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ABSTRACT. In this paper, we discuss boundary value problems for first order differential-integral

equations with advanced arguments. We formulate sufficient conditions, under which such problems

have a minimal and a maximal solution in a corresponding region bounded by upper-lower solutions.

To get our results we apply a new approach based on Heikkila and V.Lakshmikantham theorem [1].

An example illustrates the results obtained.
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1. INTRODUCTION

In this paper we investigate boundary value problems for first order differential-

integral equations with advanced arguments of the form:

(1.1)







x′(t) = f(t, x(t), x(α(t)),
∫ T

t
k(t, s)x(s)ds) ≡ (Fx)(t), t ∈ J,

0 = g(x(0), x(T )),

where

H1 : f ∈ C(J × R ×R ×R, R), k ∈ C(J × J, R+), g ∈ C(R ×R, R), α ∈ C(J, J) and

t ≤ α(t) on J with R+ = [0,∞).

An interesting and fruitful technique for proving existence results for nonlinear

differential problems is the monotone iterative method, for details, see, for example

[3]. This technique can be used both initial and boundary value problems. We

have many applications of this technique to nonlinear boundary value problems for

differential equations, we cite only [2]–[4]. In this paper we also applied this method

but we use a new approach based on Heikkila and V. Lakshmikantham theorem from

[1]. To our knowledge it is a first application of this theorem to problems of type

(1.1).
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The organization of this paper is as follows. In Section 2, we present some

necessary results which are useful in the next investigations of this paper. First, we

discuss the existence of solutions to problem (1.1) with an initial condition given at

the end point T . Next, we discuss a differential-integral inequality with the advanced

argument α. We apply both results in the next section to obtain Theorem (3.2)

which is the main result of this paper. Also, in Section 3, an example is added

to verify assumptions and theoretical results. In the last Section 4, we give some

generalizations when problem (1.1) has more advanced arguments αi.

2. PRELIMINARIES

First, we formulate a theorem which is useful in our investigations.

Consider the initial value problem of the form

(2.1) x′(t) = (Fx)(t), t ∈ J, x(T ) = k0 ∈ R,

where operator F is defined as in problem (1.1).

Theorem 2.1. Suppose that

(i) : f ∈ C(J × R × R × R, R), k ∈ C(J × J, R+), α ∈ C(J, J), t ≤ α(t) on J ,

(ii) : there exist nonnegative constants L1, L2, L3 such that

|f(t, x1, x2, x3) − f(t, x̄1, x̄2, x̄3)| ≤ L1|x1 − x̄1| + L2|x2 − x̄2| + L3|x3 − x̄3|

for t ∈ J , x1, x2, x3, x̄1, x̄2, x̄3 ∈ R.

Then problem (2.1) has a unique solution x ∈ C1(J, R).

Proof. Integrating (2.1), we have

x(t) = k0 −
∫ T

t

(Fx)(s)ds ≡ (Ax)(t), t ∈ J.

Put

‖x‖∗ = max
t∈J

eλ(t−T )|x(t)| for λ ≥ L1 + L2 + L3K, λ ≥ 1

and

q ≡
(

1 − e−λT
)

< 1, K = max{k(t, s) : t, s ∈ J}.

We show that operator A is a contraction. Let u, v ∈ C(J, R). Then, in view of

assumptions (i) and (ii), we obtain

‖Au − Av‖∗ ≤ max
t∈J

eλ(t−T )

∫ T

t

|(Fu)(s) − (Fv)(s)|ds

≤ max
t∈J

eλ(t−T )

∫ T

t

[

L1|u(s) − v(s)| + L2|u(α(s)) − v(α(s))|

+ L3

∫ T

s

k(s, τ)|u(τ) − v(τ)|dτ

]

ds
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≤ ‖u − v‖∗ max
t∈J

eλ(t−T )

∫ T

t

[

L1e
−λ(s−T ) + L2e

−λ[α(s)−T ] + L3K

∫ T

s

e−λ(τ−T )dτ

]

ds

≤ ‖u − v‖∗(L1 + L2 + L3K) max
t∈J

eλt

∫ T

t

e−λsds

= ‖u − v‖∗
L1 + L2 + L3K

λ
q ≤ q‖u − v‖∗.

Then, problem (2.1) has a unique solution, by the Banach fixed point theorem. This

ends the proof.

Remark 2.2. Let α ∈ C(J, J), t ≤ α(t) on J . Suppose that K, h ∈ C(J, R), L,

M ∈ C(J, R+) and let k ∈ C(J × J, R+). We consider a linear problem of the form:

(2.2)







x′(t) = (Lx)(t) − h(t), t ∈ J,

x(T ) = h̄ ∈ R,

with

(Lx)(t) = K(t)p(t) + L(t)p(α(t)) + M(t)

∫ T

t

k(t, s)p(s)ds.

By the proof of Theorem 2.1, we see that solving (2.2) is equivalent to solving a fixed

point problem with operator Ah defined by

(Ahx)(t) = h̄ −
∫ T

t

[(Lx)(s) − h(s)]ds.

Problem (2.2) has a unique solution, by Theorem 2.1.

Now, we concentrate our attention to differential-integral inequalities with ad-

vanced arguments α.

Lemma 2.3. Let α ∈ C(J, J), t ≤ α(t) on J . Suppose that K ∈ C(J, R), L,

M ∈ C(J, R+) p ∈ C1(J, R) and

(2.3)







p′(t) ≥ (Lp(t), t ∈ J,

p(T ) ≤ 0,

where operator L is defined as in Remark 2.2.

In addition, we assume that

H2 : ρ ≤ 1 with

ρ =

∫ T

0

[

L(t)e
R

α(t)
t

K(s)ds + M(t)e
R

T

t
K(τ)dτ

∫ T

t

k(t, s)e−
R

T

s
K(τ)dτds

]

dt.

Then p(t) ≤ 0 on J .

Proof. Indeed, the assertion holds if L(t) = M(t) = 0, t ∈ J . Assume that the above

condition is not true. Put

q(t) = e
R

T

t
K(s)dsp(t), t ∈ J.
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This and (2.3) give q(T ) = p(T ) ≤ 0, and

q′(t) = e
R

T

t
K(s)ds [−K(t)p(t) + p′(t)]

≥ e
R

T

t
K(s)ds

[

L(t)p(α(t)) + M(t)

∫ T

t

k(t, s)p(s)ds

]

;

so

(2.4)



















q′(t) ≥ L(t)e
R

α(t)
t

K(s)dsq(α(t))

+M(t)e
R

T

t
K(τ)dτ

∫ T

t
k(t, s)e−

R

T

s
K(τ)dτq(s)ds,

q(T ) ≤ 0.

We need to prove that q(t) ≤ 0, t ∈ J . Suppose that the inequality q(t) ≤ 0, t ∈ J is

not true. Then, we can find t0 ∈ [0, T ) such that q(t0) > 0. Put

q(t1) = min
[t0,T ]

q(t) ≤ 0.

Integrating the differential inequality in (2.4) from t0 to t1, we obtain

q(t1) − q(t0) ≥
∫ t1

t0

[

L(t)e
R

α(t)
t

K(s)dsq(α(t))

+ M(t)e
R

T

t
K(τ)dτ

∫ T

t

k(t, s)e−
R

T

s
K(τ)dτq(s)ds

]

dt

≥ q(t1)ρ ≥ q(t1).

It contradicts the assumption that q(t0) > 0. This proves that q(t) ≤ 0 on J . This

also proves that p(t) ≤ 0 on J and the proof is complete.

Remark 2.4. Let K(t) ≥ 0 on J . Then assumption H2 holds if we assume that

ρ1 ≤ 1 with

ρ1 =

∫ T

0

e
R

T

t
K(τ)dτ

[

L(t) + M(t)

∫ T

t

k(t, s)ds

]

dt.

Note that constant ρ1 does not depend on α.

3. EXISTENCE OF SOLUTIONS OF PROBLEM (1.1)

Now, we derive a fixed point result for nondecreasing mappings in ordered spaces

which play a central role in our investigations. We say that Q : [a, b] → [a, b] is

nondecreasing if Qx ≤ Qy for x, y ∈ [a, b] and x ≤ y. We say that x ∈ [a, b] is the

least fixed point of Q in [a, b] if x = Qx and if x ≤ y whenever y ∈ [a, b] and y = Qy.

The greatest fixed point of Q in [a, b] is defined similarly, by reversing the inequality.

If both least and greatest fixed point of Q in [a, b] exist, we call them extremal fixed

points of Q in [a.b].
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Theorem 3.1 (see [1]). Let [a, b] be an ordered interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → [a, b] be a nondecreasing mapping. If each

sequence {Qxn} ⊂ Q([a, b]) converges, whenever {xn} is a monotone sequence in

[a, b], then the sequence of Q-iteration of a converges to the least fixed point x∗ of

Q and the sequence of Q-iteration of b converges to the greatest fixed point x∗ of Q.

Moreover,

x∗ = min{y ∈ [a, b] : y ≥ Qy}, and x∗ = max{y ∈ [a, b] : y ≤ Qy}.

Let us introduce the following definition.

We say that u ∈ C1(J, R) is a lower solution of (1.1) if

u′(t) ≤ (Fu)(t), t ∈ J, g(u(0), u(T )) ≤ 0,

and it is an upper solution of (1.1) if the above inequalities are reversed.

Now we formulate the main result of this paper.

Theorem 3.2. Let assumption H1 hold. Let y0, z0 ∈ C1(J, R) be lower and upper

solutions of (1.1), respectively and z0(t) ≤ y0(t), t ∈ J . In addition, we assume that

H3 : there exist functions K ∈ C(J, R), L, M ∈ C(J, R+) such that assumption H2 is

satisfied and

f(t, u1, u2, u3) − f(t, v1, v2, v3) ≥ −K(t)[v1 − u1] − L(t)[v2 − u2] − M(t)[v3 − u3]

if z0(t) ≤ u1 ≤ v1 ≤ y0(t), z0(α(t)) ≤ u2 ≤ v2 ≤ y0(α(t)),
∫ T

t
k(t, s)z0(s)ds ≤

u3 ≤ v3 ≤
∫ T

t
k(t, s)y0(s)ds,

H4 : g is nondecreasing in the first variable and there exists a constant m > 0 such

that

g(v, u)− g(v, ū) ≤ m(ū − u) if z0(T ) ≤ u ≤ ū ≤ y0(T ).

Then problem (1.1) has, in the sector [z0, y0], extremal solutions, where

[z0, y0] = {w ∈ C1(J, R) : z0(t) ≤ w(t) ≤ y0(t), t ∈ J}.

Proof. Let Gh be nondecreasing with respect to h. Choose h1, h2 ∈ C(J, R) such that

h1(t) ≤ h2(t) on J . Let x1, x2 denote the solutions of problem (2.2) with h1, h2 instead

of h, and with Gh1 , Gh2 instead of h̄, respectively. Since problem (2.2) has a unique

solution for each h ∈ C(J, R), h̄ ∈ R, then x1, x2 are well defined. Put x = x1 − x2.

Then,

x′(t) = (Lx)(t) − h1(t) + h2(t) ≥ (Lx)(t), t ∈ J,

p(T ) = Gh1 − Gh2 ≤ 0.

In view of Lemma 2.3, we see that x1(t) ≤ x2(t) on J ; so the operator Ah is nonde-

creasing. It is also continuous.
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For u ∈ [z0, y0], we put

Fu = Fu −Lu, Gu =
1

m
g(u(0), u(T )) + u(T ),

where the operator F is defined as in problem (1.1). Indeed, Gu is nondecreasing

with respect to u, by assumption H4. We define the operator A = AF . Let x1 =

Az0, x2 = Ay0, so






x′
1(t) = (Lx1)(t) + (Fz0)(t),

x1(T ) = Gz0,

and






x′
2(t) = (Lx2)(t) + (Fy0)(t),

x2(T ) = Gy0 .

Now, apply Lemma 2.3 with x(t) = x2(t) − y0(t); so it is easy to show, using the

definition of the lower solution y0, that y0(t) ≥ x2(t) = (A y0)(t). Similarly we can

show (A z0)(t) = x1(t) ≥ z0(t) on J . Put x(t) = x1(t) − x2(t). Then

x′(t) = (Lx1)(t) + (Fz0)(t) − (Lx2)(t) − (Fy0)(t) ≥ (Lx)(t),

x(T ) = Gz0 − Gy0 ≤ 0

. Using again Lemma 2.3, we see that x1(t) ≤ x2(t) on J ; so the operator A is

nondecreasing. It means that z0 ≤ Au ≤ y0 for u ∈ [z0, y0]. Hence A : [z0, y0] →
[z0, y0] and operator A is bounded because ‖Au‖ ≤ max(‖y0‖, ‖z0‖) = B.

Let {yn} be a monotone sequence in [z0, y0]; so z0 ≤ Ayn ≤ y0. Hence ‖Ayn‖ ≤ B.

It is easy to show that {Ayn} is equicontinuous. By Arzeli-Ascoli theorem, {Ayn}
is compact. It proves that {Ayn} converges in A([z0, y0]). Finally, operator A has a

least and a greatest fixed point in [z0, y0], by Theorem 3.1. It results that problem

(1.1) has minimal and maximal solutions in [z0, y0]. This ends the proof.

Example 3.3. For t ∈ J = [0, 1], we consider the problem

(3.1)







x′(t) = 2ex(t) + (sin t)e−2e(
√

t−t)x(
√

t) − C
∫ 1

t
x(s)ds − A ≡ (Fx)(t),

0 = x(0) + x2(0) − x(1).

with A = 2
3
(1+e−1), 0 ≤ C ≤ 2

3
(1−2e−1). Note that α(t) =

√
t, and t ≤ α(t) ≤ T = 1.

Put y0(t) = t, z0(t) = −1, t ∈ J . It yields

(Fy0)(t) = 2et + (sin t)e−2e(
√

t−t)
√

t − C

2
(1 − t2) − A ≥ 1 = y′

0(t),

(Fz0)(t) = 2e−1 − (sin t)e−2e(
√

t−t) + C(1 − t) − A < 0 = z′0(t),

and

g(y0(0), y0(1)) = g(0, 1) = −1 < 0, g(z0(0), z0(1)) = g(−1,−1) = 1 > 0.



PROBLEMS WITH ADVANCED ARGUMENTS 583

It proves that y0, z0 are lower and upper solutions of problem (3.1), respectively.

Indeed, K(t) = 2et, L(t) = (sin t)e−2(
√

t−t)e, M(t) = 0, m = 1. Moreover,
∫ 1

0

n(t)e
R

α(t)
t

m(s)dsdt ≤
∫ 1

0

sin tdt = 1 − cos 1 < 1,

so assumption H2 holds too. By Theorem 3.2, problem (3.1) has extremal solutions

in the region [−1, t].

4. SOME GENERALIZATIONS OF PROBLEM 1.1

In this section we consider a boundary value problem of the form

(4.1)






x′(t) = f(t, x(t), x(α1(t)), . . . , x(αr(t)),
∫ T

t
k(t, s)x(s)ds) ≡ (Gx)(t), t ∈ J,

0 = g(x(0), x(T )).

We formulate only corresponding results using the notions of lower and upper solu-

tions of problem (4.1) which are the same as before with the operator G instead of

operator F . The next theorem is similar to Theorem 3.2 and therefore the proof is

omitted.

Theorem 4.1. Assume that f ∈ C(J×R
r+2, R), k ∈ C(J ×J, R+), g ∈ C(R×R, R),

αi ∈ C(J, J), t ≤ αi(t) and αi(t) 6≡ t on J for i = 1, 2, . . . , r. Let y0, z0 ∈ C1(J, R) be

lower and upper solutions of (4.1), respectively and z0(t) ≤ y0(t), t ∈ J . We assume

that there exists functions K ∈ C(J, R), Li, M ∈ C(J, R+), i = 1, 2, . . . r such that

f(t, u0, u1, . . . , ur, v) − f(t, v0, v1, . . . , vr, v̄)

≥ −K(t)[v0 − u0] −
r

∑

i=1

Li(t)[vi − ui] − M(t)[v̄ − v]

if t ∈ J , z0(αi(t)) ≤ ui ≤ vi ≤ y0(αi(t)), i = 0, 1, . . . , r with α0(t) = t and
∫ T

t
k(t, s)z0(s)ds ≤ v ≤ v̄ ≤

∫ T

t
k(t, s)y0(s)ds. Moreover, we assume that assump-

tion H2 holds with

r
∑

i=1

Li(t)e
R αi(t)

t
K(s)ds instead of L(t)e

R

T

t
K(s)ds.

In addition, we assume that assumption H4 holds.

Then problem (4.1) has extremal solutions in the region [z0, y0].
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