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ABSTRACT. In this paper, we consider impulsive large-scale systems without delay and with

delays. By establishing an exponential estimate for differential inequality, following the idea of vec-

tor Lyapunov’s approach and employing the formula for the variation of parameters, we obtain the

criteria on uniform stability, global asymptotical stability and global exponential stability of the

impulsive large-scale systems. Based on the stability criteria, we propose the simple method to sta-

bilize the large-scale systems by utilizing impulsive effects. Explicit steps on impulsive stabilization

of the systems are presented. Examples and simulations are given to illustrate the effectiveness of

the results.
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1. INTRODUCTION

Impulsive dynamical systems have attracted increasing interest since impulsive

effects widely exist in many dynamical systems involving such fields as population

dynamics, automatic control, drug administration, communication networks and so

on. The fundamental theoretics and systemic method of impulsive dynamical systems

have been established in the recent years, see [1]-[3]. On the other hand, the dynamical

systems that people are faced with are becoming more and more complicated in

structure and large in scale. In the past years, large-scale dynamical systems have

been intensively investigated and some popular tools such as Lyapunov method and

comparison method have been applied successfully to study the dynamics of large-

scale systems ([4]-[7]). A large number of the criteria on the stability have been derived

for impulsive systems and large-scale systems, respectively (see, e.g., Refs. [1]-[9]).

On the basis of these theoretics and method, it is natural to further investigate the

stability of impulsive large-scale dynamical systems([10], [11], etc.).
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Stabilization of dynamical systems is an important subject in both theoretic re-

search and engineering applications. By employing continuous state feedback mech-

anism, the approach of stabilization has been well developed in various dynamical

systems (see, [6],[11], etc.). Recently, impulsive stabilization of dynamical systems

has become another important approach since it may be simpler and cheaper in

implementation mechanisms([10], [12]-[15]). The main difficulty in using impulsive

stabilization comes from the requirement that the continuous portion in impulsive

systems must not be stable and the systems are stabilized only by utilizing impulsive

effects. Impulsive stabilization of large-scale dynamical systems with delays may be

more difficult and few results in this direction have been reported.

In this paper, we consider impulsive large-scale systems without delay and with

delays. By establishing an exponential estimate for differential inequality and com-

bining the idea of vector Lyapunov’s approach, we analyze the stability of the zero

solution of the impulsive system without delay. Furthermore, by using the formula

for the variation of parameters and estimating the Cauchy matrix of the isolated

subsystems, we obtain the stability of the zero solution of the impulsive large-scale

system with delays. It is important that our results don’t require the stability of

the corresponding continuous system. Consequently, our criteria can be easily ap-

plied to stabilize the dynamical systems by employing impulsive effects and simple

steps of impulsive stabilization are provided. Examples and stimulations are given to

illustrate the feasibility and effectiveness of our approach.

2. PRELIMINARIES

Let N be the natural numerical set, R
n be the space of n-dimensional real column

vectors and R
m×n be the set of m × n real matrices. Denote R

+ = [0,∞) and

a+ = max{0, a} for a ∈ R. E denotes the unit matrix.

Let τ ≥ 0 and t1 < · · · < tk < tk+1 < . . . (k ∈ N) be the fixed impulsive moments

with lim
k→∞

tk = ∞. For φ = (φ1, . . . , φn)T : R → R
l, l ∈ N, denote

φ(t+) = lim
s→0+

φ(t + s), φ(t−) = lim
s→0−

φ(t + s),

D+φ(t) = lim sup
s→0+0

φ(t+s)−φ(t)
s

, [φi(t)]τ = sup
−τ≤s≤0

{φi(t + s)},

where D+φ(t) is called the upper right derivative of φ(t) (see Yoshizawa[17]).

C[X, Y ] denotes the space of continuous mappings from the topological space X

to the topological space Y .

PC[I, Ω] := {φ : I → Ω| φ(t+) = φ(t) for t ∈ I, φ(t−) exists for t ∈ I, φ(t−) =

φ(t) for all but points tk ∈ I}, where the interval I ⊂ R, and the region Ω ⊂ R
l or

Ω ⊂ R
l×m, l, m ∈ N.
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PC := {φ : [−τ, 0] → R
n | φ(t+) = φ(t) for t ∈ [−τ, 0), φ(t−) exists for t ∈

(−τ, 0], φ(t−) = φ(t) for all but at most a finite number of points t ∈ (−τ, 0]}.

For x = (x1, . . . , xn)T ∈ R
n, A = (aij) ∈ R

n×n, φ ∈ PC, we introduce the

following norms, respectively,

‖x‖ =

n
∑

j=1

|xj|, ‖A‖ = max
1≤j≤n

n
∑

i=1

|aij|, ‖φ‖τ = sup
−τ≤s≤0

{‖φ(s)‖}.

The following lemma is a modification of the continuous delay differential in-

equality (see Xu [5]) and will play an important role in this paper.

Lemma 2.1. Let ui(t) ∈ C[[σ, b), Rn] be a solution of the differential inequalities






D+ui(t) ≤
n
∑

j=1

pij(t)uj(t) +
n
∑

j=1

qij(t)[uj(t)]τ , t ∈ [σ, b),

u(σ + s) = (u1(σ + s), . . . , un(σ + s))T ∈ PC, s ∈ [−τ, 0],

(2.1)

where τ ≥ 0, σ < b ≤ +∞, pij(t) ≥ 0 for i 6= j, qij(t) ≥ 0 and i, j = 1, 2, . . . , n.

Suppose that there exists an integrable function r(t), t ∈ [σ − τ, b) such that

n
∑

j=1

pij(t) + e
sup

θ∈[−τ,0]
{

R t

t+θ
r(s)ds} n

∑

j=1

qij(t) < −r(t), t ∈ [σ, b).(2.2)

If the initial condition satisfies

ui(t) ≤ κe−
R t

σ
r(s)ds, κ ≥ 0, t ∈ [σ − τ, σ], i = 1, . . . , n,(2.3)

then for i = 1, . . . , n

(2.4) ui(t) ≤ κe−
R t

σ
r(s)ds, t ∈ [σ, b).

Proof. We first prove that for any number ε > 0

(2.5) ui(t) ≤ (κ + ε)e−
R t

σ
r(s)ds ∆

= y(t), i = 1, . . . , n, t ∈ [σ, b).

Let

J = {i|ui(t) > y(t) for some t ∈ [σ, b)},

θi = inf{t ∈ [σ, b)|ui(t) > y(t), i ∈ I}.

If the inequality (2.5) is not true, then J is a nonempty set and there must exist

some integer m ∈ J such that θm = min
i∈I

{θi} ∈ [σ, b). Employing the continuity of

functions ui(t) and yi(t) for t ∈ [σ, b), i = 1, . . . , n, from (2.3), we can get

ui(t) ≤ y(t), σ − τ ≤ t ≤ θm, i = 1, . . . , n,(2.6)

um(θm) = y(θm), D+um(θm) ≥ ẏ(θm).(2.7)

Combining with

[y(θm)]τ = (κ + ε) sup
θ∈[−τ,0]

{e−
R θm+θ

σ
r(s)ds} = (κ + ε)e−

R θm
σ

r(s)ds sup
θ∈[−τ,0]

{e
R θm
θm+θ

r(s)ds},
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we have

D+um(θm) ≤

n
∑

j=1

[pmj(θm)uj(θm) + qmj(θm)[uj(θm)]τ ]

≤
n
∑

j=1

[pmj(θm)y(θm) + qmj(θm)[y(θm)]τ ]

=
n
∑

j=1

[pmj(θm) + qmj(θm)e
sup

θ∈[−τ,0]
{

R θm
θm+θ

r(s)ds}

](κ + ε)e−
R θm
σ

r(s)ds

< −r(θm)(κ + ε)e−
R θm

σ
r(s)ds

= ẏ(θm),

which contradicts the inequality in (2.7). Then, (2.5) is true for any ε > 0. Letting

ε → 0+, we obtain the estimate (2.4).

Remark 2.1. When τ = 0 and qij(t) = 0, the above conditions (2.1), (2.2) and

(2.3) can be written as follows, respectively,

D+ui(t) ≤

n
∑

j=1

pij(t)uj(t), t ∈ [σ, b);

n
∑

j=1

pij(t) < −r(t), t ∈ [σ, b);

ui(σ) ≤ κ, κ ≥ 0, i = 1, . . . , n.

For the definition of uniform stability, asymptotic stability and exponential sta-

bility, ones can refer to [1], [8], [18].

3. IMPULSIVE LARGE-SCALE SYSTEMS WITHOUT DELAY

Consider an impulsive large-scale dynamical system without delay
{

ẋi(t) = Ai(t)xi(t) + fi(t, x(t)), t 6= tk, i = 1, . . . , m

4xi(t) = Bikxi(t
−) + Ii(t, x(t−)), t = tk, k ∈ N,

(3.1)

where xi = (x
(i)
1 , . . . , x

(i)
ni )

T ∈ R
ni ,

m
∑

i=1

ni = n, x = (xT
1 , . . . , xT

m)T ∈ R
n, ẋi is the

right-hand derivative, 4xi(t) = xi(t
+) − xi(t

−), Ai(t) = (a
(i)
lj (t)) ∈ PC[R, Rni×ni],

fi = (f
(i)
1 , . . . , f

(i)
ni )T ∈ C[[tk−1, tk) × R

n, Rni], Bik ∈ R
ni×ni, Ii ∈ C[R × R

n, Rni],

fi(t, 0) = 0, Ii(t, 0) = 0.

A function x(t) : [t0, +∞) → R
n is called a solution of Eq.(3.1) with the initial

condition given by

x(t0) = x0 ∈ R
n,(3.2)
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if x(t) is continuous at t 6= tk and t ≥ t0, x(tk) = x(t+k ) and x(t−k ) exists, x(t) satisfies

Eq.(3.1) for t ≥ t0 under the initial condition.

According to [1], the initial-value problem (3.1), (3.2) has the unique solution

x(t, t0, x0) if fi, Ii satisfy the following conditions.

(H1) There exist lij(t) ∈ PC[R, R+], i, j = 1, . . . , m such that

‖fi(t, x)‖ ≤

m
∑

j=1

lij(t)‖xj‖, ∀x ∈ R
n, t ∈ R.

(H2) There exist uij(t) ∈ C[R, R+], i, j = 1, . . . , m such that

‖Ii(t, x)‖ ≤
m
∑

j=1

uij(t)‖xj‖, ∀x ∈ R
n, t ∈ R.

For convenience, we denote

µi(t) = max
1≤l≤ni

{a
(i)
ll (t) +

ni
∑

j=1,j 6=l

|a
(i)
jl (t)|}, i = 1, . . . , m,(3.3)

p(t) = max
1≤i≤m

{µi(t) +
m
∑

j=1

lij(t)},(3.4)

ηk = max
1≤i≤m

{‖E + Bik‖ +
m
∑

j=1

uij(tk)}, k ∈ N.(3.5)

Theorem 3.1. Assume that (H1) and (H2) hold. Let sup
k∈N

{
∫ tk

tk−1
p+(s)ds} < ∞. Then,

i) the zero solution of Eq.(3.1) is uniformly stable if

(3.6) ln ηk ≤ −

∫ tk

tk−1

p(s)ds, k ∈ N;

ii) the zero solution of Eq.(3.1) is globally asymptotically stable if

lim
k→∞

{ln ηk +
∫ tk

tk−1
p(s)ds} < 0,(3.7)

sup
k∈N

{tk − tk−1} < ∞;(3.8)

iii) the zero solution of Eq.(3.1) is globally exponentially stable if

sup
k∈N

{ln ηk +
∫ tk

tk−1
p(s)ds} < 0,(3.9)

sup
k∈N

{tk − tk−1} < ∞.(3.10)

Proof. For any x0 ∈ R
n, let x(t) = (x1(t), . . . , xm(t))T be a solution through (t0, x0),

where xi ∈ R
ni. No loss of generality, we assume t0 < t1. Define V (t) = (V1(t), . . . ,

Vm(t))T , where

Vi(t) = ‖xi‖ =

ni
∑

l=1

|x
(i)
l (t)|, i = 1, . . . , m.
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Calculating the upper right derivative D+Vi along the solution x(t) of Eq.(3.1), from

(H1), we have

D+Vi(t) =

ni
∑

l=1

sgn(x
(i)
l (t))ẋ

(i)
l (t)(3.11)

=

ni
∑

l=1

sgn(x
(i)
l (t))[

ni
∑

j=1

a
(i)
lj (t)x

(i)
j (t) + f

(i)
l (t, x(t))]

≤

ni
∑

l=1

[a
(i)
ll (t)|x

(i)
l (t)| +

ni
∑

j=1,j 6=l

|a
(i)
lj (t)| |x

(i)
j (t)| + |f

(i)
l (t, x(t))|]

=

ni
∑

l=1

[a
(i)
ll (t) +

ni
∑

j=1,j 6=l

|a
(i)
jl (t)|] |x

(i)
l (t)| + ‖fi(t, x(t))‖

≤ µi(t)‖xi‖ +

m
∑

j=1

lij(t)‖xj‖

= µi(t)Vi +
m
∑

j=1

lij(t)Vj, t ∈ [tk−1, tk), k ∈ N.

For any number ε > 0,

(3.12) µi(t) +

m
∑

j=1

lij(t) ≤ p(t) < p(t) + ε, i = 1, . . . , m.

Let η0 = 1. In the following, by the induction, we shall prove that for i = 1, . . . , m

Vi(t) ≤ η0 . . . ηk−1‖V (t0)‖e
R t

t0
(p(s)+ε)ds

, tk−1 ≤ t < tk, k ∈ N.(3.13)

Combining (3.11), (3.12) and Lemma 2.1, we obtain

(3.14) Vi(t) ≤ η0‖V (t0)‖e
R t

t0
(p(s)+ε)ds

, i = 1, . . . , m, t0 ≤ t < t1.

Suppose that

(3.15) Vi(t) ≤ η0 . . . ηk−1‖V (t0)‖e
R t

t0
(p(s)+ε)ds

, i = 1, . . . , m, tk−1 ≤ t < tk.

From Condition (H2), then

Vi(tk) = ‖xi(tk)‖ = ‖(E + Bik)xi(t
−
k ) + Ii(tk, x(t−k ))‖(3.16)

≤ ‖E + Bik‖ ‖xi(t
−
k )‖ +

m
∑

j=1

uij(tk)‖xj(t
−
k )‖

≤ {‖E + Bik‖ +

m
∑

j=1

uij(tk)}η0 . . . ηk−1‖V (t0)‖e
R tk
t0

(p(s)+ε)ds

≤ η0 . . . ηk−1ηk‖V (t0)‖e
R tk
t0

(p(s)+ε)ds.

Employing (3.11), (3.12), (3.16) and Lemma 2.1, we have

Vi(t) ≤ η0 . . . ηk‖V (t0)‖e
R t

t0
(p(s)+ε)ds

, i = 1, . . . , m, tk ≤ t < tk+1.
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Therefore, we obtain the estimate (3.13). Letting ε → 0+, then for i = 1, . . . , m

Vi(t) ≤ η0 . . . ηk−1‖V (t0)‖e
R t

t0
p(s)ds

, tk−1 ≤ t < tk, k ∈ N.(3.17)

i) Let % := sup
k∈N

{
∫ tk

tk−1
p+(s)ds} < ∞. From (3.6) and (3.17), we can get

Vi(t) ≤ η0η1 . . . ηk−1‖V (t0)‖e
R t

t0
p(s)ds

≤ e−
R tk−1
t0

p(s)dse
R t

t0
p(s)ds

‖V (t0)‖

= e
R t

tk−1
p(s)ds

‖V (t0)‖

≤ e
R tk
tk−1

p+(s)ds
‖V (t0)‖

≤ e%‖V (t0)‖, i = 1, . . . , m, tk−1 ≤ t < tk, k ∈ N,

which implies the zero solution of Eq.(3.1) is uniformly stable.

ii) Let 0 < ρ := sup
k∈N

{tk − tk−1} < ∞. From the strict inequality (3.7), there must

be a λ0 > 0 and a positive integer n0 such that for k ≥ n0

ln ηk +

∫ tk

tk−1

p(s)ds ≤ −λ0 < 0.

Thus, for k ≥ n0

ηk ≤ e
−

R tk
tk−1

p(s)ds−λ0 ≤ e
−

R tk
tk−1

[p(s)+λ0/ρ]ds
.

Combining with (3.17), then for k ≥ n0 + 1, tk−1 ≤ t < tk

Vi(t) ≤ c0 ηn0 . . . ηk−1e

R t

tn0−1
p(s)ds

‖V (t0)‖

≤ c0 e
−

R tk−1
tn0−1

[p(s)+λ0/ρ]ds
e

R t

tn0−1
p(s)ds

‖V (t0)‖

= c0 e
R t

tk−1
[p(s)+λ0/ρ]ds

e
−

R t

tn0−1
λ0/ρds

‖V (t0)‖

≤ c0 e
R tk
tk−1

p+(s)ds+(λ0/ρ)(tk−tk−1)
e−(λ0/ρ)(t−tn0−1)‖V (t0)‖

≤ c e−(λ0/ρ)(t−tn0−1)‖V (t0)‖, i = 1, . . . , m,

where c0 := η0η1 . . . ηn0−1e
R tn0−1

t0
p(s)ds and c := c0e

%+λ0 . Hence, the zero solution of

Eq.(3.1) is globally asymptotically stable since ce−(λ0/ρ)(t−tn0−1) → 0 as t → +∞.

iii) Let sup
k∈N

{ln ηk +
∫ tk

tk−1
p(s)ds} = −λ < 0. In a similar way as the case ii), we

can obtain for i = 1, . . . , m

Vi(t) ≤ e%+λe−(λ/ρ)(t−t0)‖V (t0)‖, tk−1 ≤ t < tk, k ∈ N,

which implies the zero solution of Eq.(3.1) is globally exponentially stable.

Based on the above stability theorem, we easily obtain the following criteria on

the stabilization of the large-scale dynamical system

ẋi(t) = Ai(t)xi(t) + fi(t, x(t)), i = 1, . . . , m,(3.18)
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by utilizing the linear impulses

4xi(tk) = xi(tk) − xi(t
−
k ) = Bikxi(t

−
k ), k ∈ N.(3.19)

Theorem 3.2. Let (H1) hold. If

sup
k∈N

{tk − tk−1} < ∞, sup
k∈N

{

∫ tk

tk−1

p+(s)ds} < ∞,

and there exists a constant γ > 1 (γ ≥ 1) such that

ln(γ‖E + Bik‖) +

∫ tk

tk−1

p(s)ds ≤ 0, k ∈ N,

then the zero solution of (3.18), (3.19) is globally exponentially stable (uniformly

stable).

Remark 3.1. According to Theorem 3.2, we easily present some explicit steps

of impulsive stabilization (e.g., uniformly stable) for the large-scale system (3.18).

1) Choose the impulsive moments {tk} such that
∫ tk

tk−1
p+(s)ds < ∞, k ∈ N.

Especially, we may take tk − tk−1 ≡ ρ if p(t) is a bounded function.

2) Calculate the integral
∫ tk

tk−1
p(s)ds.

3) Choose impulsive matrices Bik, k ∈ N satisfying ‖E+Bik‖ ≤ e
−

R tk
tk−1

p(s)ds
.

From the proof process of Theorem 3.1, we also obtain the estimate for the

Cauchy matrix of the isolated subsystem. For the definition and properties of the

Cauchy matrix, we can refer to [1], [2, p.18].

Theorem 3.3. Let Ci(t, t0) be the Cauchy matrix of the linear system
{

ẋi(t) = Ai(t)xi(t), t 6= tk, i = 1, . . . , m,

4xi(t) = Bikxi(t
−), t = tk, k ∈ N,

(3.20)

and

%i := sup
k∈N

∫ tk

tk−1

µ+
i (s)ds < ∞, where µi(t) = max

1≤l≤ni

{a
(i)
ll (t) +

ni
∑

j=1,j 6=l

|a
(i)
jl (t)|}.

If

ln ‖E + Bik‖ +
∫ tk

tk−1
µi(s)ds ≤ −λi ≤ 0, tk − tk−1 ≤ ρ,

then,

‖Ci(t, t0)‖ ≤ cie
−(λi/ρ)(t−t0), where ci := e%i+λi , t ≥ t0.

Furthermore, the zero solution of (3.20) is globally exponentially stable (uniformly

stable) provided that λi > 0 (λi ≥ 0).
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4. IMPULSIVE LARGE-SCALE SYSTEMS WITH DELAYS

Consider an impulsive large-scale dynamical system with delays
{

ẋi(t) = Ai(t)xi(t) + gi(t, x(t), x(t − τi(t))), t 6= tk, i = 1, . . . , m

4xi(t) = Bikxi(t) + Ii(t, x(t−)), t = tk, k ∈ N,
(4.1)

where Ai(t) = (a
(i)
lj (t)) ∈ PC[R, Rni×ni], xi = (x

(i)
1 , . . . , x

(i)
ni )

T ∈ R
ni, x = (xT

1 , . . . ,

xT
m)T ∈ R

n, gi = (g
(i)
1 , . . . , g

(i)
ni )

T ∈ C[[tk−1, tk) × R
n × R

n, Rni], Bik ∈ R
ni×ni, Ii ∈

C[R × R
n, Rni], 0 ≤ τi(t) ≤ τ (τ > 0),

m
∑

i=1

ni = n, gi(t, 0, 0) = 0, Ii(t, 0) = 0.

A function x(t) : [t0 − τ, +∞) → R
n is called a solution of Eq.(4.1) with the

initial condition given by

x(t0 + s) = φ(s) ∈ PC, s ∈ [−τ, 0],(4.2)

if x(t) is continuous at t 6= tk and t ≥ t0, x(tk) = x(t+k ) and x(t−k ) exists, x(t) satisfies

Eq.(4.1) for t ≥ t0 under the initial condition.

According to [16], the initial-value problem (4.1), (4.2) has the unique solution

x(t, σ, φ) if gi, Ii satisfy the conditions (H ′
1) and (H2).

(H ′
1) There exist lij(t), qij(t) ∈ PC[R, R+], i, j = 1, . . . , m such that

‖gi(t, x, y)‖ ≤

m
∑

j=1

lij(t)‖xj‖ +

m
∑

j=1

qij(t)‖yj‖, ∀x ∈ R
n, y ∈ R

n, t ∈ R.

Theorem 4.1. Assume that, in addition to (H ′
1) and (H2), the following conditions

are satisfied.

(H3) There exist constants ci ≥ 1 and functions pi(t) ∈ PC[R, R+] such that

‖Ci(t, t0)‖ ≤ cie
−

R t

t0
pi(s)ds

, t ≥ t0,

where Ci(t, t0) are Cauchy matrices of the isolated subsystems (3.20).

(H4) Let γ ≥ 1 and α(t) ∈ PC[R, R+] satisfy

−pi(t) +

m
∑

j=1

cilij(t) + γ

m
∑

j=1

ciqij(t) < −α(t), t ∈ R, i = 1, . . . , m,

and denote

β(t) := min{α(t),
ln γ

τ
}, ηk := 1 + max

1≤i≤m
{

m
∑

j=1

ciuij(tk)}, k ∈ N.

Then,

i) the zero solution of Eq.(4.1) is uniformly stable if

ln ηk ≤

∫ tk

tk−1

β(s)ds, k ∈ N;
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ii) the zero solution of Eq.(4.1) is globally asymptotically stable if

lim
k→∞

{ln ηk −
∫ tk

tk−1
β(s)ds} < 0,

sup
k∈N

{tk − tk−1} < ∞;

iii) the zero solution of Eq.(4.1) is globally exponentially stable if

sup
k∈N

{ln ηk −
∫ tk

tk−1
β(s)ds} < 0,

sup
k∈N

{tk − tk−1} < ∞.

Proof. For any φ ∈ PC, let x(t) be a solution of Eq. (4.1) through (t0, φ). No loss of

generality, let t0 < t1. It is easily verified that the following formula for the variation

of parameters is valid

xi(t) = Ci(t, t0)xi(t0) +

∫ t

t0

Ci(t, s)gi(s, x(s), x(s − τi(s)))ds(4.3)

+
∑

t0<tk≤t

Ci(t, tk)Ii(tk, x(t−k )), i = 1, . . . , m, t ≥ t0.

From (H ′
1), (H2) and (4.3), we have

‖xi(t)‖ ≤ cie
−

R t

t0
pi(s)ds

‖φ(0)‖ +

∫ t

t0

cie
−

R t

s
pi(ξ)dξ‖gi(s, x(s), x(s − τi(s)))‖ds

+
∑

t0<tk≤t

cie
−

R t

tk
pi(s)ds

‖Ii(tk, x(t−k ))‖

≤ cie
−

R t

t0
pi(s)ds

‖φ(0)‖ +

∫ t

t0

cie
−

R t

s
pi(ξ)dξ

m
∑

j=1

[lij(s)‖xj(s)‖

+qij(s)‖xj(s)‖τ ]ds +
∑

t0<tk≤t

[cie
−

R t

tk
pi(s)ds

m
∑

j=1

uij(tk)‖xj(t
−
k )‖].

Denote

zi(t) = cie
−

R t

t0
pi(s)ds

‖φ(0)‖ +

∫ t

t0

cie
−

R t

s
pi(ξ)dξ

m
∑

j=1

[lij(s)‖xj(s)‖ + qij(s)‖xj(s)‖τ ]ds

+
∑

t0<tk≤t

[cie
−

R t

tk
pi(s)ds

m
∑

j=1

uij(tk)‖xj(t
−
k )‖], t ≥ t0,

zi(t) = ci‖φ(t − t0)‖, t0 − τ ≤ t ≤ t0, i = 1, . . . , m.

Then,














D+zi(t) ≤ −pi(t)zi(t) +
m
∑

j=1

cilij(t)zj(t) +
m
∑

j=1

ciqij(t)[zj(t)]τ , t 6= tk,

zi(tk) ≤ zi(t
−
k ) +

m
∑

j=1

ciuij(tk)zj(t
−
k ), t ≥ t0, k ∈ N.

(4.4)
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Since β(t) = min{α(t), ln γ
τ
} ≥ 0, we have

sup
θ∈[−τ,0]

{

∫ t

t+θ

β(s)ds} ≤

∫ t

t−τ

ln γ

τ
ds = ln γ.

Thus, from (H4)

−pi(t) +
m
∑

j=1

cilij(t) +
m
∑

j=1

ciqij(t)e
sup

θ∈[−τ,0]
{

R t

t+θ
β(s)ds}

(4.5)

≤ −pi(t) +
m
∑

j=1

cilij(t) + γ

m
∑

j=1

ciqij(t)

< −α(t) ≤ −β(t), t ≥ t0, i = 1, . . . , m.

Let η0 = 1 and c = max
1≤i≤m

{ci} ≥ 1. Next, we shall prove that

zi(t) ≤ η0η1 . . . ηk−1c‖φ‖τe
−

R t

t0
β(s)ds

, tk−1 ≤ t < tk, k ∈ N.(4.6)

Since zi(t) ≤ c‖φ‖τe
−

R t

t0
β(s)ds

for t0 − τ ≤ t ≤ t0, by (4.4), (4.5) and Lemma 2.1, we

can get

zi(t) ≤ c‖φ‖τe
−

R t

t0
β(s)ds

, t0 ≤ t < t1.

Suppose that for k = 1, . . . , l

zi(t) ≤ η0η1 . . . ηk−1c‖φ‖τe
−

R t

t0
β(s)ds

, tk−1 ≤ t < tk.

Then, from (4.4),

zi(tl) ≤ zi(t
−
l ) +

m
∑

j=1

ciuij(tl)zj(t
−
l )

≤ [1 +

m
∑

j=1

ciuij(tl)]η0 . . . ηl−1c‖φ‖τe
−

R tl
t0

β(s)ds

≤ η0 . . . ηl−1ηlc‖φ‖τe
−

R tl
t0

β(s)ds,

and so

zi(t) ≤ η0 . . . ηl−1ηlc‖φ‖τe
−

R t

t0
β(s)ds

, tl − τ ≤ t ≤ tl.

Using Lemma 2.1, we obtain

zi(t) ≤ η0 . . . ηl−1ηlc‖φ‖τe
−

R t

t0
β(s)ds

, tl ≤ t < tl+1.

By the induction, the estimate (4.6) holds. Accordingly,

‖xi(t)‖ ≤ zi(t) ≤ η0 . . . ηk−1c‖φ‖τe
−

R t

t0
β(s)ds

, tk−1 ≤ t < tk, k ∈ N.(4.7)

Noting
∫ tk

tk−1
(−β(s))+ds = 0 < ∞, we can complete the rest of the proof in a similar

way as in one of Theorem 3.1 and omit it.
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In the following, we shall discuss the stabilization problem of the large-scale

dynamical system with delays

ẋi(t) = Aixi(t) + gi(t, x(t), x(t − τi(t))), i = 1, . . . , m,(4.8)

by introducing the linear impulses

4xi(tk) = Bikxi(t
−
k ), k ∈ N.(4.9)

Theorem 4.2. Assume that (H ′
1) with lij(t) = lij and qij(t) = qij holds. Then the

zero solution of (4.8), (4.9) is globally exponentially stable provided that

ln δi

ρ
< −µ+

i −
1

δi

m
∑

j=1

[lij + qij], i = 1, . . . , m,(4.10)

where

δi := sup
k∈N

{‖E + Bik‖} > 0, ρ := sup
k∈N

{tk − tk−1},(4.11)

µi := max
1≤l≤ni

{a
(i)
ll +

ni
∑

j=1,j 6=l

|a
(i)
jl |}.(4.12)

Proof. From (4.10) and lij, qij ≥ 0, we have

ln δi + µ+
i ρ < 0, i = 1, . . . , m.

Denote λi := − ln δi − µ+
i ρ > 0, then

ln ‖E + Bik‖ +

∫ tk

tk−1

µids ≤ ln δi + µ+
i ρ = −λi < 0,

and

%i = sup
k∈N

{

∫ tk

tk−1

µ+
i ds} = µ+

i ρ < +∞, i = 1, . . . , m.

By Theorem 3.3, we obtain Condition (H3) with

ci = eλi+%i = e− ln δi =
1

δi

, pi =
λi

ρ
= −

ln δi

ρ
− µ+

i , i = 1, . . . , m.

From (4.10), we can get

−pi + ci[
m
∑

j=1

lij +
m
∑

j=1

qij] < 0, i = 1, . . . , m.

And so, there must be constants γ > 1 and α > 0 such that (H4) holds, i.e.,

−pi + ci[

m
∑

j=1

lij + γ

m
∑

j=1

qij] < −α, i = 1, . . . , m.

In a similar way as the proof of the estimate (4.7) in Theorem 4.1, we obtain

‖xi(t)‖ ≤ η0 . . . ηk−1c‖φ‖τe
−

R t

t0
βds

, tk−1 ≤ t < tk, k ∈ N,
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where

η0 = · · · = ηk−1 = 1, c = max
1≤i≤n

{ci}, β = min{α,
ln γ

τ
} > 0.

Hence, the zero solution of system (4.8) is globally exponentially stable.

Remark 4.1. According to Theorem 4.2, we can present a simple arithmetic to

stabilize large-scale delay system (4.8) by utilizing impulses as the following steps.

1) Calculate the parameters µi, lij, qij in terms of (H ′
1) and (4.12).

2) Choose matrices Bik to ensure δi = sup
k∈N

{‖E + Bik‖} < 1.

3) To ensure exponential stability, take

ρ = sup
k∈N

{tk − tk−1} < min
1≤i≤m

{
−δi ln δi

µ+
i δi +

∑m
j=1(lij + qij)

}.(4.13)

5. EXAMPLES OF IMPULSIVE STABILIZATION

Example 5.1. Consider an uncertain impulsive large-scale system without delay
{

ẋi(t) = Ai(t)xi(t) + fi(t, x(t)), t 6= kπ, t ≥ 0,

4xi(t) = Bikxi(t
−) + Ii(t, x(t−)), t = kπ, k ∈ N,

(5.1)

where i = 1, 2, xi ∈ R
2, x = (xT

1 , xT
2 )T , Bik ∈ R

2×2, Ii ∈ C[R+ × R
2, R2], and

A1 =

(

0.1 0.1

0 −0.2

)

, A2 =

(

0 0.5

0.1 −0.5

)

,

‖f1(t, x(t))‖ ≤
| sin t|

10
‖x1‖ +

| cos t|

10
‖x2‖,

‖f2(t, x(t))‖ ≤
| cos t|

10
‖x1‖ +

| sin t|

20
‖x2‖,

‖Ii(t, x)‖ ≤ ui1(t)‖x1‖ + ui2(t)‖x2‖.

The corresponding continuous system may be unstable (e.g., the one with f1 = f2 ≡

0). According to (3.3), (3.4), we have µ1 = 0.1, µ2 = 0.1, p(t) = 0.1 + 0.1(| sin t| +

| cos t|), and so
∫ tk

tk−1
p(s)ds = 0.1π + 0.4. Let

ηk ≤ e−(0.1π+0.4), where ηk = max
1≤i≤2

{‖E + Bik‖ +
2
∑

j=1

uij(tk)}.(5.2)

It follows from the case i) in Theorem 3.1 that the zero solution of (5.1) is uniformly

stable. For example, taking

B1k = B2k =

(

−0.6 0

0 −0.6

)

, I1(t, x) = I2(t, x) = 0,(5.3)
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we easily verify that the condition (5.2) holds. In fact, the zero solution of the

impulsive system (5.1) with (5.3) is globally exponentially stable from the case iii) in

Theorem 3.1. Therefore, we stabilize the uncertain large-scale system.

Example 5.2. Consider a large-scale dynamical system with delays as follows
{

ẋ1(t) = A1x1(t) + g1(t, x(t − τ(t))),

ẋ2(t) = A2x2(t) + g2(t, x(t − τ(t))),
(5.4)

where t ≥ 0, xi = (xi1, xi2)
T , i = 1, 2, x = (xT

1 , xT
2 )T , τ(t) = | cos(t)| and

A1 =

(

0.5 0.1

0 0.4

)

, A2 =

(

0.2 0

0.1 0.3

)

,

(

g1

g2

)

=













0 −0.1 0.2 0.1

0.1 0 −0.1 0.2

0.1 −0.1 0.1 0

0 0.2 −0.1 0.1

























sin(x11(t − τ(t)))

x12(t − τ(t))

arctan(x21(t − τ(t)))

x22(t − τ(t))













.

Figure 1 shows the zero solution of the continuous system (5.4) is unstable.

According to the steps given in Remark 4.1, we easily stabilize the delay system

(5.4) by the impulsive effects
{

4x1(tk) = B1kx1(t
−
k )

4x2(tk) = B2kx2(t
−
k )

, k ∈ N.(5.5)

Firstly, we work out

µ1 = 0.5, µ2 = 0.3, lij = 0, q11 = 0.1, q12 = 0.3, q21 = 0.3, q22 = 0.2.

Next, choose

(5.6) B1k = B2k =

(

−0.5 0

0 −0.5

)

, k ∈ N.

Clearly, δ1 = δ2 = sup
k∈N

{‖E + Bik‖} = 0.5 < 1. In terms of (4.13), we take

(5.7) ρ = sup
k∈N

{tk − tk−1} < 0.5331.

It follows from Theorem 4.2 that the zero solution of the system (5.4) with impulsive

effects (5.5), (5.6), (5.7) is globally exponentially stable.

Figure 2 shows the stability when taking tk = 0.5k and the initial functions:

x11(t) = cos(t), x12(t) = sin(t), x21(t) = − cos(t), x22(t) = − sin(t), t ∈ [−1, 0].
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Figure 1. Instability of the delay system (5.4) without impulsive effect.
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Figure 2. Impulsive Stabilization of the delay system (5.4).
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