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ABSTRACT. A mathematical model of the signal transduction process, involving hormone coupled

receptors and an inhibiting enzyme, under impulsive depressant treatment, is proposed and analyzed.

We show that there is a stable periodic solution, at the vanishing density of the ligand bound

receptors on the cell membrane and plasmalemma, when the impulsive period is less than some

critical value. The conditions for permanence of the system are then given. Finally, it is shown that

as the impulsive period increases beyond a certain critical value, the emergence of stable positive

periodic solution may be observed under appropriate conditions on the system parameters.
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1. INTRODUCTION

Many systems in nature are impulsive, in which a system variable experiences

a quick jump, or an abrupt drop, at equal time intervals (periodic impulses). For

example, a predator prey system with periodic harvesting, or crop dusting. A signal-

ing process among living cells could experience signal pulses that stimulate or inhibit

certain responses that may become difficult to control. Therefore, the stability and

permanence of such systems are of great interest in clinical applications.

In this paper, a system of nonlinear differential equations describing the signal

transduction process in human, under impulsive treatment of depressant drugs, is

considered. The model is based on that proposed by Iglesias [1] in 2003, involving

membrane bound receptors which, on binding with the signaling hormone or ligand,

relay external messages to a series of internal reactants, which in turn trigger key

cellular functions, such as secretion of the secondary hormone cAMP (cyclic adenosine

mono-phosphate), a process that is also regulated by an inhibitor. We modified, in [2]

and [3], the model in [1] by allowing some transport of the hormone coupled receptors

across the cell membrane to take place to a certain extent. The model also takes into
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account the amplification effect that the secondary hormone exerts on the primary

external signals. In [4], measurements of intracellular cAMP were made using Fisher

rat thyroid cells expressing type II vasopressin receptors. This experimental data

was then fitted with the cAMP level calculated from the model in [2], observing that

the simulated curve fits the experimental data rather well although there are some

discrepancies that need further investigations. It also suggests that other physical

factors may be at play which we need to take into account.

Abnormalities of signal transduction pathways have been linked to the develop-

ment of many serious disorders, such as cancer which derives from a cell that has lost

the ability to respond normally to controls from outside, or inside, the cell [5]. Many

tumors produce ectopical amounts of biologically active hormones that create dys-

functions of the signal transduction process leading to abnormal effects. Hormones

and antihormones are used to treat certain types of cancer. Many cancers are related

to the status of hormones in the body. An avenue of cancer treatment is to utilize

appropriate hormones as chemotherapeutic agents. For example, tamoxifen can inter-

fere with the offensive effects of estrogen, resulting in the inhibition of cellular growth

of the tumor. For another example, Vasopressin has been proposed for its potential

effect of slowing down the flow of blood that tumors depend on for growth [6].

We incorporate such periodic drug treatments or external signals by using the

following impulsive system.

dx1

dt
= −a1x1 −

b1x1

b2 + x2
1

+
b3x1

b4x1 + x2
≡ f1(x1, x2), t 6= kT(1.1)

dx2

dt
= −a2x2 + a3x1 ≡ f2(x1, x2), t 6= kT(1.2)

(1.3)
△x1 = −px1

△x2 = µ

}

t = kT,

k ∈ Z+, where

△xi(t) = xi(t
+) − xi(t), i = 1, 2,

T is the period of the impulsive effect of drug treatments, x1(t) is the density above

the basal level of ligand coupled receptors (LCR) on the cell membrane, x2(t) is that

of the inhibiting agent, a1 is the specific removal rate of x1 by natural means, a2 is

the specific removal rate of x2 by natural means, and a3 is the rate of production of

x2 per unit of the hormone coupled receptors x1.

The second term on the right of equation (1.1) accounts for the internalization of

x2 across the cell membrane which is assumed here to saturate as x1 becomes high.

The third term accounts for the amplification effect of the secondary hormone on the

first messenger’s signaling strength. In [1], this effect was assumed to vary directly as

the level of the secondary hormone C(t) at any time t, the production rate of which
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was assumed to vary as the square of the amount R of activated regulators, namely,

the activated units of adenylate cyclase (AD). Assuming that cAMP equilibrates

relatively quickly, they then arrived at an expression for C(t) of the form

(1.4) C(t) = b̃5R
2 + k0

where b̃5 is a positive constant, and k0 corresponds to the zero order secretion rate

of cAMP. The activated units of AD is related to the signaling strength S, and the

inhibiting agents I as:

(1.5) R =
k̃S

b4S + I

so that, according to [1] and [2], the level of cAMP at any time t may be expressed

in the form

(1.6) C(t) =
b5S

2

(b4S + I)2
+ k0

where b5 = k̃b̃5. Details of the derivation may be found in [1] and [2].

In this paper, the primary hormone signaling strength is reflected in the density

x1 of LCR above the basal level, while the inhibiting strength is reflected by x2. We

consider that it may be more reasonable to assume that the production rate of cAMP

varies as the current level of the activated units of AD. Therefore, in place of (1.6),

we arrive at

(1.7) C(t) =
b5x1

b4x1 + x2

in which we have also assumed that the zero order secretion rate of the secondary

hormone (cAMP) is negligible at the basal level of LCR (x1 = 0), so that k0 = 0.

This then leads to the third term on the right of (1.1) where b3 = kb5, k being a

constant of variation.

Equation (1.3) accounts for the depressive effect of the periodic drug treatment

which reduces the stimulating strength of the first messenger resulting in the decrease

in LCR by the fraction p, 0 < p < 1, while the inhibiting effect is increased by the

amount µ, µ > 0.

In Section 2, we give some lemmas which are useful for proving our main results.

In Section 3, the conditions which assure the locally asymptotic stability of the peri-

odic solution at the vanishing level of LCR are given. Permanence is then shown to be

possible provided the treatment period T is sufficiently large. Finally, the existence

and stability of positive periodic solution to the system (1.1)–(1.3) is investigated in

Section 4. The last section then contains numerical results and concluding remarks.
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2. PRELIMINARIES

In order to prove our main results, we need to give some lemmas which need the

following definition [7].

Definition 2.1. Let V : R+ × R
2
+ → RT , where R+ = [0,∞), be continuous in

(nT, (n + 1)T ] × R
2
+ and for each x ∈ R

2
+, n ∈ Z+, lim

(t,y)→(nT+,x)
V (t, y) = V (nT+, x)

exists. Also, let V be locally Lipschitzian in x. Then, for (t, x) ∈ (nT, (n+1)T ]×R
2
+,

the upper right derivative of V (t, x) with respect to the impulsive differential system

(1.1)–(1.3) is defined as

D+V (t, x) = lim sup
h→0+

1

h
[V (t + h, x + hf(t, x)) − V (t, x)],

where f = (f1, f2).

The solution x(t) = (x1(t), x2(t)) of (1.1)–(1.3) is a piecewise continuous function,

x : RT → R
2
+ continuous on (nT, (n + 1)T ), n ∈ Z+, and x(nT+) = lim

t→nT+
x(t) exists.

Thus, the global existence and uniqueness of solutions of (1.1)–(1.3) are assured by

the smoothness properties of f .

Since dx1

dt
= 0 whenever x1(t) = 0, t 6= nT , dx2

dt
> 0 whenever x2(t) = 0, t 6= nT ,

and x1(nT+) = (1− p)x1(nT ), 0 < p < 1, x2(nT+) = x2(nT ) + µ, µ > 0, we have the

following lemma.

Lemma 2.2. Suppose x(t) = (x1, x2) is a solution of (1.1)–(1.3) with xi(0
+) ≥ 0,

i = 1, 2. Then, xi(t) > 0, i = 1, 2, for t ≥ 0 if xi(0
+) > 0, i = 1, 2.

Next, we show that all solutions of (1.1)–(1.3) are uniformly ultimately bounded.

Lemma 2.3. There exists a constant M > 0 such that xi ≤ M , i = 1, 2, for each

solution x(t) = (x1, x2) of (1.1)–(1.3) with all t sufficiently large if

(2.1) a1 > a3

Proof. Letting V (t) = V (t, x(t)) = x1(t) + x2(t), and choosing

c = min(a1 − a3, a2)

which is positive, we have when t 6= kT that

D+
V (t) + cV = −a1x1 −

b1x1

b2 + x2
1

+
b3x1

b4x1 + x2
− a2x2 + a3x1 + cx1 + cx2

≤ (−a1 + c + a3)x1 + b + (−a2 + c)x2 ≤ b

where b = b3
b4

. That is, when t 6= kT , D+
V ≤ −cv + b.

When t = tk = kT ,

V(kT+) = x1(kT+) + x2(kT+) = x1(tk) − px1 + x2(tk) + µ ≤ V(tk) + µ
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By Lemma 2.2 in [5], for t ∈ (kT, (k + 1)T ] we have

V(t) ≤ V(0)e−ct + b

∫ t

0

e−c(t−s)ds + µ
∑

0<tk<t

e
−

R

t

tk
c dτ

= V(0)e−ct +
b

c
(1 − e−ct) + µ

[

e−c(t−T ) − e−c(t−tk+1)

1 − ecT

]

<
b

c
+

µecT

ecT − 1
as t → ∞.

So, V(t) is uniformly ultimately bounded. Hence, by the definition of V, there is an

M > 0 such that xi ≤ M , i = 1, 2.

Finally, we consider the following reduced system

(2.2)
dx2

dt
= −a2x2, t 6= kT,

(2.3) x2(kT+) = x2(kT ) + µ, t = kT,

(2.4) x2(0
+) = x20

We see that the following function

x̃2(t) =
µ exp(−a2(t − kT ))

1 − exp(−a2T )
,

for t ∈ (kT, (k + 1)T ], k ∈ Z+, is a positive solution of the system (2.2)–(2.4) such

that

x̃2(0
+) =

µ

1 − e−a2T
.

Thus, the solution of (2.2)–(2.4) is x2(t) =
(

x20
− µ

1−e−a2T

)

e−a2t + x̃2(t), t ∈ (kT, (k+

1)T ) and therefore we have the following Lemma.

Lemma 2.4. The system (2.2)–(2.4) has a positive periodic solution x̃2(t), and for

every solution x2(t) of (2.2)–(2.4), we have x2(t) → x̃2(t) as t → ∞.

Hence, system (1.1)–(1.3) has a periodic solution at the vanishing level of LCR:

(2.5) (0, x̃2(t)) =

(

0,
µe−a2(t−kT )

1 − e−a2T

)

for kT < t ≤ (k + 1)T , and x̃2(kT+) = x̃2(0
+) = µ

1−e−a2T , k ∈ Z+.
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3. VANISHING STIMULUS AND PERMANENCE

We first give the conditions that guarantee the locally asymptotic stability of the

periodic solution (0, x̃2(t)) at the point of vanishing stimulus.

Theorem 3.1. Let x(t) be any solution of (1.1)–(1.3). Then, (0, x̃2(t)) is locally

asymptotically stable if

(3.1) T < Tmax

with

(3.2)
4µb3

a2
sinh2 a2Tmax

2
=

(

a1 +
b1

b2

)

Tmax + ln
1

1 − p

Proof. Consider a small amplitude perturbation of (0, x̃2(t)):

x1(t) = u(t)

x2(t) = x̃2 + v(t)

We may write
(

u(t)

v(t)

)

= Φ(t)

(

u(0)

v(0)

)

, 0 < t < T

where Φ satisfies

dΦ

dt
=





−a1 −
b1

b2
+

b3

x̃2
0

a3 −a2



Φ

and Φ(0) = I, the identity matrix. Hence, the fundamental solution matrix is

Φ =





exp
∫ t

0

(

−a1 −
b1

b2
+

b3

x̃2

)

ds 0

∗ exp
∫ t

0
(−a2)ds





for which it is not necessary to find the exact expression for (*) since it is not required

in the following analysis.

Linearization of (1.3) gives
(

u(kT+)

v(kT+)

)

=

(

1 − p 0

0 1

)(

u(kT )

v(kT )

)

The stability of the periodic solution (0, x̃2(t)) is determined by the eigenvalues of

M0 =

(

1 − p 0

0 1

)

Φ(T )

which are

(3.3) v1 = (1 − p)e
R

T

0

“

−a1−
b1
b2

+
b3
x̃2

”

ds

and

v2 = e−a2T < 1
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According to the Floquet theory, (0, x̃2(t)) will be locally stable if |v1| < 1. We

observe that
∫ T

0

1

x̃2

ds = (1 − e−a2T )µ

∫ T

0

ea2sds

=
µ

a2

(1 − e−a2T )(ea2T − 1)

=
µ

a2

(ea2T − 1)/ea2T

=
µ

a2

(

e
a2T

2 − e
−a2T

2

)2

=
4µ

a2
sinh2(a2T/2)

Hence, |v1| < 1 if

(3.4) b3 ·
4µ

a2
sinh2 a2T

2
<

(

a1 +
b1

b2

)

T + ln
1

1 − p

Letting ℑ1(T ) be the function on the left of (3.2), and ℑ2(T ) be that on its right,

then we see that ℑ1(0) − ℑ2(0) < 0, while ℑ1(T ) − ℑ2(T ) → ∞ as T → ∞. Since

ℑ1 − ℑ2 is increasing for T > 0, there must be one and only one value T = Tmax

at which ℑ1(Tmax) = ℑ2(Tmax) and ℑ1(T ) < ℑ2(T ) for all T < Tmax. The proof is

complete.

We next investigate the permanence of (1.1)–(1.3) by first giving the following

definition.

Definition 3.2. System (1.1)–(1.3) is said to be permanent if there are constants

m, M > 0 (independent of initial values) and a finite time t0 such that for all solutions

x(t) with all initial values xi(0
+) > 0, m ≤ xi(t) ≤ M for all t ≥ t0, i = 1, 2. Here, t0

may depend on the initial values.

Theorem 3.3. The system (1.1)–(1.3) is permanent if (2.1) holds and

(3.5) T > Tmax

Proof. Suppose x(t) = (x1, x2) is a solution of (1.1)–(1.3) with xi(0) > 0, i = 1, 2. By

Lemma 2.2, there is an M > 0 such that xi ≤ M , for t large enough.

From (1.2), we know

dx2

dt
≥ −a2x2, t 6= kT

x2(t
+) = x2(t) + µ, t = kT

and we have

x2(t) > x̃2(t) − ε



658 C. RATTANAKUL, Y. LENBURY, J. KONGSON, AND W. TRIAMPO

for all t large enough and some ε > 0, so that

x2(t) ≥
µe−a2T

1 − e−a2T
− ε ≡ m2

for t large enough. Thus, we only need to find an m1 > 0 such that

x1(t) ≥ m1, for t large enough.

Step 1 From the arguments in Theorem 3.1, we see that if T > Tmax, then

(3.6) (1 − p) exp

∫ (k+1)T

kT

(

−a1 −
b1

b2
+

b3

x̃2

)

dt > 1

where

x̃2 =
µ exp(−a2(t − kT ))

1 − exp(−a2T )

By continuity of the integral in (3.6), if m3 > 0 and ε1 > 0 are small enough, then

(3.7) η ≡ (1 − p) exp

∫ (k+1)T

kT

(

−a1 −
b1

b2
+

b3

b4m3 + z̃ + ε1

)

dt > 1

also, where z̃ = x̃2 + a3m3

a2
.

We will prove that x1(t) < m3 cannot hold for all t ≥ 0. Otherwise,

dx2

dt
= −a2x2 + a3x1 ≤ −a2x2 + a3m3,, t 6= kT

x2(t
+) = x2(t) + µ, t = kT

if x1(t) ≥ 0

We then obtain x2(t) ≤ z(t) and z(t) → z̃(t), t → ∞, where z(t) is the solution

of

(3.8)















dz

dt
= −a2z(t) + a3m3 , t 6= kT

z(t+) = z(t) + µ , t 6= kT

z(0+) = x2(0
+)

and

z̃(t) =
µ exp(−a2(t − kT ))

1 − exp(−a2T )
+

a3

a2
m3, t ∈ (kT, (k + 1)T ]

Therefore, there exists a t1 > 0 such that

x2(t) < z(t) < z̃(t) + ε1

and

(3.9)

dx1

dt
≥ x1(t)

(

−a1 −
b1

b2
+

b3

b3m3 + z̃ + ε1

)

, t 6= kT

x1(t
+) = (1 − p)x1(t) , t 6= kT

for t ≥ t1. Let N ∈ Z+ and NT ≥ t1.
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Integrating (3.9) over (kT, (k + 1)T, k ≥ N , we have

x1((k + 1)T ) ≥ x1(kT )(1 − p) exp

(

∫ (k+1)T

kT

(

−a1 −
b1

b2
+

b3

b4m3 + z̃ + ε1

)

dt

)

= x1(kT )η

then

x1((N + k)T ) ≥ x1(NT )ηk → ∞ as k → ∞

which is a contradiction to the boundedness of x1(t). Hence, there is a tc > t1 such

that

x1(tc) ≥ m3

Step 2 If x1(t) ≥ m3, for all t > tc , then our job is done. Otherwise, there is a t′ > tc

such that

x1(t
′) < m3

Then, let t∗ = inf
t>tc

{t : x1(t) < m3} , and there are two possible cases for t∗.

Case 2.1 t∗ = k1T , for some k1 ∈ Z+. Then

x1(t) ≥ m3 for t ∈ [tc, t
∗]

and

m3 > x1(t
∗+) = (1 − p)x1(t

∗) ≥ m3(1 − p)

Choose k2, k3 ∈ Z+ such that

k2T > T1

(1 − p)k2 exp(k2η1T )ηk3 > (1 − p)k2 exp((k2 + 1)η1T )ηk3 > 1

where η1 = −a1 −
b1
b2

+ b3
M(1+b4)

< 0

Let T ′ = k2T + k3T . We claim that there must be a t2 ∈ (t∗, t∗ + T ′] such that

x1(t2) > m3

Otherwise (3.9) holds for t∗ + k2T ≤ t ≤ t∗ + T ′. So, as in Step 1, we have

(3.10) x1(t
∗ + T ′) ≥ x1(t

∗ + k2T )ηn3

On the other hand, for t ∈ [t∗, t∗ + k2T ], we have from (1.1) that

(3.11)

dx1

dt
≥ x1(t)

(

−a1 −
b1

b2

+
b3

M(1 + b4)

)

, t 6= kT

x1(t
+) = (1 − p)x1(t) , t 6= kT

Integrating (3.11) over [t∗, t∗ + k2T ], we have

x1(t
∗ + k2T ) ≥ m3(1 − p)k2 exp(k2η1T )

Substituting into (3.10), we have

x1(t
∗ + T ′) ≥ m3(1 − p)k2 exp(k2η1T )ηk3 > m3
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which is a contradiction.

Hence, there is a t2 ∈ (t∗, t∗ + T ′] such that

x1(t2) > m3

So, let t̃ = inf
t>t∗

{t : x1(t) > m3}. Then, for t ∈ (t∗, t̃), x1(t) ≤ m3 and x1(t̃) = m3 since

x1(t) is left continuous and

x1(t
+) = (1 − p)x1(t) ≤ x1(t)

when t = kT .

For t ∈ (t∗, t̃) suppose t ∈ (t∗ + (l − 1)T, t∗ + lT ], l ∈ Z+ and l ≤ k2 + k3. From

(3.10), we have

x1(t) ≥ x1(t
∗+)(1 − p)l−1 exp((l − 1)η1T ) exp(η1(t − (t∗ + (l − 1)T ))

≥ m3(1 − p)l exp(lη1T )

≥ m3(1 − p)k2+k3 exp((k2 + k3)η1T ) ≡ m′

1

So, we have x1(t) ≥ m′

1 for t ∈ (t∗, t̃) and x1(t̃) ≥ m3. We can repeat the argument

for t > t̃ to obtain the result that x1(t) ≥ m1 > 0 for t large enough.

Case 2.2 t∗ 6= kT , for all k ∈ Z+. Then,

x1(t) ≥ m3 for t ∈ (t1, t
∗)

and

x1(t
∗) = m3.

Suppose t∗ ∈ (k′

1T, (k′

1 + 1)T ) for some k′

1 ∈ Z+. There are 2 possible cases for

t ∈ (t∗, (k′

1 + 1)T ).

Case 2.2 a) x1(t) ≤ m3 for all t ∈ (t∗, (k′

1 + 1)T ). We claim that there must be

a t′2 ∈ [(n′

1 + 1)T, (n′

1 + 1)T + T ′] such that x1(t
′

2) > m3. Otherwise, similarly to

Case 2.1, we get

x1((k
′

1 + 1 + k2 + k3)T ) ≥ x1((k
′

1 + 1 + k2)T )ηn3

On the other hand, for t ∈ (t∗, (k′

1 + 1)T ), (3.11) holds on [t∗, (k′

1 + 1 + k2 + k3)T ],

and x1(t) ≤ m3, so that we have

x1((k
′

1 + 1 + k2)T ≥ m3(1 − p)k2 exp((k2 + 1)η1T )

Thus,

x1((k
′

1 + 1 + k2 + k3)T ) ≥ m3(1 − p)k2 exp((k2 + 1)η1T )ηn3 > m3,

a contradiction.

Let t̄ = inf
t>t∗

{t : x1(t) > m3}. Then,

x1(t) ≤ m3 for t ∈ (t∗, t̄)
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and

x1(t̄) = m3.

For t ∈ (t∗, t̄), suppose t ∈ (k′

1T +(l′−1)T, k′

1T +l′T ], for some l′ ∈ Z+, l′ ≤ 1+k2+k3.

Then, we have

x1(t) ≥ m3(1 − p)l′−1 exp(l′η1T )

≥ m3(1 − p)k2+k3 exp((k2 + k3 + 1)η1T ) ≡ m1

So, x1(t) ≥ m1 for t ∈ (t∗, t̄). The same arguments can be applied for t > t̄, since

x1(t̄) ≥ m3. We thus get x1(t) ≥ m1 > 0 for all t large enough.

Case 2.2 b) There exists a t ∈ (t∗, (k1 + 1)T ) such that x1(t) > m3.

Let t̂ = inf
t>t∗

{t : x1(t) > m3}. Then,

x1(t) ≤ m3 for t ∈ (t∗, t̂)

and

x1(t̂) = m3.

For t ∈ (t∗, t̂), (3.11) holds and integrating (3.11) on (t∗, t̂), we have

x1(t) ≥ x1(t
∗) exp(η1(t − t∗)) ≥ m3 exp(η1T ) > m1

Using the fact that x1(t̂) ≥ m3, we may apply the above argument again for t > t̂.

Hence, we obtain x1(t) ≥ m1 > 0 for all t ≥ tc, and the proof is complete.

We now investigate the possibility of bifurcation of positive periodic solution to

the system (1.1)–(1.3) near (0, x̃2, (t)).

For this purpose, it is more convenient to exchange x1 and x2 and let τ0 = Tmax

as given in (3.2). The system (1.1)–(1.3) is now written as

dx1

dt
= −a2x1 + a3x2, t 6= kτ(3.12)

dx2

dt
= −a1x2 −

b1x2

b2 + x2
2

+
b3x2

b4x2 + x1
, t 6= kτ(3.13)

(3.14)
△x1(t) = µ

△x2(t) = −px2(t)

}

t = kτ

By Theorem 2 of [8], we then have the following result.

Theorem 3.4. The system (1.1)–(1.3) has a positive periodic solution which is su-

percritical provided (2.1) and (3.5) hold.
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Proof. Relying on the notations used in [8], we have

F1(x1, x2) ≡ −a2x1 + a3x2

F2(x1, x2) ≡ −a2x2 −
b1x2

b2 + x2
2

+
b3x2

b4x2 + x1

Θ1(x1, x2) ≡ x1 + µ,

Θ2(x1, x2) ≡ (1 − p)x2

ζ(t) ≡ (x̃2(t), 0)T

x0 ≡ (x̃2(τ0), 0)T .

We then can determine the relevant quantities as follows.

∂2Φ2

∂x1∂x2
(τ0, x0) =

∫ τ0

0

exp

(
∫ t

u

∂F2

∂x2
ds

)

∂2F2

∂x1∂x2
exp

(
∫ u

0

∂F2

∂x2
ds

)

du

]

(τ0,x0)

< 0

since ∂2F2

∂x1∂x2

]

(τ0,x0)
= −b3

x̃2
2

< 0.

Since ∂2Θ2

∂x1∂x2
= 0, we have

B = −
∂Θ2

∂x2

(

∂2Φ2

∂τ∂x2
+

∂2Φ2

∂x1∂x2
·

1

a′

0

∂Θ1

∂x1
·
∂Φ1

∂τ

)]

(τ0,x0)

.

Noting that, if (3.5) holds,

a′

0 = 1 −
∂Θ1

∂x1
−

∂Φ1

∂x1

]

(τ0,x0)

> 0

∂Φ1

∂x1

]

(τ0,x0)

= exp

∫ t

0

∂F1

∂x1

ds

]

(τ0,x0)

> 0

∂Φ1

∂τ

]

τ0

= −
a2µ exp(−a2τ0)

1 − exp(−a2τ0)
< 0

∂2Φ2

∂τ∂x2

]

(τ0,x0)

= −
∂F2

∂x2
exp

∫ t

0

∂F2

∂x2
ds

]

(τ0,x0)

=

(

−a1 −
b1

b2
+

b3

x̃2

)

exp

∫ t

0

∂F2

∂x2
ds

]

(τ0,x0)

> 0.

We conclude that

B < 0

Next, since Θ1 and Θ2 are linear we have [8]

C =
∂Θ2

∂x2

(

2
b′0
a′

0

∂2Φ2

∂x1∂x2
−

∂2Φ2

∂x2
2

)]

(τ0,x0)

Referring to [8] for the definitions of the partial derivative terms appearing above, we

specifically have

b′0 = −

(

∂Θ1

∂x1

∂Φ1

∂x2

+
∂Θ1

∂x2

∂Φ2

∂x2

)

(τ0,x0)

< 0



DYNAMICS OF A NONLINEAR MODEL 663

∂2Φ2

∂x2
2

]

(τ0,x0)

=

∫ t

0

exp

(
∫ t

u

∂F2

∂x2
ds

)

∂2F2

∂x2
2

exp

(
∫ u

0

∂F2

∂x2
ds

)

du

]

(τ0,x0)

< 0

and
∂Φ2

∂x2
= exp

∫ t

0

∂F2

∂x2
ds > 0.

We are therefore led to

C > 0

Hence,

BC < 0

if (3.5) holds.

Also,

d′

0 = 1 −
∂Θ2

∂x2

∂Φ2

∂x2

]

(τ0,x0)

so that d′

0 = 0 at T = Tmax. The solution x0 is stable if T < Tmax, and d′

0 > 0 if

T > Tmax. That is, by Theorem 2 of [8], we may conclude that the system (1.1)–(1.3)

has a positive periodic solution which is supercritical if T > Tmax and is close to

Tmax.

4. DISCUSSION AND CONCLUSION

In Figure 1, a numerical simulation of system (1.1)–(1.3) is shown in the case

that the conditions in Theorem 3.1 hold. The solution trajectory in the (x1, x2)-plane

is seen to tend toward the periodic solution where x1 vanishes while x2 oscillates

periodically. The corresponding time series of x1 and x2 in this case are shown in

Figure 2. Figure 3 shows a numerical solution of (1.1)–(1.3) in the case where the

conditions in Theorem 3.4 hold. The solution trajectory tends toward a positive

periodic solution containing impulsive jumps in the state variables x1 and x2 every

period of T = 130 units of time. The time series of x1 and x2 exhibiting sustained

oscillations are seen in Figure 4.

Our analysis suggests a venue for control of the signal transduction process by

adjustment of the frequency 1
T

of the treatments or the dosages, reflected by the

values of p and µ, in order to obtain the desired outcome. Specifically, our analytical

conclusions indicate that we may expect sustained oscillations in the inhibiting agent

even at the vanishing level of the ligand coupled receptors at a low period of external

signals. On the other hand, if the period of impulsive drug treatments is kept at

a convenient fixed level, then it is possible to adjust the strength of the impulse p

so that Tmax, solved from equation (3.2), renders the inequality (3.1), or (3.5), true,

whichever case is the desirable outcome.
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Thus, our work is expected to form a valuable basis for further investigations into

how we could better manage and control such a complex signaling system, the proper

function of which is crucially connected to human’s health and disease.
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Figure 1. Numerical solution of the system (1.1)–(1.2) in the case

that T < Tmax, showing the solution trajectory, in the (x1, x2) phase

plane, exhibiting sustained oscillation in x2 at vanishing level of x1.

Here, a1 = 0.7, . . . , b5 = 0.5, µ = 1, p = 0.3, T = 5, and Tmax =

119.6046.

Figure 2. The time series of x1, in 2a), and x2, in 2b), corresponding

to the case seen in Figure 1.
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Figure 3. Numerical solution of the system (1.1)–(1.2) in the case that

T > Tmax, showing the solution trajectory tending toward a positive

periodic solution with impulsive jumps. Here, a1 = 0.7, . . . , b5 = 0.5,

µ = 1, p = 0.3, T = 130, and Tmax = 119.6046.

Figure 4. The time series of x1, in 4a), and x2, in 4b), corresponding

to the case seen in Figure 3.


