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ABSTRACT. By using a technique similar to the one introduced by Kong [J. Math. Anal. Appl.

229 (1999) 258–270] and employing an arithmetic-geometric mean inequality, we establish oscillation

criteria for second-order forced dynamic equations on time scales containing mixed nonlinearities of

the form
(

p(t)x∆
)∆

+ q(t)xσ +
n

∑

i=1

qi(t)|xσ |αi−1xσ = e(t), t ≥ t0

where p, q, qi, e : T → R are right-dense continuous with p > 0, σ is the forward jump operator,

xσ(t) := x(σ(t)), and the exponents satisfy

α1 > · · · > αm > 1 > αm+1 > · · ·αn > 0.

The results extend many well-known interval oscillation criteria from continuous case to arbitrary

time scales.

AMS (MOS) Subject Classification. 34C10, 39A11, 39A13

1. INTRODUCTION

In this paper, we consider the second order nonlinear dynamic equation

(1.1)
(

p(t)x∆
)∆

+ q(t)xσ +
n

∑

i=1

qi(t)|xσ|αi−1xσ = e(t), t ≥ t0

on time scales, where p, q, qi, e : T → R are right-dense continuous with p > 0, and

the exponents satisfy

α1 > · · · > αm > 1 > αm+1 > · · ·αn > 0.

A time scale T is an arbitrary nonempty closed subset of the real numbers R.

The most well-known examples are T = R and T = Z. For details, see the monograph

[1].
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On a time scale T , the forward and backward jump operators are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t},

where inf ∅ := sup T and sup ∅ := inf T.

A point t ∈ T, t > inf T, is said to be left-dense if ρ(t) = t, right-dense if

t < sup T and σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The

graininess function µ for a time scale T is defined by µ(t) := σ(t)−t. For any function

f : T → R, the notation fσ(t) denotes f(σ(t)). Let a, b ∈ T with a ≤ b. The closed

interval [a, b]T is defined to be the set {t ∈ T : a ≤ t ≤ b}. Other types of intervals

are defined similarly.

By a proper solution of Eq. (1.1), we mean a function x(t) which is nontrivial

in the neighborhood of infinity and which satisfies the equation for t ∈ [t0,∞)T. As

usual, such a solution x(t) is said to be oscillatory if it is neither eventually positive

nor eventually negative. The equation is called oscillatory if every proper solution is

oscillatory.

In the case T = R, Eq. (1.1) becomes a second order differential equation

(1.2) (p(t)x′)′ + q(t)x +
n

∑

i=1

qi(t)|x|αi−1x = e(t), t ≥ t0

while if T = Z, then it is a second order difference equation

(1.3) ∆(p(k)∆x(k))+q(k)x(k+1)+

n
∑

i=1

qi(k)|x(k+1)|αi−1x(k+1) = e(k), k ≥ k0.

There are many other special time scales useful in different point of view. In

quantum calculus, the corresponding q-difference equation reads

(1.4) ∆q (p(t)∆qx(t)) + r(t)x(qt) +
n

∑

i=1

ri(t)|x(qt)|αi−1x(qt) = e(t), t ≥ t0

where t0, t ∈ qN := {1, q, q2, . . .}, (q > 1 is a real number and n is a natural number),

and

∆qf(t) = [f(qt) − f(t)]/(qt − t).

Taking T = qN, we see that σ(t) = qt and hence f∆(t) = ∆qf(t).

The oscillation behavior of Eq. (1.2) has been studied by Sun and Wong [2] and

Sun and Meng [3]. Because such equations arise in population dynamics, as in the

growth of bacteria population with competitive species, further research is necessary.

When n = 1 and q(t) ≡ 0, Eq. (1.2) becomes

(1.5) (p(t)x′(t))
′

+ q1(t)|x(t)|α−1x(t) = e(t), t ≥ t0.

The results obtained in [2, 3] reduce to those of El-Sayed [4], Sun et al. [5], Nasr [6],

and Sun and Wong [7]. To the best of our knowledge there is no oscillation criteria

available in the literature for Eq. (1.3), not to mention for Eq. (1.5).
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In the last decade there has been a great deal of research activity on the oscillation

theory of dynamic equations on time scales. We refer the reader to the papers [8, 9,

10, 11, 12, 13], where the authors have usually considered equations of the form

(

r(t)|x∆(t)|α−1x∆(t)
)∆

+ p(t)|x(τ(t))|β−1x(τ(t)) + q(t)|x(θ(t))|γ−1x(θ(t)) = f(t),

where β, γ > α, excluding the equations with mixed nonlinearities.

Very recently, Agarwal and Zafer [8] has obtained interval oscillation criteria

similar to the ones given by Sun and Wong [2] for equations with mixed nonlinearities

(

r(t)Φα(x∆)
)∆

+ f(t, xσ) = e(t)

where

f(t, x) = q(t)Φα(x) +
n

∑

i=1

qi(t)Φβi
(x), Φ∗(u) = |u|∗−1u.

In the present work, our aim is to extend the paper [3] to time scale calculus,

and hence derive some new interval oscillation criteria for Eq. (1.3) and Eq. (1.4) in

the special cases T = Z and T = qN, respectively. We also state similar oscillation

criteria for q-difference equations, the quantum calculus case. We use a technique

similar to the one introduced by Kong [14] and a well-known arithmetic-geometric

mean inequality [15] to establish several interval oscillation criteria for Eq. (1.1).

2. LEMMAS

We need the following preparatory lemmas. The first two are given by Sun and

Wong [2, Lemma 1], the last two are quite elementary via differential calculus, see

[2, 16].

Lemma 2.1. For any given n-tuple {α1, α2, . . . , αn} satisfying

α1 > · · · > αm > 1 > αm+1 > · · · > αn > 0,

there corresponds an n-tuple {η1, η2, . . . , ηn} such that

(2.1)

n
∑

i=1

αiηi = 1,

n
∑

i=1

ηi < 1, 0 < ηi < 1.

Lemma 2.2. For any given n-tuple {α1, α2, . . . , αn} satisfying

α1 > · · · > αm > 1 > αm+1 > · · · > αn > 0,

there corresponds an n-tuple {η1, η2, . . . , ηn} such that

(2.2)

n
∑

i=1

αiηi = 1,

n
∑

i=1

ηi = 1, 0 < ηi < 1.
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Lemma 2.3. If A ≥ 0, B ≥ 0, and γ > 1 are real numbers, then

A uγ − γ(γ − 1)1/γ−1A1/γB1−1/γ u + B ≥ 0, u ∈ [0,∞).

Lemma 2.4. If C ≥ 0, D ≥ 0, and 0 < γ < 1 are real numbers, then

Cu − Duγ ≥ −(1 − γ)γγ/(1−γ)Cγ/(γ−1)D1/(1−γ), u ∈ [0,∞).

3. THE MAIN RESULTS

A function H(t, s) : T
2 → R is said to belong to HT if and only if it is a right-

dense continuous, has continuous ∆-partial derivatives, and satisfies H(t, t) = 0 and

H(t, s) 6= 0 for all t 6= s.

We denote by H1(t, s) and H2(t, s) the ∆-partial derivatives H∆t(t, s) and H∆s(t, s)

of H(t, s) with respect to t and s, respectively.

The theorems below extend the results obtained in [3] to arbitrary time scales

and coincide with them when H2(t, s) is replaced by H(t, s). Indeed, if one sets

H(t, s) =
√

U(t, s) then it follows that

H1(t, s) =
U1(t, s)

√

U(σ(t), s) +
√

U(t, s)
, H2(t, s) =

U2(t, s)
√

U(t, σ(s)) +
√

U(t, s)
.

When T = R, they become

∂H(t, s)

∂t
=

∂U(t, s)/∂t

2
√

U(t, s)
,

∂H(t, s)

∂s
=

∂U(t, s)/∂s

2
√

U(t, s)

as in [3]. However, we choose to keep H2(t, s) instead of U(t, s) for simplicity.

Theorem 3.1. Suppose that for any given T ∈ T, there exist a1, b1, a2, b2 ∈ [T,∞)T

such that

(3.1) qi(t) ≥ 0 for t ∈ [a1, b1]T ∪ [a2, b2]T, (i = 1, 2, . . . , n)

and

(3.2) (−1)ke(t) ≥ 0 (6≡ 0) for t ∈ [ak, bk]T, (k = 1, 2).

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.1) in Lemma 2.1. If there exist a

function H ∈ HT and numbers ck ∈ (ak, bk)T such that

1

H2(ck, ak)

∫ ck

ak

[

H2(σ(s), ak)Q(s) − p(s)H1
2(s, ak)

]

∆s

+
1

H2(bk, ck)

∫ bk

ck

[

H2(bk, σ(s))Q(s) − p(s)H2
2(bk, s)

]

∆s > 0(3.3)

for k = 1, 2, where

Q(t) = q(t) + k0|e(t)|η0

n
∏

i=1

qηi

i (t), k0 =
n

∏

i=0

ηi
−ηi , η0 = 1 −

n
∑

i=1

ηi,

then Eq. (1.1) is oscillatory.
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Proof. To arrive at a contradiction, let us suppose that x is a nonoscillatory solution

of (1.1). First, we assume that x(t) is positive for all t ≥ t1, for some t1 ∈ [t0,∞)T.

Let t ∈ [a1, b1]T, where a1 ≥ t1 is sufficiently large.

Define

w(t) = −p(t)
x∆(t)

x(t)
.

It follows that

w∆(t) = −(p(t)x∆(t))∆

x(σ(t))
+ p(t)

(x∆(t))2

x(t)x(σ(t))
,

and hence

(3.4) w∆(t) = q(t) +
n

∑

i=1

qi(t)x
αi−1(σ(t)) − |e(t)|

x(σ(t))
+

1

p(t) − µ(t)w(t)
w2(t).

Note that

p(t) − µ(t)w(t) = p(t)
[x(t) + µ(t)x∆(t)

x(t)

]

= p(t)
x(σ(t))

x(t)
> 0.

By our assumptions (3.1) and (3.2), we have qi(t) ≥ 0 and e(t) ≤ 0 on [a1, b1]T. Set

ui =
1

ηi

qi(t)x
αi−1(σ(t)), u0 =

1

η0

|e(t)|
x(σ(t))

.

Then (3.4) becomes

(3.5) w∆(t) = q(t) +
n

∑

i=0

ηiui +
1

p(t) − µ(t)w(t)
w2(t).

In view of (3.5) and the arithmetic-geometric mean inequality, see [15],

n
∑

i=0

ηiui ≥
n

∏

i=0

uηi

i ,

we see that

w∆(t) ≥ q(t) + k0|e(t)|η0

n
∏

i=1

qηi

i (t) +
1

p(t) − µ(t)w(t)
w2(t)

= Q(t) +
1

p(t) − µ(t)w(t)
w2(t).(3.6)

Note that

H2(t, σ(s))w∆(s) = (H2(t, s)w(s))∆s − (H2(t, s))∆sw(s)

= (H2(t, s)w(s))∆s −
(

H∆s(t, s)H(t, s) + H(t, σ(s))H∆s(t, s)
)

w(s)

= (H2(t, s)w(s))∆s − H∆s(t, s)
(

H(t, σ(s)) − µ(s)H∆s(t, s)
)

w(s)

−H(t, σ(s))H∆s(t, s)w(s)

= (H2(t, s)w(s))∆s − 2H∆s(t, s)H(t, σ(s))w(s) + µ(s)
(

H∆s(t, s)
)2

w(s).
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Using this identity in (3.6) we have

H2(t, σ(s))Q(s) ≤ (H2(t, s)w(s))∆s − 2H∆s(t, s)H(t, σ(s))w(s)

+ µ(s)
(

H∆s(t, s)
)2

w(s) − H2(t, σ(s))

p(s) − µ(s)w(s)
w2(s)

= (H2(t, s)w(s))∆s + p(s)
(

H∆s(t, s)
)2

−
( H(t, σ(s))w(s)

√

p(s) − µ(s)w(s)
+

√

p(s) − µ(s)w(s)H∆s(t, s)
)2

Thus,

(3.7) H2(t, σ(s))Q(s) − p(s)
(

H∆s(t, s)
)2

≤ (H2(t, s)w(s))∆s.

It follows from (3.7) that

(3.8)
1

H2(b1, c1)

∫ b1

c1

[

H2(b1, σ(s))Q(s) − p(s)H2
1 (b1, s)

]

∆s ≤ −w(c1).

In a similar manner, one can easily obtain that

(3.9) H2(σ(t), s)Q(t) − p(t)
(

H∆t(t, s)
)2

≤ (H2(t, s)w(t))∆t ,

and hence

(3.10)
1

H2(c1, a1)

∫ c1

a1

[

H2(σ(t), a1)Q(t) − p(t)H2
2 (t, a1)

]

∆t ≤ w(c1).

Finally, from (3.8) and (3.10) we have

1

H2(c1, a1)

∫ c1

a1

[

H2(σ(t), a1)Q(t) − p(t)H2
2 (t, a1)

]

∆t

+
1

H2(b1, c1)

∫ b1

c1

[

H2(b1, σ(s))Q(s) − p(s)H2
1 (b1, s)

]

∆s ≤ 0,

which contradicts (3.3). This completes the proof when x(t) is eventually positive.

The proof when x(t) is eventually negative is analogous by repeating the arguments

on the interval [a2, b2]T instead of [a1, b1]T.

Theorem 3.1 fails to apply if e(t) ≡ 0. In that case, we give the following theorem.

Theorem 3.2. Suppose that for any given T ∈ T, there exist a, b ∈ [T,∞)T such that

(3.11) qi(t) ≥ 0 for t ∈ [a, b]T, (i = 1, 2, . . . , n).
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Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.2. If there exist a

function H ∈ HT and a number c ∈ (a, b)T such that

1

H2(c, a)

∫ c

a

[

H2(σ(s), a)Q̃(s) − p(s)H1
2(s, a)

]

∆s

+
1

H2(b, c)

∫ b

c

[

H2(b, σ(s))Q̃(s) − p(s)H2
2(b, s)

]

∆s > 0(3.12)

where

Q̃(t) = q(t) + k1

n
∏

i=1

qηi

i (t), k1 =

n
∏

i=1

ηi
−ηi

then Eq. (1.1) with e(t) ≡ 0 is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we arrive at

(3.13) w∆(t) = q(t) +

n
∑

i=1

ηiui +
1

p(t) − µ(t)w(t)
w2(t).

The arithmetic-geometric mean inequality we now need is

n
∑

i=1

ηiui ≥
n

∏

i=1

uηi

i .

The remainder of the proof is exactly the same as that of Theorem 3.1.

As in [2, 3], we can also remove the sign condition on the coefficients of the

sublinear terms by requiring that e(t) never vanishes on the intervals of interest.

Theorem 3.3. Suppose that for any given T ∈ T, there exist a1, b1, a2, b2 ∈ [T,∞)T

such that

(3.14) qi(t) ≥ 0 for t ∈ [a1, b1]T ∪ [a2, b2]T, (i = 1, 2, . . . , m)

and

(3.15) (−1)ke(t) > 0 for t ∈ [ak, bk]T, (k = 1, 2).

If there exist a function H ∈ HT, positive numbers λi and ǫi with

m
∑

i=1

λi +
n

∑

i=m+1

ǫi = 1

and numbers ck ∈ (ak, bk)T such that

1

H2(ck, ak)

∫ ck

ak

[

H2(σ(s), ak)Q̂(s) − p(s)H1
2(s, ak)

]

∆s

+
1

H2(bk, ck)

∫ bk

ck

[

H2(bk, σ(s))Q̂(s) − p(s)H2
2(bk, s)

]

∆s > 0(3.16)
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for k = 1, 2, where

Q̂(t) = q(t) +

m
∑

i=1

µi

(

λi|e(t)|
)1− 1

αi q
1

αi

i (t) −
n

∑

i=m+1

δi

(

ǫi|e(t)|
)1− 1

αi q̂
1

αi

i (t)

with

µi = αi(αi − 1)
1

αi
−1

, δi = αi(1 − αi)
1

αi
−1

and q̂i(t) = max{−qi(t), 0},

then Eq. (1.1) is oscillatory.

Proof. Suppose that Eq. (1.1) has a nonoscillatory solution. We may assume that

x(t) is eventually positive on [a1, b1]T when a1 sufficiently large. If x(t) is eventually

negative, then one can repeat the proof on the interval [a2, b2]T.

We rewrite Eq. (1.1) for t ∈ [a1, b1]T as

(

p(t)x∆(t)
)∆

+ q(t)x(σ(t)) +

m
∑

i=1

[

qi(t)x
αi(σ(t)) − λie(t)

]

+

n
∑

i=m+1

[

qi(t)x
αi(σ(t)) − ǫie(t)

]

= 0.

Applying Lemma 2.3 to each term in the first sum, we see that

(

p(t)x∆(t)
)∆

+ q(t)x(σ(t)) +

m
∑

i=1

µi

(

λi|e(t)|
)1− 1

αi q
1

αi

i (t)x(σ(t))

+

n
∑

i=m+1

[

qi(t)x
αi(σ(t)) − ǫie(t)

]

≤ 0.

Set

w(t) = −p(t)
x∆(t))

x(t)
.

In view of the last inequality, we have

w∆(t) = q(t) +

m
∑

i=1

µi

(

λi|e(t)|
)1− 1

αi q
1

αi

i (t)

+
1

x(σ(t))

n
∑

i=m+1

[

qi(t)x
αi(σ(t)) − ǫie(t)

]

+
w2(t)

p(t) − µ(t)w(t)
.(3.17)

Noting that qi(t) = −(−qi(t)) ≥ −q̂i(t) and applying Lemma 2.4 for each term in the

second sum in (3.17) with

u = x(σ(t)), D = q̂i(t), λ = αi and C = −λ(1 − λ)
1

λ
−1

(

ǫ|e(t)|
)1− 1

λ q̂
1

λ

i (t),

we obtain

w∆(t) ≥ Q̂(t) +
w2(t)

p(t) − µ(t)w(t)
.

The remainder of the proof is the same as that of Theorem 3.1, hence it is omitted.
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4. SPECIAL CASES

In this section, we restate the theorems obtained above for the particular time

scales T = R, T = Z, and T = qN. The results for T = R coincide with the ones

obtained in [3] when H2(t, s) is replaced by H(t, s), see the note before Theorem 3.1 in

Section 1. The interval oscillation criteria given for T = Z and T = qN are completely

new.

4.1. Differential Equations. Denote by H1(t, s) and H2(t, s) the usual partial

derivatives of H(t, s) with respect to the first and second variables, respectively. Note

that H(t, t) = 0 for all t and H(t, s) 6= 0 for all t 6= s.

Theorem 4.1. Suppose that for any given T ≥ t0, there exist real numbers a1, b1, a2,

b2 satisfying T ≤ a1 < b1, T ≤ a2 < b2 such that

qi(t) ≥ 0 for t ∈ [a1, b1] ∪ [a2, b2], (i = 1, 2, . . . , n)

and

(−1)ke(t) ≥ 0 (6≡ 0) for t ∈ [ak, bk], (k = 1, 2).

Let (η1, η2, . . . , ηn) be an n-tuple satisfying (2.1) in Lemma 2.1. If there exist a func-

tion H ∈ HR and real numbers ck ∈ (ak, bk) such that

1

H2(ck, ak)

∫ ck

ak

[

H2(s, ak)Q(s) − p(s)H1
2(s, ak)

]

ds

+
1

H2(bk, ck)

∫ bk

ck

[

H2(bk, s)Q(s) − p(s)H2
2(bk, s)

]

ds > 0(4.1)

for k = 1, 2, where Q is the same as in Theorem 3.1, then Eq. (1.2) is oscillatory.

Theorem 4.2. Suppose that for any given T ≥ t0, there exist real numbers a and b

satisfying T ≤ a < b such that

qi(t) ≥ 0 for t ∈ [a, b], (i = 1, 2, . . . , n).

Let {η1, η2, . . . , ηn}, be an n-tuple satisfying (2.2) in Lemma 2.2. If there exist a

function H ∈ HR and a real number c ∈ (a, b) such that

1

H2(c, a)

∫ c

a

[

H2(s, a)Q̃(s) − p(s)H1
2(s, a)

]

ds

+
1

H2(b, c)

∫ b

c

[

H2(b, s)Q̃(s) − p(s)H2
2(b, s)

]

ds > 0(4.2)

where Q̃ is the same as in Theorem 3.2, then Eq. (1.2) with e(t) ≡ 0 is oscillatory.
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Theorem 4.3. Suppose that for any given T ≥ t0, there exist real numbers a1, b1, a2,

b2 satisfying T ≤ a1 < b1, T ≤ a2 < b2 such that

qi(t) ≥ 0 for t ∈ [a1, b1] ∪ [a2, b2], (i = 1, 2, . . . , m)

and

(−1)ke(t) > 0 for t ∈ [ak, bk], (k = 1, 2).

If there exist a function H ∈ HR, positive numbers λi and µi with
m

∑

i=1

λi +

n
∑

i=m+1

ǫi = 1,

and numbers ck ∈ (ak, bk) such that

1

H2(ck, ak)

∫ ck

ak

[

H2(s, ak)Q̂(s) − p(s)H1
2(s, ak)

]

ds

+
1

H2(bk, ck)

∫ bk

ck

[

H2(bk, s)Q̂(s) − p(s)H2
2(bk, s)

]

ds > 0(4.3)

for k = 1, 2, where Q̂ is the same as in Theorem 3.3, then Eq. (1.2) is oscillatory.

4.2. Difference Equations. Let [a, b]N denote a discrete interval, i.e.,

[a, b]N = {a, a + 1, a + 2, . . . , b}, a, b ∈ N.

Note that HN denotes the functions defined on N
2 and satisfying H(j, j) = 0 for all

j and H(j, i) 6= 0 for all j 6= i.

Theorem 4.4. Suppose that for any given natural number T ≥ t0, there exist natural

numbers a1, b1, a2, b2 satisfying T ≤ a1 < b1, T ≤ a2 < b2 such that

qi(j) ≥ 0 for j ∈ [a1, b1]N ∪ [a2, b2]N, (i = 1, 2, . . . , n)

and

(−1)ke(j) ≥ 0 (6≡ 0) for j ∈ [ak, bk]N, (k = 1, 2).

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.1) in Lemma 2.1. If there exist a

function H ∈ HN and numbers ck ∈ (ak, bk)N such that

1

H2(ck, ak)

ck−1
∑

j=ak

[

H2(j + 1, ak)Q(j) − p(j)[H(j + 1, ak) − H(j, ak)]
2

]

+
1

H2(bk, ck)

bk−1
∑

j=ck

[

H2(bk, j + 1)Q(j) − p(j)[H(bk, j + 1) − H(bk, j)]
2

]

> 0

for k = 1, 2, where

Q(j) = q(j) + k0|e(j)|η0

n
∏

i=1

qηi

i (j), k0 =
n

∏

i=0

ηi
−ηi , η0 = 1 −

n
∑

i=1

ηi,
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then Eq. (1.3) is oscillatory.

Theorem 4.5. Suppose that for any given natural number T ≥ t0, there exist natural

numbers a and b satisfying T ≤ a < b such that

qi(j) ≥ 0 for j ∈ [a, b]N, (i = 1, 2, . . . , n).

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.2. If there exist a

function H ∈ HN and a number c ∈ (a, b)N such that

1

H2(c, a)

c−1
∑

j=a

[

H2(j + 1, a)Q̃(j) − p(j)[H(j + 1, a) − H(j, a)]2
]

+
1

H2(b, c)

b−1
∑

j=c

[

H2(b, j + 1)Q̃(j) − p(j)[H(b, j + 1) − H(b, j)]2
]

> 0

where

Q̃(j) = q(j) + k1

n
∏

i=1

qηi

i (j), k1 =

n
∏

i=1

ηi
−ηi

then Eq. (1.3) with e(k) ≡ 0 is oscillatory.

Theorem 4.6. Suppose that for any given natural number T ≥ t0, there exist natural

numbers a1, b1, a2, b2 satisfying T ≤ a1 < b1, T ≤ a2 < b2 such that

qi(j) ≥ 0 for j ∈ [a1, b1]N ∪ [a2, b2]N, (i = 1, 2, . . . , m)

and

(−1)ke(j) > 0 for j ∈ [ak, bk]N, (k = 1, 2).

If there exist a function H ∈ HN, positive numbers λi and ǫi with
m

∑

i=1

λi +

n
∑

i=m+1

ǫi = 1,

and numbers ck ∈ (ak, bk)N such that

1

H2(ck, ak)

ck−1
∑

j=ak

[

H2(j + 1, ak)Q̂(j) − p(j)[H(j + 1, ak) − H(j, ak)]
2

]

+
1

H2(bk, ck)

bk−1
∑

ck

[

H2(bk, j + 1)Q̂(j) − p(j)[H(bk, j + 1) − H(bk, j)]
2

]

> 0

for k = 1, 2, where

Q̂(j) = q(j) +

m
∑

i=1

µi

(

λi|e(j)|
)1− 1

αi q
1

αi

i (j) −
n

∑

i=m+1

δi

(

ǫi|e(j)|
)1− 1

αi q̂
1

αi

i (j)

with

µi = αi(αi − 1)
1

αi
−1

, δi = αi(1 − αi)
1

αi
−1

and q̂i(j) = max{−qi(j), 0},

then Eq. (1.3) is oscillatory.
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4.3. q-Difference Equations. Let [a, b]q denote a q-interval, i.e.,

[a, b]q ≡ [qa, qb]qN = {qa, qa+1, qa+2, . . . , qb}, a, b ∈ N, q ∈ R, q > 1.

Hq denotes the functions defined on qN × qN and satisfying H(j, j) = 0 for all j and

H(j, i) 6= 0 for all j 6= i. Note that

H1(t, s) =
H(qt, s) − H(t, s)

(q − 1)t
, H2(t, s) =

H(t, qs) − H(t, s)

(q − 1)s
.

Theorem 4.7. Suppose that for any given natural number T ≥ t0, there exist natural

numbers a1, b1, a2, b2 satisfying T ≤ a1 < b1, T ≤ a2 < b2 such that

ri(t) ≥ 0 for t ∈ [a1, b1]q ∪ [a2, b2]q, (i = 1, 2, . . . , n)

and

(−1)ke(t) ≥ 0 (6≡ 0) for t ∈ [ak, bk]q, (k = 1, 2).

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.1) in Lemma 2.1. If there exist a

function H ∈ Hq and numbers qck ∈ (ak, bk)q such that

1

H2(qck , qak)

ck−1
∑

j=ak

qj

[

H2(qj+1, qak)Q(qj) − p(qj)H1
2(qj, qak)

]

+
1

H2(qbk , qck)

bk−1
∑

j=ck

qj

[

H2(qbk , qj+1)Q(qj) − p(qj)H2
2(qbk , qj)

]

> 0

for k = 1, 2, where

Q(t) = r(t) + k0|e(t)|η0

n
∏

i=1

rηi

i (t), k0 =

n
∏

i=0

ηi
−ηi, η0 = 1 −

n
∑

i=1

ηi,

then Eq. (1.4) is oscillatory.

Theorem 4.8. Suppose that for any given natural number T ≥ t0, there exist natural

numbers a and b satisfying T ≤ a < b such that

ri(t) ≥ 0 for t ∈ [a, b]q, (i = 1, 2, . . . , n).

Let {η1, η2, . . . , ηn} be an n-tuple satisfying (2.2) in Lemma 2.2. If there exist a

function H ∈ Hq and a number qc ∈ (a, b)q such that

1

H2(qc, qa)

c−1
∑

j=a

qj

[

H2(qj+1, qa)Q̃(qj) − p(qj)H1
2(qj, qa)

]

+
1

H2(qb, qc)

b−1
∑

j=c

qj

[

H2(qb, qj+1)Q̃(qj) − p(qj)H2
2(qb, qj)

]

> 0

where

Q̃(t) = r(t) + k1

n
∏

i=1

rηi

i (t), k1 =
n

∏

i=1

ηi
−ηi
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then Eq. (1.4) with e(t) ≡ 0 is oscillatory.

Theorem 4.9. Suppose that for any given natural number T ≥ t0, there exist natural

numbers a1, b1, a2, b2 satisfying T ≤ a1 < b1, T ≤ a2 < b2 such that

ri(t) ≥ 0 for t ∈ [a1, b1]q ∪ [a2, b2]q, (i = 1, 2, . . . , m)

and

(−1)ke(t) > 0 for t ∈ [ak, bk]q, (k = 1, 2).

If there exist a function H ∈ Hq, positive numbers λi and µi with

m
∑

i=1

λi +
n

∑

i=m+1

µi = 1,

and numbers qck ∈ (ak, bk)q such that

1

H2(qck , qak)

ck−1
∑

j=ak

qj

[

H2(qj+1, qak)Q̂(qj) − p(qj)H1
2(qj, qak)

]

+
1

H2(qbk , qck)

bk−1
∑

j=ck

qj

[

H2(qbk , qj+1)Q̂(qj) − p(qj)H2
2(qbk , qj)

]

> 0

for k = 1, 2, where

Q̂(t) = r(t) +

m
∑

i=1

µi

(

λi|e(t)|
)1− 1

αi r
1

αi

i (t) −
n

∑

i=m+1

δi

(

ǫi|e(t)|
)1− 1

αi r̂
1

αi

i (t)

with

µi = αi(αi − 1)
1

αi
−1

, δi = αi(1 − αi)
1

αi
−1

and r̂i(t) = max{−ri(t), 0},

then Eq. (1.4) is oscillatory.

5. EXAMPLES

We consider the case n = 2. The numbers in Lemma 2.1 become

η1 =
1 − α2(1 − η0)

α1 − α2
, η2 =

α1(1 − η0) − 1

α1 − α2
,

where η0 is any positive number with α1η0 < α1 − 1. It follows from Lemma 2.2 that

η1 =
1 − α2

α1 − α2
, η2 =

α1 − 1

α1 − α2
.

In all examples, we have taken H(t, s) = t − s, and by the choice of η0 =

1/4, α1 = 3/2, α2 = 1/2, we have k0 = (1/4)−1/4(5/8)−5/8(1/8)−1/8 and k1 =

(1/2)−1/2(1/2)−1/2 = 2. The summations and integrations are computed by using

the computer algebra system Mathematica 6.0.
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Example 5.1. Consider the forced differential equation

x′′(t) + m sin t x(t) + m1 cos t |x(t)|1/2x(t) + m2 sin 2t |x(t)|−1/2x(t) = A cos 6t

where A = 0 or A = 1, and m, m1 and m2 are real numbers with m1, m2 > 0.

If A = 1, we take a1 = 2nπ + π/12, c1 = 2nπ + π/6, b1 = 2nπ + π/4 = a2,

c2 = 2nπ + π/3, and b2 = 2nπ + 5π/12, n ∈ N, and see that

Q(t) = m sin t + k0| cos 6t|1/4
(

m1 cos t
)5/8(

m2 sin 2t
)1/8

.

In case A = 0, we take a = 2nπ + π/12, c = 2nπ + π/6 and b = 2nπ + π/4 and have

Q̃(t) = m sin t + k1(m1 cos t)1/2
(

m2 sin 2t
)1/2

.

Applying Theorem 4.1 and Theorem 4.2 we see that the above equation is oscillatory

when A = 1, m = m1 = 1, m2 > 2.9 × 105; when A = 1, m = m2 = 1, m1 > 12.5;

when A = 1, m1 = m2 = 1, m > 88; when A = 1, m = −1, m2 = 1, m1 > 12.6; when

A = 1, m = −1, m1 = 1, m2 > 3.1 × 105; when A = 0, m = m1 = 1, m2 > 118;

when A = 0, m = m2 = 1, m1 > 118; when A = 0, m1 = m2 = 1, m > 87.5; when

A = 0, m = −1, m2 = 1, m1 > 121; when A = 0, m = −1, m1 = 1, m2 > 121.

Example 5.2. Consider for T = Z the forced difference equation

∆2x(k) + m sin(
πk

12
)x(k + 1) + m1 cos(

πk

12
)|x(k + 1)|1/2x(k + 1)

+ m2 sin(
πk

6
)|x(k + 1)|−1/2x(k + 1) = A sin(

πk

2
)

where A = 0 or A = 1, and m, m1 and m2 are real numbers with m1, m2 > 0. If

A = 1, let a1 = 2+24n, c1 = 3+24n, b1 = 4+24n = a2, c2 = 5+24n and b2 = 6+24n,

n ∈ N, and see that

Q(j) = m sin(
πj

12
) + k0| sin(

πj

2
)|1/4

(

m1 cos(
πj

12
)
)5/8(

m2 sin(
πj

6
)
)1/8

.

In case A = 0, we take a = 2 + 24n, c = 3 + 24n and b = 4 + 24n and have

Q̃(j) = m sin(
πj

12
) + k1

(

m1 cos(
πj

12
)
)1/2(

m2 sin(
πj

6
)
)1/2

.

From Theorem 4.4 and Theorem 4.5 it follows that the equation is oscillatory when

A = 1, m1, m2 > 0, m > 4/
√

3; when A = 0, m + 2
√

3(m1m2)
1/2 > 4.

Example 5.3. Consider for T = qN = 2N, the forced 2-difference equation

∆2
2x(t) + mx(2t) + m1|x(2t)|1/2x(2t) + m2|x(2t)|−1/2x(2t) = Ag(t)

where A = 0 or A = 1, m, m1 and m2 are real numbers with m1, m2 > 0, and

g(t) =











1, t ∈ {224n+l, l = 2, 4, 6, . . .}
−1, t ∈ {224n+l, l = 1, 3, 5, . . .}

0, t ∈ 2N\{224n+l, l = 1, 2, 3, . . .}.
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If A = 1, we choose a1 = 2 + 24n, c1 = 3 + 24n, b1 = 4 + 24n = a2, c2 = 5 + 24n

and b2 = 6 + 24n, n ∈ N. We have

Q(t) = m + k0m
5/8
1 m

1/8
2 .

In case A = 0, we take a = 2 + 24n, c = 3 + 24n, b = 4 + 24n, and have

Q̃(t) = m + k1(m1m2)
1/2.

We conclude from Theorem 4.7 and Theorem 4.8 that the above equation is oscillatory

when A = 1, m + k0m
5/8
1 m

1/8
2 > 0; when A = 0, m + k1(m1m2)

1/2 > 0.
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