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V. JIMÉNEZ LÓPEZ, J. KUPKA, AND A. LINERO
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ABSTRACT. Let ω(·) denote the union of all ω-limit sets of a given map. As the main result of

this paper we prove that, for given continuous interval maps f1, . . . , fm, the union of all ω-limit sets

of the product map f1 × · · · × fm and the cartesian product of the sets ω(f1), . . . , ω(fm) coincide.

This result enriches the theory of multidimensional permutation product maps, i.e., maps of

the form

F (x1, . . . , xm) = (f
σ(1)(xσ(1)), . . . , fσ(m)(xσ(m))),

where σ is a permutation of the set of indices {1, . . . , m}. For any such map F , we prove that the

set ω(F ) is closed and we also show that ω(F ) cannot be a proper subset of the center of the map

F . These results solve open questions mentioned, e.g., in [F. Balibrea, J. S. Cánovas, A. Linero,

New results on topological dynamics of antitriangular maps, Appl. Gen. Topol.].

AMS (MOS) Subject Classification. 37E05, 54H20, 37E99, 37B99

1. INTRODUCTION AND MAIN RESULTS

Let X be a compact metric space and let C(X) be the set of continuous maps

from X into itself. Put I := [0, 1] and Im := I × · · · × I (m times). For a given

ϕ ∈ C(X) and x ∈ X we consider an orbit Orbϕ(x) := {ϕn(x)}n≥0, and we define the

ω-limit set ωϕ(x) of the point x with respect to the map ϕ as the set of limit points

of Orbϕ(x). Finally,

ω(ϕ) =
⋃

x∈X

ωϕ(x)

is the ω-limit set of the map ϕ.

Consider now f1, . . . , fm ∈ C(X) and the equality

(1.1) ω(f1 × · · · × fm) = ω(f1) × · · · × ω(fm).

Clearly in some particular cases, for instance in the case of m identity maps, this

equation is satisfied. On the other side the equality (1.1) need not be true in general,
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even when considering the product of two relatively simple restrictions of interval

maps: see Section 6. Nevertheless, in the case of a finite product of interval maps,

the equality holds as we present in the following theorem being the main result of

this paper.

Theorem A. Let f1, . . . , fm ∈ C(I). Then

ω(f1 × · · · × fm) = ω(f1) × · · · × ω(fm)

and, consequently, ω(f1 × · · · × fm) is closed.

In fact the authors were originally motivated by another open problem (see [3]) of

the theory of permutation product maps. Here a map F : Im → Im is a permutation

product map if it is of the form F (x1, . . . , xm) = (fσ(1)(xσ(1)), . . . , fσ(m)(xσ(m))) for

some f1, . . . , fm ∈ C(I), where σ is a permutation of the set of indices {1, . . . , m}.

When σ is the identity we obtain a product map. We denote the set of (m-dimensional)

permutation product maps by CP (Im). For example, in the two-dimensional case,

permutation maps are either product maps F (x, y) = (f(x), g(y)), or maps of the

type F (x, y) = (g(y), f(x)), sometimes called antitriangular maps, for instance, see

[3]. The original motivation of this paper was to study the validity of the equality

(1.2) ω(F ) = ω(g ◦ f) × ω(f ◦ g).

for an antitriangular map F . Since, obviously, F 2 = (g ◦ f)× (f ◦ g), a close relation

between (1.1) and (1.2) is given by the well-known fact ω(F ) = ω(F n) for every

positive integer n, see [5] (in particular ω(F ) = ω(F 2)). Consequently, it is deduced

from Theorem A that (1.2) holds.

Corollary B. Let f, g ∈ C(I) and let F (x, y) = (g(y), f(x)). Then

ω(F ) = ω(g ◦ f) × (f ◦ g)

and, consequently, ω(F ) is closed.

Moreover the same idea is easily generalizable to the case of general permutation

product maps (see Corollary C), since for any F ∈ CP (Im) there is l such that F l is

a product map. For instance, if

F (x1, x2, x3, x4, x5) = (f3(x3), f4(x4), f1(x1), f5(x5), f2(x2)),

then

F 6(x1, x2, x3, x4, x5) = (k1(x1), k2(x2), k3(x3), k4(x4), k5(x5)),

with k1 = (f3 ◦ f1)
3, k2 = (f4 ◦ f5 ◦ f2)

2, k3 = (f1 ◦ f3)
3, k4 = (f5 ◦ f2 ◦ f4)

2 and

k5 = (f2 ◦ f4 ◦ f5)
2, and

ω(F ) = ω(F 6) = ω(k1) × ω(k2) × ω(k3) × ω(k4) × ω(k5).
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In general, for a given antitriangular map F ∈ CP (Im), a permutation σ of

order m is a decomposition of cyclic permutations σj of order oj, j = 1, . . . , p, with

p ≤ m,
∑

j oj = m, and σj acting on the indices j1, . . . , jmj
, with {is}

mi

s=1∩{jt}
mj

t=1 = ∅,

for any i 6= j, i, j ∈ {1, . . . , p}. Then F (x1, . . . , xm) = (fσ(1)(xσ(1)), . . . , fσ(m)(xσ(m)))

implies that F lcm(oj) is a direct product of m interval maps, say hi ∈ C(I), i =

1, 2, . . . , m, and we can apply Theorem A. Here lcm(oj) denotes the least common

multiple of all oj, j = 1, . . . , p. Hence we have:

Corollary C. If F ∈ CP (Im) is given by

F (x1, . . . , xm) = (fσ(1)(xσ(1)), . . . , fσ(m)(xσ(m))),

then

ω(F ) = ω(h1) × ω(h2) × ω(h3) × . . . × ω(hm),

where each hj , j = 1, . . . , m, is an appropriate composition of maps from the family

{f1, . . . , fm}, and, consequently, ω(F ) is closed.

Thus, we have found a large class of two-dimensional maps whose ω-limit sets

are closed. This property is not held for general two-dimensional maps on I2. For

instance, Kolyada in [11] found such examples of so-called triangular maps T (x, y) =

(f(x), gx(y)) of the square I2 (f, gx ∈ C(I) for all x ∈ I). Also, Hero in [9], using

the technique of inverse limits, constructed an example of a plane homeomorphism

for which the ω-limit set is not closed. In the case of interval or, in fact, graphs

maps, ω(f) is always closed (see [16, 10, 17, 7]), but this is not generally true either

for one-dimensional continua. An example of a continuous map on a dendrite whose

ω-limit set is not closed can be found in [7].

We also prove (Corollary D) that the center of a permutation product map is

contained in its ω-limit set. As expected, this property is not true for general two-

dimensional maps or even for triangular maps of the square I2 (see again [11]).

The key tool is the following. For any direct product of interval maps we have

C(f1 × . . . × fm) = C(f1) × . . . × C(fm)

as a consequence of the fact C(g) = P(g) if g ∈ C(I) (see [8]), where C(·) and

P(·) denote the center and the set of periodic points of a map, respectively. Since

C(fj) ⊆ ω(fj), and C(F n) = C(F ) for all F ∈ CP (Im) and n ≥ 1 (see [5]), Corollary C

implies:

Corollary D. Let F ∈ CP (Im). Then C(F ) ⊆ ω(F ).

The paper is organized as follows. In Section 3 and 4 we study some properties

of ω-limit sets of one-dimensional maps. We use these results to prove Theorem A

in Section 5. Section 6 provides a counterexample to Theorem A after replacing the

interval I by a Cantor set M . But firstly we introduce some basic notions.
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2. DEFINITIONS AND NOTATIONS

For any ϕ ∈ C(X), an n-th iteration is defined inductively by ϕn = ϕ ◦ ϕn−1,

n ∈ N, where ϕ0 is the identity map on X.

For a subset M ⊆ X, we use M to denote its closure. We say that x ∈ X is a

periodic point of a period n ∈ N if ϕn(x) = x and ϕi(x) 6= x for 0 < i < n. If n = 1,

x is called a fixed point. We use P(ϕ) to denote the set of periodic points of ϕ. By

R(ϕ) we denote the set of recurrent points of ϕ, i.e., the set of points x ∈ X satisfying

x ∈ ωϕ(x). Finally, the center C(ϕ) of the map ϕ is defined as the closure of the set

of recurrent points.

Clearly, whenever x ∈ R(ϕ) and U ⊆ X is any open neighborhood x, one can

find an infinite increasing sequence of return times {mi} such that ϕmi(x) ∈ U for i =

1, 2, . . .. Consequently, recurrent points can be classified depending on the properties

of the sequence of return times. For instance, if, for any neighborhood U of x, {mi}

is relatively dense in N, that is, the distances |mi+1 − mi| are bounded, then x is

uniformly recurrent. If, for any U , there is an integer m such that mi = m · i, the

point x is regularly recurrent. Denote by x ∈ UR(ϕ), x ∈ RR(ϕ) a uniformly recurrent

and regularly recurrent point, respectively. Obviously, any regularly recurrent point

is also uniformly recurrent.

A set M ⊆ X is ϕ-invariant (or only invariant) if ϕ(M) ⊆ M . Further, M is

minimal with respect to ϕ if it is nonempty, closed and ϕ-invariant and if no proper

subset of M has these three properties. It is well known that there is a connection

between minimal sets and uniformly recurrent points: any point of a given minimal

set is uniformly recurrent and, conversely, the ω-limit set of any uniformly recurrent

point is minimal.

In what follows we use extensively the notion of periodic interval (now X = I

and f ∈ C(I)). In the literature this notion is defined in a number of related, but not

exactly equivalent ways, so it is convenient to distinguish among them. We say that a

compact interval J ⊆ I is weakly periodic (respectively, periodic, strongly periodic) of

period r ∈ N if f r(J) = J and r is minimal with respect to this property (respectively,

f r(J) = J and the intervals {f i(J)}r−1
i=0 have pairwise disjoint interiors, f r(J) = J

and the intervals {f i(J)}r−1
i=0 are pairwise disjoint). In any case Orbf(J), the orbit of

J , denotes the union J ∪ f(J) ∪ · · · ∪ f r−1(J).

Remark 2.1. If J is weakly periodic of period r, then either J is strongly periodic

of period r, or r is even and J ∪f r/2(J) is strongly periodic of period r/2. This result

has been proved in [4], and for the sake of completeness, we include here its proof.

It clearly suffices to show that if 1 ≤ k < r satisfies fk(J) ∩ J 6= ∅ then k = r/2.

Suppose not. Then we can assume that k < r/2, which in view of the minimality of

r implies (after rewriting g = fk) that the intervals J , g(J) and g2(J) are pairwise
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different. As neither g(J) can be strictly contained in J nor it can strictly contain J

(because gr(J) = J) we can for example assume that g(J) is to the right of J , that

is, there are points of g(J) to the right of J , and J is to the left of g(J), that is, there

are points of J to the left of g(J).

We claim that g2(J) is then to the right of g(J). Actually, if g2(J) is to the left of

g(J), then either g2(J) is to the right of J and so gr(J ∪ g(J)) is strictly contained in

J ∪ g(J), or g2(J) is to the left of J and then gr(J ∪ g(J)) strictly contains J ∪ g(J);

in both cases we arrive at a contradiction.

Repeating the argument we find that gj+1(J) is to the right of gj(J) for every j,

which is impossible because gr(J) = J . �

Following [14], we say that an ω-limit set ω of f ∈ C(I) has a periodic decompo-

sition of period r if there exists a weakly periodic interval J ⊆ I of period r such that

ω ⊆ Orbf (J), and such that for 0 ≤ i < r the convex hulls conv(ωi) := conv(f i(J)∩ω)

have at most endpoints in common.

For a given f ∈ C(I), consider the system {ωf(x) : x ∈ I} of its ω-limit sets

partially ordered by inclusion. It is well known that each ω-limit set of f is a subset

of some maximal ω-limit set (see [15]). Following the terminology of [15], we say that

a maximal ω-limit set of f is of the second kind (or a basic set) if it contains periodic

points and is infinite; otherwise we call it a maximal set of f of the first kind. We

denote by A1(f) (respectively, A2(f)) the system of infinite maximal ω-limit sets of

the first kind (respectively, of the second kind). The sets from A1(f) are also called

solenoidal sets.

Finally, we say that an interval J ⊂ I is wandering if all its iterates are pairwise

disjoint and the orbits of its points do not converge to any periodic orbit.

3. ON SOLENOIDAL SETS

In this section we study ω-limit sets of the first kind. The starting point of this

analysis is given by the fact that they exhibit a “periodic” behavior.

Proposition 3.1. [15] Let f ∈ C(I) and let ω = ωf(x) be an infinite maximal ω-limit

set of f . Then ω is of the first kind if and only if ω has periodic decompositions of

arbitrarily high periods.

From Proposition 3.1, Remark 2.1 and well-known results on solenoidal sets men-

tioned e.g. in [5] it follows:

Proposition 3.2. For any solenoidal set ω ⊂ I there are a strictly increasing sequence

of positive integers {rm}
∞
m=1 and a decreasing sequence of strongly periodic intervals
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{Jm} of periods {rm} such that

ω ⊆ K =
∞⋂

m=1

rm−1⋃

i=0

f i(Jm).

Moreover, ω is a perfect set and:

(i) Any one-point connected component of K consists of a regularly recurrent point

belonging to ω.

(ii) If J is a nondegenerate component of K, then at least one of its endpoints belongs

to ω and none of its interior points belongs to ω. Moreover, J is a wandering

interval.

In the next two lemmas we fix a point u belonging to a solenoidal set ω = ωf (x).

Without loss of generality we assume that a subsequence of {fn(x)} approaches u

from the left, i.e. for any ε > 0 there exists n ∈ N such that

(3.1) fn(x) ∈ [u − ε, u].

Let {rm} and {Jm} be the corresponding sequences of numbers and strongly periodic

intervals and define K as in Proposition 3.2. We can assume that

(3.2) u ∈ Jm

for every m. In what follows, Int M denotes the interior of M as a subset of R, that

is, Int I = (0, 1).

Lemma 3.3. For every ε > 0 there is an r-periodic interval J such that u ∈ J and

Int J ⊆
∞⋃
i=0

f ri([u − ε, u]).

Proof. Since the sequence {fn(x)} approaches u from the left, there is s ∈ N such

that f s ([u − ε, u]) ∩ [u − ε, u] 6= ∅. Notice that f si([u − ε, u]) ∩ f s(i+1)([u − ε, u]) 6= ∅

for all integers i and each f si([u − ε, u]) is a connected set. Consequently, M :=
∞⋃
i=0

f si([u − ε, u]) is an interval.

Moreover, {f si(M)}∞i=0 is a decreasing sequence of intervals and we claim that its

intersection S :=
⋃∞

i=0 f si(M) is a nondegenerate interval. From {f si(u)} ⊆ M we

take a subsequence {f snk(u)}k convergent to w ∈ I. Since u ∈ M, we have f snk(u) ∈

f snk(M) for all k. If S is not an interval, then
⋂

i≥0 f si(M) consists of exactly one

point w. On the other hand, it is clear that f s(w) = w, so w is a periodic point,

which contradicts that w ∈ ωf (u) ⊂ ω with ω of the first kind. This ends the claim.

Let J ′ = S. Clearly f s(J ′) = J ′. Let r′ be the minimal positive integer satisfying

f r′(J ′) = J ′. Now, according to Remark 2.1 , we have that either J ′ is r′-periodic

(then we define r = r′ and J = J ′), or r′ is even, Int J ′ ∩ Int f r′/2(J ′) 6= ∅, and
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J ′ ∪ f r′/2(J ′) is r′/2-periodic (then we define r = r′/2 and J = J ′ ∪ f r′/2(J ′)). Notice

that in both cases r|s.

The statement Int J ⊆
⋃∞

i=0 f ri ([u − ε, u]) is clear from the construction, so it

only rests to show u ∈ J.

To begin with this observe that u ∈ K and ωf(u) ⊆ ω. Moreover, by the

construction of J , every limit point of {f ri(u)} must belong to J. If {u} is a one-point

connected component of K, then u is regularly recurrent by Proposition 3.2. Thus,

{f ri(u)} accumulates at u and u ∈ J.

If {u} is not a one-point connected component of K, then, again by Proposition

3.2, it is an endpoint of a nondegenerate component [u, v] of K, which is a wandering

interval containing no points of ω in its interior. We emphasize that u < v because

we assume condition (3.1). Now, if {f ri(u)} accumulates at u, we obtain u ∈ J, so

we can assume that {f ri(u)} accumulates at v ∈ J. Since the orbit of v is infinite

(because it belongs to a wandering interval) and f s(J) = J , some iterate of v belongs

to Int J . Then there exists an iterate of u in Int J and also fk(x) ∈ Int J for some

positive integer k. As a consequence of the periodicity of J we get fn(x) ∈ Orb(J)

for any n ≥ k. Since u ∈ ωf(f
k(x)) and Orb(J) is a closed invariant set by f, we

conclude that u belongs to some interval f t(J), 0 ≤ t < r. If u /∈ J, then t > 0

and f t(J) is to the left of J . In this case, if [a, b] is the (possibly degenerate) interval

connecting J and f t(J), then the f r-invariance of J and f t(J) implies that f r(a) ≤ a,

f r(b) ≥ b, hence [a, b] contains some fixed point of f r. This is impossible because [u, v]

is a wandering interval covering [a, b].

Lemma 3.4. For every ε > 0 there are 0 < δ < ε
2

and k ∈ N such that

[u − δ, u] ⊆
∞⋂

n=0

fkn([u − ε, u]).

Proof. Let r and J be as in Lemma 3.3. Let m be such that rm > 2r. From the

r−periodicity of J, rm−periodicity of Jm and (3.2) we deduce that all three intervals

Jm, f r(Jm), and f 2r(Jm) intersect J. These intervals are pairwise disjoint, so one of

them is contained in J (recall that rm > 2r). From here, by Lemma 3.3, it is clear

that Jm ⊆ J and r divides rm since f rm(Jm) = Jm ⊆ J implies f rm(J) = J .

We claim that u cannot be the left endpoint of Jm. The reason is that, by Propo-

sition 3.2, Jm contains infinitely many points from ω. Hence {fn(x)} eventually falls

into the orbit of Jm so it cannot approach u from the left; we also use the strong

periodicity of Jm. This contradicts assumption (3.1) and finishes the claim.

Let 0 < δ < ε
2

be such that [u − δ, u] ⊆ Jm. We next show that this number δ

is adequate to our purposes (for an appropriate positive integer k). To simplify the

notation we next write g = f r, when the terms “orbit”, “fixed point”, and so on,

refer to g. We emphasize that the orbit of Jm is contained in J . Taking into account
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that r|rm, r < rm and rm > 2, we deduce that some interval Q of the orbit of Jm is

mapped to the right by g, that is, g(Q) > Q, and another interval Q̃ of the orbit of

Jm is mapped to the left (that is, g(Q̃) < Q̃). Let L < R be two such consecutive

intervals, that is, g(L) > L, g(R) < R and conv(L ∪ R) ∩ Orb(Jm) = L ∪ R. Then

there exists a fixed point p lying between L and R. In particular, p ∈ Int J .

Notice that, by Lemma 3.3, we have IntJ ⊆
⋃∞

i=0g
i([u − ε, u]). Since one of the

intervals of the orbit of Jm is contained in Int J, we get that the whole orbit of Jm

is contained in
⋃∞

i=0g
i([u − ε, u]). Since p ∈ Int J , we get p ∈ gi′([u − ε, u]) for some

i′ and then p ∈ gi([u − ε, u]) for every i ≥ i′. Let [c, d] = conv(Orbg(Jm)). Now two

possibilities arise.

a) We firstly assume that two intervals from the orbit of Jm lying on the same

side of p are mapped by g to different sides of p (remember that rm > 2r). There is

no loss of generality in assuming that these two intervals, call them R1 and R2, are to

the right of p. Let v be the right endpoint of conv(R1∪R2). Find a point w ∈ L and a

number l such that gl(w) = c. Similarly, there are a point z ∈ R and a number t such

that gt(z) = d. Then gl([w, p]) ⊇ [c, p] ⊇ [w, p] and gt([p, z]) ⊇ [p, d] ⊇ [p, z], thus

gsl([w, p]) ⊇ [c, p] and gst([p, z]) ⊇ [p, d] for every s ≥ 1. From this, glt([w, z]) ⊇ [c, d].

Moreover, using that L and R are neighboring, p ∈ conv(L∪R), and the assumption

on R1 and R2, we obtain conv(L ∪ R) ⊆ g(conv(R1 ∪ R2)) ⊆ g([p, v]).

Next, we show that v ∈ gj([u − ε, u]) for some j ≥ i′. To see this, by the

periodicity of Jm, v ∈ Orb(Jm) implies the existence of a point z′ ∈ Orb(Jm) such

that gi′(z′) = v. Moreover, z′ ∈
⋃∞

i=0g
i([u− ε, u]), so z′ ∈ gi([u− ε, u]) for some i ≥ 0.

Hence v ∈ gj([u − ε, u]) for some j ≥ i′.

Finally,

gj+1+lt([u − ε, u]) ⊇ g1+lt([p, v]) ⊇ glt(conv(L ∩ R)) ⊇ glt([w, z])

⊇ [c, d] ⊇ Jm ⊇ [u − δ, u],

and similarly gi([u − ε, u]) ⊇ [c, d] ⊇ Jm ⊇ [u − δ, u] for every i ≥ j + 1 + lt. Now it

suffices to take k = r(j + 1 + lt) to finish this part of the proof.

b) Now we assume that all intervals to the left of p are mapped to the right of

p, and conversely. Then the convex hulls of the intervals from the orbit of Jm to

the same side of p are mapped by g2 onto themselves. For instance assume that Jm

(hence u) is to the left of p and find l′ such that g2l′(u) belongs to an interval from

the orbit of Jm to the left of L (this is possible because rm > 2r). This number l′ can

be taken as large as necessary and, consequently, we can assume that g2l′([u − ε, u])

contains p (and then also L). Find t such that g2t(L) is the interval from the orbit of

Jm containing the endpoint c. Then

g2l′+2t([u − ε, u]) ⊇ g2t(conv(L ∩ {p})) ⊇ [c, p] ⊇ Jm ⊇ [u − δ, u],
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and similarly g2l([u − ε, u]) ⊇ [c, p] ⊇ Jm ⊇ [u − δ, u] for every l ≥ l′ + t, since

g2([c, p]) ⊇ [c, p]. Thus, if j is an even number large enough, the statement of the

lemma is valid for k = rj .

We are ready to prove the main result of this section.

Proposition 3.5. Let f ∈ C(I) and let x ∈ I. Assume that ωf(x) is solenoidal. Then

for every u ∈ ωf(x) there is a sequence {kj}
∞
j=1 of positive integers with the following

property: Let {sj} be a sequence of positive integers and put nj =
∑j

i=1 siki for every

j. Then there is z ∈ I such that {fnj(z)} converges to u.

Proof. Take any ε0 > 0 and construct a sequence {εj}
∞
j=0 such that, for every j ≥ 1,

if ε = εj−1, then εj and kj are the numbers δ and k from Lemma 3.4, respectively.

Then εj → 0.

Let {sj} be a sequence of positive integers and write nj =
∑j

i=1 siki. From Lemma

3.4 we have f siki([u − εi−1, u]) ⊇ [u − εi, u] for every i.

Find a closed subinterval I0 ⊆ [u− ε0, u] so that fn1(I0) = f s1k1(I0) = [u− ε1, u].

Observe that

fn2(I0) = f s2k2+s1k1(I0) = f s2k2([u − ε1, u]) ⊇ [u − ε2, u].

Then, inside I0 we can find a closed subinterval I1 holding fn2(I1) = [u − ε2, u]

and such that fn1(I1) ⊆ [u − ε1, u]. Proceeding by induction, we are able to find a

decreasing sequence of subintervals

I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Ij ⊇ Ij+1 ⊇ · · ·

satisfying fnj(Ij−1) = [u − εj, u] and fni(Ij−1) ⊆ [u − εi, u] for all j ≥ 1 and i < j.

Hence {Ij} is a decreasing sequence of nonempty compact sets. Let z ∈
⋂

j Ij 6= ∅.

Then fnj(z) → u.

4. ON BASIC SETS

Now we are going to analyze a useful property of ω-limit sets of the second

kind. Recall that ϕ ∈ C(X) is topologically mixing if for given two nonempty open

sets U, V ⊆ X there is n0 ∈ N such that ϕn(V ) ∩ U 6= ∅ for all n ≥ n0. We say

that a ϕ-invariant set Y ⊆ X is topologically mixing if ϕ|Y is topologically mixing.

Following Proposition 3.1, if f ∈ C(I) and ω ∈ A2(f), then it admits a maximal

finite decomposition into periodic portions.

Lemma 4.1. Given f ∈ C(I) and x ∈ I, assume that ω := ωf(x) ∈ A2(f). Let

{ωi}
s−1
i=0 be a maximal periodic decomposition of ω. Then, for any i = 0, . . . , s − 1,

f s|ωi
is topologically mixing.
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Proof. Clearly, it suffices to show that one periodic portion (say ω0) of ω is topologi-

cally mixing. From [6, Theorem 4.1] we know that f s|ω0
is almost conjugated to some

mixing interval map g : J → J . This means that there exists a monotone continuous

surjective map ϕ : ω0 → J satisfying the following properties:

(i) g ◦ ϕ = ϕ ◦ f s,

(ii) for each z ∈ J , ϕ−1(z) contains at most two points of the set ω0.

Now we are ready to show that f s|ω0
is topologically mixing. Let U, V be any

nonempty open sets in ω0. After taking if necessary smaller sets we can assume

that both ϕ(U) and ϕ(V ) are open sets in J and, moreover, if ϕ(x) = ϕ(y) for some

points x, y ∈ ω0, then either x, y ∈ U , or x, y /∈ U (we use (ii)).

Since g is mixing, gi(ϕ(V )) ∩ ϕ(U) 6= ∅ for any integer i greater than some

n0 ∈ N. Then ϕ((f s)i(V )) ∩ ϕ(U) 6= ∅ for any i ≥ n0 by (i). But this also implies

(f s)i(V ) ∩ U 6= ∅ for any i ≥ n0, because if x ∈ (f s)i(V ) and y ∈ U are such

that ϕ(x) = ϕ(y), then y ∈ U forces x ∈ U as well. We have shown that f s|ω0
is

topologically mixing.

5. PROOF OF THEOREM A

Let f1, . . . , fm ∈ C(I). We have trivially

ω(f1 × · · · × fm) ⊆ ω(f1) × · · · × ω(fm).

Hence it suffices to show that if (x1, . . . , xm) ∈ Im, then

(5.1) ωf1
(x1) × · · · × ωfm

(xm) ⊆ ω(f1 × · · · × fm).

There is no loss of generality in assuming that all ω-limit sets to the left of (5.1) are

maximal. Now two possibilities arise. First assume that some of these ω-limit sets,

say ωf1
(x1), is of the second kind. By Lemma 4.1, ωf1

(x1) has a finite number (say

s) of topologically mixing portions. Since

ω(f1 × · · · × fm) = ω(f s
1 × · · · × f s

m)

and ωfr
(xr) =

⋃s−1
i=0 ωfs

r
(f i

r(xr)), r = 1, . . . , m, it is not restrictive to assume that

ωf1
(x1) itself is topologically mixing. Then (5.1) is exactly Theorem 12 from [1].

Thus, since a direct product of mixing maps is mixing, it only rests to consider

the case when every set ωfr
(xr), r = 1, . . . , m, is either finite (a periodic orbit) or

solenoidal. In both situations, if the points ur ∈ ωfr
(xr) are given, then there are

sequences {kr,j}
∞
j=1 of positive integers with the property described in Proposition 3.5

for u and {kj} (if ωfr
(xr) is periodic of period s, then kr,j = sj does the job). This

property allows us, after defining nj =
∑j

i=1 k1,ik2,i · · · km,i, to find points z1, . . . , zm

such that each sequence {f
nj
r (zr)} converges to ur, r = 1, . . . , m. Hence (u1, . . . , um) ∈
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ωf1×···×fm
(z1, . . . , zm). This implies (5.1) and finishes the proof of Theorem A in

general.

6. A COUNTEREXAMPLE

The following map was used in [3] as a counterexample to the equality UR(f ×

f) = UR(f)×UR(f). We next show that it can be used to contradict a similar equality

concerning ω-limit points - namely ω(f × g) = ω(f) × ω(g) (see the introduction for

the complete explanation).

Example 6.1. There are a Cantor set M ⊂ I and a continuous map f : M → M

such that

ω(F ) 6= ω(f) × ω(f)

for the product map F = f × f .

It is well known (see [13]) that if the number α ∈ (0, 1) is appropriately chosen,

then h ∈ C(I) defined by h(x) = max{α, 1−|2x−1|} is of type 2∞ in the Sharkovsky

ordering and has a unique h-minimal Cantor set M ⊂ I, which is a solenoidal set for

h. More precisely, there is a decreasing sequence of strongly periodic intervals {Jm}

of periods {2m} such that M ⊆ K =
⋂∞

m=1

⋃2m−1
i=0 hi(Jm). Moreover, the interval

[u, v] of constancy of h is one of the components of K, with both u and v belonging

to M .

Let f denote the restriction of h to M . We have ω(f) = M due to the minimality

of M . Then it suffices to show that (u, v) /∈ ω(F ).

Suppose that (u, v) ∈ ωF (x, y) for some (x, y) ∈ M×M . Then there is a sequence

ni → ∞ such that hni(x) → u and hni(y) → v.

Fix arbitrarily the number m. Then u and v belong to the same interval hk(Jm)

of the h-orbit of Jm. Since both hni(x) and hni(y) belong to hk(Jm), and x, y ∈ M (so,

x ∈ ωh(h
ni(x)) and y ∈ ωh(h

ni(y))), we get that there is an interval hl(Jm) containing

both x and y. Since m was arbitrarily chosen, we conclude that the interval having

x and y as its endpoints is wandering for h. Hence |hn(x) − hn(y)| → 0 as n → ∞,

which is impossible. �

Notice that a slight variation of the above example provides an antitriangular

map G(x, y) = (g(y), f(x)) from M2 into itself for which ω(G) 6= ω(g ◦ f)× ω(f ◦ g);

just take f as above, put g = Id and realize that G2 = F . It could be an interesting

problem to search for conditions ensuring the equality mentioned in Theorem A.
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