is a principal part of (2.1), (2.2). The maximum principle asserts that a solution

of difference functional inequalities corresponding to (3.2) cannot have a positive

maximum (or negative minimum) on the set {t(r+1)} ×Qh.

Theorem 3.2. Suppose that Assumption H[f, g] is satisfied and 0 ≤ r ≤ N − 1 is

fixed. If zh′ : Er+1.h′ → R satisfies the implicit difference inequality

(3.3) z
(r+1,m)
h′ ≤ h0

n∑
i,j=1

fij(P
(r,m)[zh′ ])δijz

(r+1,m)
h′ + h0

n∑
i=1

gi(P
(r,m)[zh′ ])δiz

(r+1,m)
h′

for (t(r+1), x(m)) ∈ {t(r+1)} ×Qh and x ∈ Xh is such that

zh′(t
(r+1), x) = max

{
zh′(t

(r+1), y), y ∈ Xh

}
and zh′(t

(r+1), x) > 0 then x ∈ Sh.

Proof. Write

B(r,m) =
n∑

i=1

[
fii(P

(r,m)[zh′ ])
−2

θi−θi+h
2
i

+ gi(P
(r,m)[zh′ ])

θi+ − θi−

2θi+θi−hi

]
+
∑

(i,j)∈J

|fij(P
(r,m)[zh′ ])|

[
1

θi+θi−

− 1

θi−j−θi+j+

+
1

θj+θj−

]
1

hihj

B
(r,m)
(i,+) = gi(P

(r,m)[zh′ ])
1

2θi+hi

+
2

θi+(θi+ + θi−)h2
i

fii(P
(r,m)[zh′ ])

−
n∑

j=1
j 6=i

∣∣fij(P
(r,m)[zh′ ])

∣∣ 2

hihjθi+(θi+ + θi−)

B
(r,m)
(i,−) = −gi(P

(r,m)[zh′ ])
1

2θi−hi

+
2

θi−(θi+ + θi−)h2
i

fii(P
(r,m)[zh′ ])

−
n∑

j=1
j 6=i

∣∣fij(P
(r,m)[zh′ ])

∣∣ 2

hihjθi−(θi− + θi+)
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Let us suppose that (t(r+1), x) ∈ {t(r+1)} ×Qh. We conclude from (3.3) that

zh′(t
(r+1), x) ≤ h0zh′(t

(r+1), x)

{
B(r,µ) +

n∑
i=1

B
(r,µ)
(i,+) +

n∑
i=1

B
(r,µ)
(i,−)

+ h0

∑
(i,j)∈J

(r,m)
+ [z]

fij(P
(r,m)[zh′ ])

[
1

θi+j+(θi−j− + θi+j+)
+

1

θi−j−(θi−j− + θi+j+)

]
1

hihj

+ h0

∑
(i,j)∈J

(r,m)
− [z]

fij(P
(r,m)[zh′ ])

[
−1

θi+j−(θi+j− + θi−j+)
+

−1

θi−j+(θi+j− + θi−j+)

]
1

hihj

}
= 0,

what contradicts our assumption that z(t(r+1), x) > 0. This proves the theorem.

Remark 3.3. Suppose that Assumption H[f, g] is satisfied. Then Theorem 3.2 as-

serts that solutions of the implicit difference inequality (3.3) cannot have a positive

maximum on Eh′ . It is clear that solutions of inverse implicit difference inequalities

cannot have a negative minimum on Eh′ .

Lemma 3.4. Suppose that f : Σ → M [n], g : Σ → Rn, G : Σ → R, ϕh′ : E0.h′ ∪
∂0Eh′ → R and Assumption H[f, g] is satisfied. Then there is exactly one solution

uh′ : E0.h′ ∪ Eh′ → R of problem (2.1), (2.2).

Proof. Suppose that 0 ≤ r ≤ N0 − 1 is fixed and that uh′ is a solution of problem

(2.1), (2.2) on Er.h′ . Consider the difference problem

δ0z
(r,m)
h′ =

n∑
i,j=1

fij(t
(r), x(m), Th′ [uh′ ])δijz

(r+1,m)
h′(3.4)

+
n∑

i=1

gi(t
(r), x(m), Th′ [uh′ ])δiz

(r+1,m)
h′ +G(t(r), x(m), Th′ [uh′ ]),

(3.5) z
(r,m)
h′ = ϕ

(r,m)
h′ on E0.h′ ∪ ∂0Eh′ .

It follows from Theorem 3.2 that the problem consisting of difference equation (3.2)

with P (r,m)[uh′ ] instead of P (r,m)[z] and boundary condition

z(r+1,m) = 0 for (t(r+1), x(m)) ∈ Sh

has exactly one solution z̃
(r+1,m)
h′ = 0 on {t(r+1)} × Qh. Then there is exactly one

solution u
(r+1,m)
h′ on {t(r+1)}×Qh, of (3.4), (3.5) and uh′ is defined on Er.h′ . Since uh′

is given by (2.1) on E0.h′ then we obtain the Lemma by induction with respect to r,

0 ≤ r ≤ N0.
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4. CONVERGENCE OF IMPLICIT DIFFERENCE METHODS

Let us introduce seminorms ‖ · ‖t and ‖ · ‖r.h′ for functions z : E0 ∪ E → R and

zh′ : E0.h′ ∪ E → R respectively in the following way:

‖z‖t = max{|z(τ, x)| : (τ, x) ∈ Et}, 0 ≤ t ≤ a,

‖zh′‖r.h′ = max{|z(τ, x)| : (τ, x) ∈ Er.h′}, 0 ≤ r ≤ N.

Assumption H[Th′]. The operator Th′ satisfies the conditions

1) if w ∈ F(E0.h′ ∪ Eh′ ,R), then Th′ [w] ∈ C(E0 ∪ E,R),

2) for any functions w, w̄ ∈ F(E0.h′ ∪ Eh′ ,R) we have

‖Th′ [w]− Th′ [w̄]‖t ≤ ‖w − w̄‖r.h′ ,

3) if the function w : E0∪E → R is of class C2 then there is a function γ̃ : H → R+

such that

‖w − Th′ [wh′ ]‖t(r) ≤ γ̃(h′)

and limh→0 γ̃(h
′) = 0 where wh′ is the restriction of w to the set E0.h′ ∪ Eh′ .

Remark 4.1. The above condition 2) states that Th′ satisfies the Lipschitz condition

with the constant L = 1. The meaning of the condition 3) is that Th′ [wh′ ] is an

approximation of w and the error of the approximation is estimated by γ̃(h′).

Assumption H[f, g,G]. Estimates (3.1) are satisfied and

1) v : E0 ∪E → R is the solution of (1.1), (1.2) and v is of class C2 on E0 ∪E and

the numbers c1, c2 ∈ R+ are obtained by the relations

|∂xi
v(t, x)| ≤ c1, |∂xixj

v(t, x)| ≤ c2 on E, i, j = 1, . . . , n

2) there are σ0, σ1, σ2 ∈ C([0, a]× R+,R+) such that

(i) they are nondecreasing with respect to both variables,

(ii) the function σ(t, p) = σ0(t, p) + c1σ1(t, p) + c2σ2(t, p), (t, p) ∈ [0, a] × R+,

satisfies the condition: the maximal solution of the Cauchy problem

(4.1) ζ ′(t) = σ(t, ζ(t)), ζ(0) = 0,

is ˜ζ(t) = 0 for t ∈ [0, a],

4) the estimates∥∥f(t, x, z)− f(t, x, z̄)
∥∥≤ σ2(t, ||z − z̄||t),

∥∥g(t, x, z)− g(t, x, z̄)
∥∥≤ σ1(t, ||z − z̄||t),∣∣G(t, x, z)−G(t, x, z̄)

∣∣≤ σ0(t, ||z − z̄||t)

are hold on Σ.
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Remark 4.2. Let F : Σ× Rn ×M [n] → R be defined by

F (t, x, z, r, q) =
n∑

i,j=1

fij(t, x, z)qij +
n∑

i=1

gi(t, x, z)ri +G(t, x, z)

where r = (r1, . . . , rn), q = [qij]i,j=1,...,n. If Assumption H[f, g,G] is satisfied then we

have the estimate

|F (t, x, z, r, q)− F (t, x, z̄, r, q)| ≤ σ(t, ‖z − z̄‖t)

where (t, x, z) ∈ Σ, z̄ ∈ (E0 ∪ E,R) and ‖r‖ ≤ c1, ‖g‖ ≤ c2 and σ is a comparison

function of the Perron type. The paper [1] contains results on comparison functions.

Now we prove a theorem on the convergence of method (2.1), (2.2).

Theorem 4.3. Suppose that Assumptions H[f, g,G] and H[Th′] are satisfied and

1) there is c0 > 0 such that hih
−1
j ≤ c0, i, j = 1, . . . , n,

2) the function uh′ : Eh′ ∪E0.h′ ∪ ∂0Eh′ → R is a solution of (2.1), (2.2) and there

is α0 : R1+n → R+ such that

(4.2) |v(r,m) − u
(r,m)
h′ | ≤ α0(h

′) on E0.h′ ∪ ∂0Eh′ and lim
h′→0

α0(h
′) = 0.

Then there exists a function α : R1+n → R+ such that we have

(4.3) |u(r,m)
h′ − v

(r,m)
h′ | ≤ α(h′) on Eh′ and lim

h′→0
α(h′) = 0

where vh′ is the restriction of v to the set Eh′.

Proof. Note that the existence of uh′ follows from Lemma 3.4. Let zh′ = uh′−vh′ . We

construct a difference equation for zh′ . Let Γh′ : Eh′ → R, Γ0.h′ : ∂0Eh′ ∪ E0.h′ → R
be defined by the relations

δ0v
(r,m)
h′ = Fh′ [vh′ ]

(r,m) + Γ
(r,m)
h′ on Eh′ ,

v
(r,m)
h′ = ϕ

(r,m)
h′ + Γ

(r,m)
0.h′ on ∂0Eh′ ∪ E0.h′ .

One can observe that there is γ : R1+n → R, such that

|Γ(r,m)
h′ | ≤ γ(h′) on Eh′ , lim

h′→0
γ(h′) = 0.

Then we have

δ0z
(r,m)
h′ =

n∑
i,j=1

fij(t
(r), x(m), Th′ [uh′ ])δijz

(r+1,m)
h′

+
n∑

i=1

gi(t
(r), x(m), Th′ [uh′ ])δiz

(r+1,m)
h′ + Λ

(r,m)
h′ + Γ

(r,m)
h′ ,
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where

Λ
(r,m)
h′ =

n∑
i,j=1

[fij(t
(r), x(m), Th′ [uh′ ])− fij(t

(r), x(m), Th′ [vh′ ])]δijv
(r+1,m)
h′ ‖

+
n∑

i=1

[gi(t
(r), x(m), Th′ [uh′ ])− gi(t

(r), x(m), Th′ [vh′ ])]δiv
(r+1,m)
h′

+G(t(r), x(m), Th′ [uh′ ])−G(t(r), x(m), Th′ [vh′ ])

and consequently

z
(r+1,m)
h′ (1− h0B

(r,m)) = z
(r,m)
h′ + h0

n∑
i=1

z
(r+1,m+θihiei)
h′ B

(r,m)
(i,+) + h0

n∑
i=1

z
(r+1,m−θihiei)
h′ B

(r,m)
(i,−)

+ h0

∑
(i,j)∈J

(r,m)

h′.+ [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m+θi+j+ (hiei+hjej))

h′
1

hihjθi+j+(θi−j− + θi+j+)

+ h0

∑
(i,j)∈J

(r,m)

h′.+ [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m−θi−j− (hiei+hjej))

h′
1

hihjθi−j−(θi−j− + θi+j+)

+ h0

∑
(i,j)∈J

(r,m)

h′.− [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m+θi−j+ (−hiei+hjej))

h′
−1

hihjθi+j−(θi+j− + θi−j+)

+ h0

∑
(i,j)∈J

(r,m)

h′.− [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m+θi+j− (hiei−hjej))

h′
−1

hihjθi−j+(θi+j− + θi−j+)

+ h0Λ
(r,m)
h′ + h0Γ

(r,m)
h′ .

Note that ‖Λ(r,m)
h′ ‖ ≤ σ(t, ‖Th′ [uh′ ] − Th′ [vh′ ]‖t(r)). Let function ε

(r)
h′ : Ih0 → R+ be

defined by

ε
(r)
h′ = max{|zh′(t

(r̃), x))|, r̃ ≤ r, x ∈ Xh′},

where 0 ≤ r ≤ N . From inequalities B
(r,m)
(i,+) > 0, B

(r,m)
(i,−) > 0, and from relation

B(r,m) +B
(r,m)
(i,+) +B

(r,m)
(i,−)

+
∑

(i,j)∈J
(r,m)

h′.+ [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m+θi+j+ (hiei+hjej))
1

hihjθi+j+(θi−j− + θi+j+)

∑
(i,j)∈J

(r,m)

h′.+ [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m−θi−j− (hiei+hjej))
1

hihjθi−j−(θi−j− + θi+j+)

∑
(i,j)∈J

(r,m)

h′.− [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m+θi−j+ (−hiei+hjej))
−1

hihjθi+j−(θi+j− + θi−j+)

∑
(i,j)∈J

(r,m)

h′.− [zh′ ]

fij(P
(r,m)[uh′ ])z

(r+1,m+θi+j− (hiei−hjej))
−1

hihjθi−j+(θi+j− + θi−j+)
= 0
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we conclude that

ε
(r+1)
h′ ≤ ε

(r)
h′ + h0σ(t, ε

(r)
h′ ) + h0γ(h

′), r = 0, 1, . . . , N − 1.

Let us denote by ω : [0, a] → R+ the maximal solution of the Cauchy problem

(4.4) ω′(t) = σ(t, ω(t)) + γ(h′), ω(0) = α0(h
′).

Then

lim
h′→0

ωh′(t) = 0 uniformly on [0, a].

It is easy to see that ωh′ satisfies the recurrent inequality

ω
(r+1)
h′ ≥ ω

(r)
h′ + h0σ(t(r), ω

(r)
h′ ) + h0γ(h

′), 0 ≤ r ≤ N − 1.

This gives ε
(r)
h′ ≤ ω

(r)
h′ for 0 ≤ r ≤ N and assertion is satisfied with α(h′) = ωh′(a).

This proves the theorem.

Remark 4.4. If E = [0, a] × [−b, b] where [−b, b] ⊂ Rn, b = (b1, . . . , bn), bi > 0 for

1 ≤ i ≤ n, then the interpolating operator Th′ presented in [4], Chapter 5, satisfies

Assumption H[Th′ ]. The construction given in [4] can be easy extended on the set E

considered in the paper.

Remark 4.5. Suppose that Assumption H[f, g,G] is satisfied with

σ(t, p) = Lp, (t, p) ∈ [0, a]× R+ where L ∈ R+.

Then we have assumed that f , g and G satisfy the Lipschitz condition with respect

to the functional variable. We obtain the following error estimates

‖u(i,m)
h′ − v

(i,m)
h′ ‖ ≤ α0(h

′)eLa + γ̃(h′)
eLa − 1

L
on Eh′ if L > 0,

and

‖u(i,m)
h′ − v

(i,m)
h′ ‖ ≤ α0(h

′) + aγ̃(h′) on Eh′ if L = 0.

The above inequalities follows from (4.3) with α(h′) = ωh′(a) where ωh′ : [0, a] → R+

is a solution of the problem

ζ ′(t) = Lζ(t) + γ̃(h′), ζ(0) = α0(h
′).

Remark 4.6. There are the following consequences of Theorem 4.3. In classical

theorems concerning explicit difference methods for (2.12), (2.13) it is assumed that

(see [5])

(4.5) 1− 2h0

n∑
i=1

1

h2
i

fii(t, x) + h0

∑
(i,j)∈J

1

hihj

∣∣fij(t, x)
∣∣ ≥ 0, (t, x) ∈ E.

It is important in our considerations that we have omitted the above assumption.
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5. NUMERICAL EXAMPLES

Results presented in that paper are applied to differential equation with deviated

variable and to the differential integral problem. Let n = 2 and

Q̄ = {(x, y) ∈ R2 : 4x2 + y2 ≤ 1}, E = [0, 1]× Q̄, E0 = [−a0, 0]× Q̄.

Initial boundary value problems considered in the present section have solutions on

E.

Example 5.1. Consider the following differential equation containing deviated vari-

ables

∂tz(t, x, y) = ∂xxz(t, x, y)−
1

2
∂xyz(t, x, y) + ∂yyz(t, x, y) + z(t,

x

2
, y)(5.1)

+ z(t, x, y)f̄(t, x, y)− f̂(t, x, y) + f̃(z(t, x, y))

and the initial boundary condition

(5.2) z(t, x, y) = e−1 on ∂0E ∪ E0

where

f̄(t, x, y) = 4x2+y2−t(10−4x2−y2+1+4t(16x2+y2−2xy)), f̂(t, x, y) = et(x2+y2−1)−1,

f̃(p) =


0; p ≤ 0,

p| ln p|; p ∈ (0, e−1),

p; p ≥ e−1,

The solution of (5.1), (5.2) is known, it is v(t, x, y) = et(4x2+y2−1)−1.

Remark 5.2. Write

G(t, x, y, z) = z
(
t,
x

2
, y
)

+ z(t, x, y)f̄(t, x, y)− f̂(t, x, y) + f̃(z).

Then

|G(t, x, y, z)−G(t, x, y, z̄)| ≤ L‖z − z̄‖t + ‖z − z̄‖t| ln ‖z − z̄‖t|

It follows that condition 2) of Assumption H[f, g,G] is satisfied with

σ(t, p) = Lp+ p| ln p|.

Let us denote by uh′ : Eh′ → R the solution of implicit difference problem cor-

responding to (5.1), (5.2). Let ũh′ : Eh′ → R be a numerical approximation of uh′ .

Let numbers ε
(r)
h′ be the arithmetical means of the errors with fixed t(r). We give

experimental values of the above defined errors for h0 = 0.01, h1 = 0.01, h2 = 0.01 in

the following table:
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Table I
t(r) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

ε(r) 9 · 10−5 5 · 10−4 8 · 10−4 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

Note, that the function f and the steps of the mesh do not satisfy condition (4.5),

which is necessary for the explicit method to be convergent. In our numerical example

the average errors of the explicit method exceeded 1024.

Example 5.3. Let us consider the differential integral equation

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂xyz(t, x, y) + ∂yyz(t, x, y)

(5.3)

+ 2t

(∫ y

0

sz(t, x, s)ds− 4

∫ x

0

sz(t, s, y)ds

)
+ z(t, x, y)ḡ(t, x, y) + g̃(t, x, y)

and the initial boundary condition

(5.4) z(t, x, y) = e−1 on ∂0E ∪ E0

where

ḡ(t, x, y) = 4x2 + y2 − t(10 + 4t(16x2 + y2 + 2xy)), g̃ = e−(t+1)(e4tx2 − e(ty
2

)

The solution of (5.3), (5.4) is known, it is exactly the same that in previous example.

Let us denote by uh : Eh → R the solution of implicit difference problem corre-

sponding to (5.3), (5.4). In Table II we give experimental values of εh for h0 = 0.01,

h1 = 0.01, h2 = 0.01:

Table II
t(r) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

ε(r) 9 · 10−5 5 · 10−4 8 · 10−4 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

In the considered case condition (4.5) is not satisfied and the explicit method is

not convergent. The average errors exceeded 1034.
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