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1. INTRODUCTION

This paper is concerned the existence and uniqueness of solutions for the second

order impulsive boundary value problems with integral boundary conditions:

(1.1) y′′(t) = f(t, y(t)), for a.e. t ∈ J := [0, 1], t 6= ti, i = 1, . . . , m,

(1.2) ∆y|t=ti = Ii(y(t−i )), i = 1, . . . , m;

(1.3) ∆y′|t=ti = Ii(y(t−i )), i = 1, . . . , m;

(1.4) y(0) − k1y
′(0) =

∫ 1

0

h1(s, y(s))ds;

(1.5) y(1) + k2y
′(1) =

∫ 1

0

h2(s, y(s))ds;

where f, h1, h2 : J × R → R and Ii, I i : R → R, are given functions, ti ∈ J , 0 = t0 <

t1 < · · · < tm < tm+1 = 1, k1, k2 are nonnegative constants, ∆y|t=ti = y(t+i ) − y(t−i ),

y(t+i ) = lim
h→0+

y(ti + h) and y(t−i ) = lim
h→0+

y(ti − h) are the right and left hand limits of

y(t) at t = ti, respectively. In what follows, we refer to problem (1.1)–(1.5) as (P).

The theory of impulsive differential equations (IDE) is an active area of research

in recent years since they are adequate mathematical models of real phenomena in

the physical, biological and social sciences. There has been a significant development

in the theory of IDE; see for example the books [12, 31, 39, 43] and the papers

[17, 23, 35, 36, 37, 40, 41, 44, 45, 46].
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Boundary value problems with integral boundary conditions constitute a very

interesting and important class of problems. These include two-point, three-point,

multi-point and nonlocal boundary value problems as special cases. Integral boundary

conditions appear in population dynamics [14] and cellular systems [1]. Moreover,

boundary value problems with integral boundary conditions have been studied by a

number of authors such as, for instance, Ahmad et al. [2], Arara and Benchohra [4],

Bairamov and Karaman [5], Belarbi et al. [6, 7], Benchohra et al. [8, 10, 11, 13],

Brown and Plum [16], Denche and Kourta [18, 19], Gallardo [21, 22], Infante [25],

Jankowskii [26, 27], Karakostas and Tsamatos [28], Khan [29], Krall [30], Marhoune

and Bouzit [33], Peciulyte et al. [38] and the references therein. Other recent results

involving integral boundary conditions are given in [3, 15, 20, 32, 34, 42].

We shall provide sufficient conditions ensuring some new existence and uniqueness

results for problem (P) via an application of the Banach contraction principle and

the nonlinear alternative of Leray-Schauder type. Our results extend and complement

the previously cited results to those considered with integral boundary conditions.

2. PRELIMINARIES

In this section, we introduce notations, definitions and preliminary facts which

are used throughout this paper.

Let C(J, R) be the Banach space of all continuous functions from J into R with

the norm

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ 1}.

L1(J, R) denote the Banach space of functions y : J −→ R that are Lebesgue inte-

grable with norm

‖y‖L1 =

∫ 1

0

|y(t)|dt.

We consider the space

PC = {y : [0, 1] → R : yi ∈ C(Ji, R), i = 1, . . . , m,

y(t−i ) and y(t+i ) exist i = 1, . . . , m, and y(t−i ) = y(ti)}.

PC is a Banach space with the norm

‖y‖PC = max ‖yi‖Ji
: i = 0, . . . , m,

where yi is the restriction of y to Ji = (ti, ti+1] ⊂ [0, 1], i = 0, . . . , m, and

‖y‖Ji
= max

t∈Ji

|yi(t)|.

AC1((0, 1), R) is the space of differentiable functions y : (0, 1) −→ R, whose first

derivative y′ is absolutely continuous.

Definition 2.1. A map f : J × R → R is said to be Carathéodory if



IMPULSIVE BOUNDARY VALUE PROBLEM 587

• t 7→ f(t, y) is measurable for each y ∈ R;

• y 7→ f(t, y) is continuous for almost all t ∈ J ;

In what follows, we assume that f is Carathéodory.

3. MAIN RESULT

We define a solution problem (P) as follows:

Definition 3.1. A function y ∈ PC∩∪m
i=0AC1((ti, ti+1), R) is said to be a solution of

(P) if y′′(t) = f(t, y(t)), for a.e. t ∈ J , t 6= ti, i = 1, . . . , m, and for each i = 1, . . . , m,

∆y|t=ti = Ii(y(t−i )), ∆y′|t=ti = Ii(y(t−i )) and the boundary conditions (1.4)–(1.5) are

satisfied.

For ai bi, i = 1, . . . , m real numbers, and σ, ρ1, ρ2 : J → R be integrable functions,

we consider the following linear problem

(3.1) y′′(t) = σ(t), a.e. t ∈ J,

(3.2) ∆y|t=ti = ai, i = 1, . . . , m;

(3.3) ∆y′|t=ti = bi, i = 1, . . . , m;

(3.4) y(0)− k1y
′(0) =

∫ 1

0

ρ1(s)ds;

(3.5) y(1) + k2y
′(1) =

∫ 1

0

ρ2(s)ds.

We shall refer to (3.1)–(3.5) as (LP). We need the following auxiliary result to prove

our existence results. Its proof can be found in Lemma 3.2 [9].

Lemma 3.2. y ∈ PC is solution of the equation

(3.6) y(t) = p(t) +

∫ 1

0

G(t, s)σ(s)ds +

m
∑

i=1

Wi(t),

where

(3.7) G(t, s) = α







(k1 + t)(1 − s + k2), 0 ≤ t ≤ s,

(k1 + s)(1 − t + k2), s ≤ t ≤ 1

p(t) = −α

{

(1 − t + k2)

∫ 1

0

ρ1(s)ds + (k1 + t)

∫ 1

0

ρ2(s)ds

}

,

Wi(t) = −α







(k1 + t)[−ai − (1 − ti + k2)bi], 0 ≤ t ≤ ti,

(1 − t + k2)[ai − (ti + k1)bi], ti ≤ t ≤ 1,
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and α =
−1

(1 + k1 + k2)
, if and only if y is solution of the boundary value problem

(LP).

Remark 3.3. Note that for the solution (3.6) we have that:

(i) p is the solution of y′′ = 0 with the boundary conditions (3.4)–(3.5)

(ii)
∫ 1

0
G(t, s)σ(s)ds is the solution of y′′ = σ with homogeneous boundary conditions

y(0) = y(1) = 0, and G is the Green’s function for that problem.

(iii)

m
∑

i=1

Wi(t) is the solution of y′′ = 0 with homogeneous boundary conditions y(0) =

y(1) = 0 and jumps (3.2)–(3.3).

(iv) The function G is nonpositive and

G∗ := sup
(t,s)∈J2

|G(t, s)| ≤
(1 + k1)(1 + k2)

1 + k1 + k2
.

Our first result for problem (P) is based on the Banach contraction principle.

Theorem 3.4. Assume that f is Carathéodory, h1, h2 : J × R → R are continuous

and the following hypotheses hold

(H1) There exists α > 0 such that

|f(t, u) − f(t, v)| ≤ α|u − v|, for each u, v ∈ R and a.e. t ∈ J.

(H2) There exist constants c, c > 0 such that

|h1(t, u) − h1(t, v)| ≤ c|u − v|, for each u, v ∈ R, and each t ∈ J

|h2(t, u) − h2(t, v)| ≤ c|u − v|, for each u, v ∈ R and each t ∈ J

(H3) There exist constants d, d > 0 such that

|Ii(u) − Ii(v)| ≤ d|u − v| for each u, v ∈ R,

|Ii(u) − Ii(v)| ≤ d|u − v| for each u, v ∈ R.

If

(3.8) c + c + αG∗ + d + d(1 + k2) < 1,

then problem (P) has a unique solution.

Proof. Transform problem (P) into a fixed point problem. Consider the operator,

N : PC → PC defined by

(Ny)(t) = p(t) +

∫ 1

0

G(t, s)f(s, y(s))ds +

m
∑

i=1

Wi(t, y(ti)),

where

p(t) = −α

{

(1 − t + k2)

∫ 1

0

h1(s, y(s))ds + (k1 + t)

∫ 1

0

h2(s, y(s))ds

}

,
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and G(t, s) is given by (3.7), and Wi(t, y(ti)) is defined by

Wi(t, y(ti)) = −α







(k1 + t)[−Ii(y(ti)) − (1 − ti + k2)Ii(y(ti))], 0 ≤ t ≤ ti,

(1 − t + k2)[Ii(y(ti)) − (ti + k1)Ii(y(ti))], ti ≤ t ≤ 1.

Consider y, y in PC. Then for each t ∈ J

|(Ny)(t) − (Ny)(t)| ≤ −α(1 − t + k2)

∫ 1

0

|h1(s, y(s)) − h1(s, y(s))|ds

− α(1 + k1)

∫ 1

0

|h2(s, y(s)) − h2(s, y(s))|ds

+

∫ 1

0

|G(t, s)||f(s, y(s))− f(s, y(s))|ds

+

m
∑

i=1

|Wi(t, y(ti)) − Wi(t, y(ti))|.

For 0 ≤ t ≤ ti, we have

|(Ny)(t) − (Ny)(t)| ≤ −α(1 − t + k2)

∫ 1

0

|h1(s, y(s)) − h1(s, y(s))|ds

− α(1 + k1)

∫ 1

0

|h2(s, y(s)) − h2(s, y(s))|ds

+

∫ 1

0

|G(t, s)||f(s, y(s))− f(s, y(s))|ds

− α(k1 + 1)[|Ii(y(ti)) − Ii(y(ti))|]

+ (1 + k2)[|Ii(y(ti)) − I i(y(ti))|]

≤
1 + k2

1 + k1 + k2

∫ 1

0

c|y(s) − y(s)|ds

+
1 + k1

1 + k1 + k2

∫ 1

0

c|y(s) − y(s)|ds

+ G∗|

∫ 1

0

α|y(s)− y(s)|ds

+
1 + k1

1 + k1 + k2
[d‖y − y‖PC + d(1 + k2)‖y − y‖PC]

≤ [c + c + αG∗ + d + d(1 + k2)]‖y − y‖PC.

Similarly, we obtain the same result when ti ≤ t ≤ 1. Then by (3.8) N is a contraction,

so by Banach’s principle N has a unique fixed point which is solution of problem

(P).

Now we give an existence result based on the nonlinear alternative of Leray-

Schauder type. Let us introduce the following hypotheses which are assumed here-

after:
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(H4) There exist a continuous nondecreasing function g : [0,∞) → (0,∞) and q ∈

L1(J, R+) such that

|f(t, u)| ≤ q(t)g(|u|), for each u ∈ R and for t ∈ J

(H5) There exist constants c1, c2 > 0 with 1 − 2c1 − (1 + k1k2c2) > 0 such that

|Ii(u)| ≤ c1|u|, and |Ii(u)| ≤ c2|u|, for each u ∈ R, i = 1, . . . , m

(H6) There exist functions g1, g2 : [0,∞) → [0,∞) continuous, nondecreasing and

q1, q2 ∈ L1(J, R+) such that

|h1(t, u)| ≤ q1(t)g1(|u|) for each u ∈ R and for t ∈ J.

|h2(t, u)| ≤ q2(t)g2(|u|) for each u ∈ R and for t ∈ J.

(H7) There exist a constant M > 0 such that

(3.9)
MM

g1(M)

∫ 1

0

q1(s)ds + g2(M)

∫ 1

0

q2(s)ds + G∗g(M)

∫ 1

0

q(s)ds

> 1,

where

M = 1 − 2c1 − (1 + k1k2c2).

Theorem 3.5. Suppose that f is Carathéodory, h1, h2 : J × R → R are continuous,

I1, I2 : R → R are continuous, and the hypotheses (H4)–(H7) are satisfied, then

problem (P) has at least one solution.

Proof. We shall show that the operator N defined in Theorem 3.4 is continuous and

completely continuous.

Step 1. N is continuous.

Let {yn} be a sequence such that yn −→ y in PC. Then for each t ∈ J

|(Nyn)(t) − (Ny)(t)| ≤ −α(1 − t + k2)

∫ 1

0

|h1(s, yn(s)) − h1(s, y(s))|ds

− α(1 + k1)

∫ 1

0

|h2(s, yn(s)) − h2(s, y(s))|ds

+

∫ 1

0

|G(t, s)||f(s, yn(s)) − f(s, y(s))|ds

+
m

∑

i=1

|Wi(t, yn(ti)) − Wi(t, y(ti))|

≤
1 + k2

1 + k1 + k2

∫ 1

0

|h1(s, yn(s)) − h1(s, y(s))|ds

+
1 + k1

1 + k1 + k2

∫ 1

0

|h2(s, yn(s)) − h2(s, y(s))|ds
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+ G∗

∫ 1

0

|f(s, yn(s)) − f(s, y(s))|ds

+
m

∑

i=1

|Wi(t, yn(ti)) − Wi(t, y(ti))|.

Since the functions f is Carathéodory and h1, h2 are continuous, we have

‖N(yn) − N(y)‖PC → 0 as n → ∞.

Step 2. N maps bounded sets into bounded sets in PC.

Indeed, it is enough to show that there exists a positive constant ℓ such that for

each y ∈ Br = {y ∈ PC : ‖y‖PC ≤ r}, one has ‖N(y)‖PC ≤ ℓ. Then for each t ∈ J ,

we have by (H4)–(H6)

|(Ny)(t)| ≤ |p(t)| +

∫ 1

0

|G(t, s)||f(s, y(s))|ds +

m
∑

i=1

|Wi(t, y(ti))|

≤ pr + G∗

∫ 1

0

g(r)q(s)ds

− α(k1 + 1)[|Ii(y(ti))| + (1 + k2)|I i(y(ti))|]

≤ pr + G∗g(r)

∫ 1

0

q(s)ds

+
k1 + 1

1 + k1 + k2
c1|y(ti)| +

(k1 + 1)(k2 + 1)

1 + k1 + k2
c2|y(ti)|

≤ pr + G∗g(r)

∫ 1

0

q(s)ds

+
(k1 + 1)r

1 + k1 + k2
(c1 + (k2 + 1)c2) =: l,

where

pr =
1

1 + k1 + k2

{

(1 + k2)g1(r)

∫ 1

0

q1(s)ds + (1 + k1)g2(r)

∫ 1

0

q2(s)ds

}

.

Step 3. N maps bounded sets into equicontinuous sets of PC.

Let τ1, τ2 ∈ [0, 1], tau1 < τ2, Br be a bounded set of PC as in Step 2 and y ∈ Br.

Then

|(Ny)(τ2) − (Ny)(τ1)| ≤ |p(τ2) − p(τ1)|

+

∫ 1

0

|G(τ2, s) − G(τ1, s)||f(s, y(s))|ds

+

m
∑

i=1

|Wi(τ2, y(ti)) − Wi(τ1, y(ti))|

≤ −α(τ1 − τ2)

[
∫ 1

0

|h1(s, y(s))|ds +

∫ 1

0

|h2(s, y(s))|ds

]
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+ g(r)

∫ 1

0

q(s)|G(τ2, s) − G(τ1, s)|ds

+
m

∑

i=1

|Wi(τ2, y(ti)) − Wi(τ1, y(ti))|.

The right-hand side of the above inequality tends to zero as τ2 − τ1 → 0. As a

consequence of Steps 1 to 3 together with the version of Arzela-Ascoli theorem for a set

of piecewise functions (see for instance [31]), we can conclude that N : PC −→ PC

is continuous and completely continuous.

Step 4: (A priori bounds). We show now there exists an open set U ⊆ PC with

y 6= λN(y) for λ ∈ (0, 1) and y ∈ ∂U . Let y ∈ PC with y = λN(y) for some

0 < λ < 1. Then for each t ∈ J , we have

y(t) = λ

[

p(t) +

∫ 1

0

G(t, s)f(s, y(s))ds +

m
∑

i=1

Wi(t, y(ti))

]

so

|y(t)| ≤ |p(t)| +

∫ 1

0

|G(t, s)||f(s, y(s)|ds +

m
∑

i=1

|Wi(t, y(ti))|.

(H6) implies that

|p(t)| ≤ −α

{

(1 + k2)

∫ 1

0

q1(s)g1(|y(s)|)ds + (k1 + 1)

∫ 1

0

q2(s)g2(|y(s)|)ds

}

≤ −α

{

(1 + k2)g1(‖y‖PC)

∫ 1

0

q1(s)ds + (k1 + 1)g2(‖y‖PC)

∫ 1

0

q2(s)ds

}

≤ g1(‖y‖PC)

∫ 1

0

q1(s)ds + g2(‖y‖PC)

∫ 1

0

q2(s)ds.

Using hypothesis (H5), we have

m
∑

i=1

|Wi(t, y(ti))| ≤
∑

0≤t≤ti

|Wi(t, y(ti))| +
∑

ti≤t≤1

|Wi(t, y(ti))|

≤ −α [(k1 + 1)|y(ti)|(c1 + (1 + k2)c2)

+ (k2 + 1)|y(ti)|(c1 + (1 + k1)c2)]

≤ ‖y‖PC[2c1 + (1 + k1k2)c2].

Then

‖y‖PC ≤ g1(‖y‖PC)

∫ 1

0

q1(s)ds + g2(‖y‖PC)

∫ 1

0

q2(s)ds

+ G∗g(‖y‖PC)

∫ 1

0

q(s)ds + ‖y‖PC[2c1 + (1 + k1k2)c2],
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this implies that

M‖y‖PC

g1(‖y‖PC)

∫ 1

0

q1(s)ds + g2(‖y‖PC)

∫ 1

0

q2(s)ds + G∗g(‖y‖PC)

∫ 1

0

q(s)ds

≤ 1,

then by (H7), we can affirm that there a constant M > 0 such that

‖y‖PC 6= M.

Set

U = {y ∈ PC : ‖y‖PC < M}.

N : U → PC is continuous and completely continuous. From the choice of U , there

is no y ∈ ∂U such that y = λN(y), for λ ∈ (0, 1). As a consequence of the nonlinear

alternative of Leray-Schauder type [24], we deduce that N has a fixed point in U

which is a solution to problem (P).

4. AN EXAMPLE

In this section we give an example to illustrate the usefulness of our main results.

Let us consider the following impulsive boundary value problem,

(4.1) y′′(t) =
e−t(|y(t)| + 2)

(9 + et)(1 + |y(t)|)
, t ∈ J := [0, 1], t 6=

1

2

(4.2) ∆y|t= 1

2

=
|y(1

2
)|

8(1 + |y(1
2
)|)

(4.3) ∆y′|t= 1

2

=
|y(1

2
)|

6(1 + |y(1
2
)|)

(4.4) y(0) − y′(0) =

∫ 1

0

|y(s)|

6(1 + |y(s)|)
ds,

(4.5) y(1) + y′(1) =

∫ 1

0

3|y(s)|

20(1 + |y(s)|)
ds.

Set

f(t, x) =
e−t(x + 2)

(9 + et)(1 + x)
, (t, x) ∈ J × [0,∞),

I1(x) =
x

8(1 + x)
, x ∈ [0,∞),

I1(x) =
x

6(1 + x)
, x ∈ [0,∞),

h1(t, x) =
x

6(1 + x)
, (t, x) ∈ [0, 1] × [0,∞),

h2(t, x) =
3x

20(1 + x)
, (t, x) ∈ [0, 1] × [0,∞).
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Let x, y ∈ [0,∞) and t ∈ J . Then we have

|f(t, x) − f(t, y)| =
e−t

(9 + et)

∣

∣

∣

x + 2

1 + x
−

y + 2

1 + y

∣

∣

∣

=
e−t|x − y|

(9 + et)(1 + x)(1 + y)

≤
e−t

(9 + et)
|x − y|

≤
1

10
|x − y|.

Hence the condition (H1) holds with α =
1

10
. Also, we have

|h1(t, x) − h1(t, y)| ≤
1

6
|x − y|, for each x, y ∈ [0,∞), and each t ∈ [0, 1],

and

|h2(t, x) − h2(t, y)| ≤
3

20
|x − y|, for each x, y ∈ [0,∞) and each t ∈ [0, 1],

which means that (H2) is satisfied. Moreover

|I1(x) − I1(y)| ≤
1

8
|x − y|,

and

|I1(x) − I1(y)| ≤
1

6
|x − y|.

Thus (H3) holds. From (3.7), the Green’s function for the homogeneous problem is

given by

G(t, s) =











(t + 1)(s − 2)

3
, 0 ≤ s ≤ t

(s + 1)(t − 2)

3
, t ≤ s ≤ 1.

We can easily see that

G∗ = sup
(t,s)∈J×J

|G(t, s)| < 1.

We shall check that condition (3.8) is satisfied with c =
1

6
and c =

3

20
. Indeed

c + c + αG∗ + d + d(1 + k2) <
1

6
+

3

20
+

1

10
+

1

8
+

1

3
= 1.

Then by Theorem 3.4 problem (4.1)–(4.5) has a unique solution on [0, 1].
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