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ABSTRACT. Some new criteria have been established for the oscillation of the linear matrix

Hamiltonian system X ′ = A(t)X + B(t)Y, Y ′ = C(t)X − A∗(t)Y under the hypothesis: A(t),

B(t) = B∗(t) > 0 and C(t) = C∗(t) are n × n real continuous matrix functions on the interval

[t0,∞) (t0 > −∞). Our results are different from most known ones in the sense that they are given

in the form lim sup
t→∞

g[·] > const. rather than lim sup
t→∞

λ1[·] = ∞, where g is a positive linear

functional on the linear space of n×n matrices with real entries. Our results improve some previous

ones. Two examples are worked out to illustrate the effectiveness of our results.

AMS (MOS) Subject Classification. 34A30, 34C10.

1. INTRODUCTION

Consider the linear matrix Hamiltonian system

(1.1)

{

X ′ = A(t)X + B(t)Y

Y ′ = C(t)X − A∗(t)Y,

where A(t), B(t) = B∗(t) > 0, C(t) = C∗(t) are n × n-matrices of real valued

continuous functions on [t0,∞). By M∗ we mean the conjugate transpose of the

matrix M .

For any solution (X, Y ) of (1.1), X∗(t)Y (t) − Y ∗(t)X(t) is a constant matrix.

The solution (X, Y ) of (1.1) is said to be nontrivial if det X(t) 6= 0 for at least one

t ∈ [t0,∞). A nontrivial solution (X, Y ) of (1.1) is said to be prepared if X∗(t)Y (t)−

Y ∗(t)X(t) = 0 for every t ∈ [t0,∞). A prepared solution (X, Y ) of (1.1) is said to be

oscillatory on [t0,∞) if det X(t) has arbitrarily large zeros. System (1.1) is said to be

oscillatory on [t0,∞) if each nontrivial prepared solution of (1.1) is oscillatory.

In the case when A(t) ≡ 0, B(t) > 0, system (1.1) reduces to the second order

self-adjoint matrix differential system

(1.2) (P (t)X ′)′ + Q(t)X = 0

with P (t) = B−1(t), Q(t) = −C(t). Oscillation and nonoscillation of system (1.1)

or (1.2) have been extensively studied by many authors [1-16, 19]. However, all the
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results in [1-16, 19] are given in the form lim
t→∞

sup λ1[·] = ∞, where λ1[P ] denotes the

largest eigenvalue of an n× n Hermitian matrix P . In our recent papers [18, 20, 21],

we gave several oscillation criteria in the form lim
t→∞

sup λ1[·] > const.. In this paper,

we will further the investigation and establish some new oscillation criteria that are

presented in the form lim
t→∞

sup g[·] > const. for the system (1.1) by using a class of

particular functions Φ(t, s, r) defined by:

(1.3) Φ(t, s, r) = (t − s)α(s − r)β, for t ≥ s ≥ r ≥ t0 and α, β > 1/2,

where g is a positive linear functional on the linear space of n× n matrices with real

entries. Our results improve many known oscillation results even for the self-adjoint

differential system (1.2), which can be illustrated by the examples given at the end

of this paper.

In the sequel, Let R
n×n be the linear space of n × n matrices with real entries,

℘ ⊂ R
n×n be the subspace of n × n symmetric matrices, and g be a linear functional

on R
n×n. g is said to be positive if g(A) > 0 whenever A ∈ ℘ and A > 0.

2. MAIN RESULTS

The following lemma will be used to prove the main results of this paper.

Lemma 2.1. ([17]) If g is a positive linear functional on R
n×n then for all A, B ∈

R
n×n, we have |g[A∗B]|2 ≤ g[A∗A]g[B∗B].

Now we give the main results of this paper.

Theorem 2.2. Let Φ(t, s, r) be defined by (1.3). If there exist a positive linear func-

tional g on < and a function f(t) ∈ C1[0,∞) such that for each r ≥ t0

(2.1) lim
t→∞

sup

∫ t

r

g [M1(t, s, r)] ds > 0,

where

(2.2)

M1(t, s, r) = −Φ2(t, s, r)(C1 + A∗B−1
1 A)(s)

+2Φ(t, s, r)Φ′

s(t, s, r)(B
−1
1 A)(s)

−Φ′

s
2(t, s, r)B−1

1 (s),

(2.3) B1(t) = a−1(t)B(t), a(t) = exp

{

−2

∫ t

f(s)ds

}

,

and

(2.4) C1(t) = a(t)
{

C(t) + f(t)[B−1A + A∗B−1](t) + [f(t)B−1(t)]′ − f 2(t)B−1(t)
}

,

then the system (1.1) is oscillatory.
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Proof. Assume to the contrary that (1.1) is nonoscillatory. Then there exists a non-

trivial prepared solution (X(t), Y (t)) of (1.1) such that X(t) is nonsingular for all

sufficiently large t, say t ≥ T ≥ t0. This allows us to make a transformation

(2.5) W (t) = −a(t)
[

Y (t)X−1(t) + f(t)B−1(t)
]

, t ≥ T.

From (1.1) and (2.3)-(2.5) we have

(2.6) W ′(t) + A∗(t)W (t) + W ∗(t)A(t) − W (t)∗B1(t)W (t) + C1(t) = 0,

Multiplying (2.6), with t replaced by s, by Φ2(t, s, T ) and integrating from T to t, we

obtain

(2.7)
∫ t

T

Φ2(t, s, T )(−C1(s))ds = −2

∫ t

T

Φ(t, s, T )Φ′

s(t, s, T )W (s)ds

−

∫ t

T

Φ2(t, s, T )(W ∗B1W − A∗W − W ∗A)(s)ds.

Now the substitution

P (t) = W (t) − B−1
1 (t)A(t)

in the above equation (2.7) gives us

(2.8)

∫ t

T

M0(t, s, T )ds = −2

∫ t

T

Φ(t, s, T )Φ′

s(t, s, T )P (s)ds

−

∫ t

T

Φ2(t, s, T )(P ∗B1P )(s)ds,

where

M0(t, s, T ) = −Φ2(t, s, T )(C1 + A∗B−1
1 A)(s) + 2Φ(t, s, T )Φ′

s(t, s, T )(B−1
1 A)(s).

Applying the linear functional g on both sides of (2.8), we obtain

(2.9)

∫ t

T

g[M0(t, s, T )]ds = −

∫ t

T

2Φ(t, s, T )Φ′

s(t, s, T )g[P (s)]ds

−

∫ t

T

Φ2(t, s, T )g[(P ∗B1P )(s)]ds

We now claim that for t ∈ [T,∞),

(2.10) g [(P ∗B1P )(t)] ≥ {g
[

B−1
1 (t)

]

}−1 {g [P (t)]}2 .

In fact, by the lemma, for all t ∈ [T,∞)

g[B−1
1 (t)]g[(P ∗B1P )(t)] = g[(B

−1/2
1

∗

B
−1/2
1 )(t)]g[(B

1/2
1 P )∗(B

1/2
1 P )(t)]

≥
{

g[(B
−1/2
1 B

1/2
1 P )(t)]

}2

= {g[P (t)]}2 .
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Hence the claim is true. By (2.9) and (2.10), we have that

(2.11)
∫ t

T

g[M0(t, s, T )]ds ≤ −

∫ t

T

2Φ(t, s, T )Φ′

s(t, s, T )g[P (s)]ds

−

∫ t

T

Φ2(t, s, T )
{

g
[

B−1
1 (s)

]}

−1
{g[(P (s)]}2ds

=

∫ t

T

Φ′

s
2
(t, s, T )g[B−1

1 (s)]ds

−

∫ t

T

[

Φ(t, s, T )
√

g[B−1
1 (s)]

g[P (s)] + Φ′

s(t, s, T )

√

g[B−1
1 (s)]

]2

≤

∫ t

T

Φ′

s
2
(t, s, T )g[B−1

1 (s)]ds.

From (2.2) and (2.11) we have
∫ t

T

g [M1(t, s, T )] ds =

∫ t

T

g
[

M0(t, s, T ) − Φ′

s
2
(t, s, T )B−1

1 (s)
]

ds ≤ 0,

which implies a contradiction to the hypothesis (2.1). This completes the proof of

Theorem 2.2.

If we choose an appropriate function f(t) and a positive linear functional g in

Theorem 2.2 such that g[B−1
1 (t)] = g[a(t)B−1(t)] ≤ m for t ≥ t0, where m > 0 is a

constant, and let Φ(t, s, r) = (t − s)(s − r)α for α > 1/2, then we have the following

theorem from Theorem 2.2:

Theorem 2.3. System (1.1) is oscillatory provided that for some α > 1/2 and for

each r ≥ t0,

(2.12) lim
t→∞

sup
1

t2α+1

∫ t

r

g [M2(t, s, r)]ds >
mα

(2α − 1)(2α + 1)
,

where

(2.13)
M2(t, s, r) = −(t − s)2(s − r)2αg[(C1 + A∗B−1

1 A)(s)]

+2(t − s)(s − r)2α−1[αt − (α + 1)s + r]g[(B−1
1 A)(s)],

and B1(t), C1(t) are the same as in Theorem 2.2.

Proof. Assume to the contrary that (1.1) exists a nontrivial prepared solution (X(t), Y (t))

such that X(t) is nonsingular for t ≥ T ≥ t0. Similar to the proof of Theorem 2.2,

and noting that g[B−1
1 (t)] ≤ m for t ≥ t0, we have for t ≥ T

(2.14)

∫ t

T

g [M2(t, s, r)] ds ≤

∫ t

T

[α(t − s)(s − T )α−1 − (s − T )α]2g[B−1
1 (s)]ds

≤ m

∫ t

T

[α(t − s)(s − T )α−1 − (s − T )α]2ds.
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Integrating by parts, we can easily obtain,

(2.15)

∫ t

T

[α(t − s)(s − T )α−1 − (s − T )α]2ds =
α

(2α − 1)(2α + 1)
(t − T )2α+1.

Thus, from (2.13), (2.14) and (2.15) we have

lim
t→∞

sup
1

t2α+1

∫ t

r

g [M2(t, s, r)] ds ≤
mα

(2α − 1)(2α + 1)
,

which contradicts the hypothesis (2.12). This completes the proof of Theorem 2.3.

If we choose an appropriate function f(t) and a positive linear functional g in

Theorem 2.2 such that g[B−1
1 (t)] = g[a(t)B−1(t)] ≤ m for t ≥ t0, where m > 0 is a

constant, and let Φ(t, s, r) = (t− s)α(s− r) for α > 1/2, then, similar to the proof of

Theorem 2.3, we have the following theorem:

Theorem 2.4. System (1.1) is oscillatory provided that for some α > 1/2 and for

each r ≥ t0,

(2.16) lim
t→∞

sup
1

t2α+1

∫ t

r

g [M3(t, s, r)]ds >
mα

(2α − 1)(2α + 1)
,

where

M3(t, s, r) = −(t − s)2α(s − r)2g[(C1 + A∗B−1
1 A)(s)]

+2(t − s)2α−1(s − r)[t − (α + 1)s + αr]g[(B−1
1 A)(s)],

and B1(t), C1(t) are the same as in Theorem 2.2.

In the sequel, we generalize Theorems 2.3 and 2.4 as the following theorem:

Theorem 2.5. If there exist a positive linear functional g on <, a function f(t) ∈

C1[0,∞) and a constant m > 0 such that g[B−1
1 (t)] = g[a(t)B−1(t)] ≤ m for t ≥ t0,

and for each r ≥ t0,

(2.17) lim
t→∞

sup
1

t2α+2β−1

∫ t

r

g[M1(t, s, r)]ds > 2mαβ(α + β − 1)
Γ(2α − 1)Γ(2β − 1)

Γ(2α + 2β)
,

where M1(t, s, r) is defined as in Theorem 2.2, then system (1.1) is oscillatory.

Proof. Noting that

∫ t

T

Φ′

s
2
(t, s, T )ds =

∫ t

T

[β(t − s)α(s − T )β−1 − α(t − s)α−1(s − r)β]2ds

=

∫ t

T

[β2(t − s)2α(s − T )2(β−1) − 2αβ(t − s)2α−1(s − r)2β−1

+α2(t − s)2(α−1)(s − r)2β]ds.
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Integrating the above equality by parts and setting u = s− t and w = t− T , we have

eventually

(2.18)

∫ t

T

Φ′

s
2
(t, s, T )ds =

∫ t

T
(t − s)2(α−1)(s − T )2(β−1)[β(t − s) − α(s − T )]

=

∫ t−T

0

(t − T − u)2(α−1)u2(β−1)[β(t − T − u) − αu]2du

=

∫ w

0

(w − u)2(α−1)u2(β−1)[β(w − u) − αu]2du.

We now evaluate this integral using Euler’s Beta function
∫ 1

0

xa(1 − x)bdx =
Γ(a)Γ(b)

Γ(a + b)
, Re(a, b) > 0.

Since

(2.19)

∫ w

0

(w − u)2(α−1)u2(β−1)[β(w − u) − αu]2du =

∫ w

0

[β2(w − u)2αu2(β−1)

−2αβ(w − u)2α−1u2β−1 + α2(w − u)2(α−1)u2β]du,

by evaluating the first integral by Euler’s Beta function and setting u = wx, we obtain
∫ w

0

(w − u)2αu2(β−1)du = w
∫ 1

0
(w − wx)2α(wx)2(β−1)dx

= w2(α+β)−1

∫ 1

0

(1 − x)2αx2(β−1)dx

= w2α+2β−1 Γ(2α + 1)Γ(2β − 1)

Γ(2α + 2β)
.

Similarly, we can evaluate the second and the third integral as
∫ w

0

(w − u)2α−1u2β−1du = w2α+2β−1 Γ(2α)Γ(2β)

Γ(2α + 2β)

and
∫ w

0

(w − u)2(α−1)u2βdu = w2α+2β−1 Γ(2α − 1)Γ(2β + 1)

Γ(2α + 2β)
.

Thus, we have
∫ w

0

(w − u)2(α−1)u2(β−1)[β(w − u) − αu]2du

(2.20)

=
w2α+2β−1

Γ(2α + 2β)
[β2Γ(2α + 1)Γ(2β − 1) − 2αβΓ(2α)Γ(2β)

+α2Γ(2α − 1)Γ(2β + 1)]

= 2αβ(α + β − 1)
Γ(2α − 1)Γ(2β − 1)

Γ(2α + 2β)
w2α+2β−1.

From (2.18)-(2.20), we get
∫ t

T

Φ′

s
2
(t, s, T )ds = 2αβ(α + β − 1)

Γ(2α − 1)Γ(2β − 1)

Γ(2α + 2β)
(t − T )2α+2β−1.
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The following proof is similar to that of Theorem 2.2, and hence is omitted. This

completes the proof of Theorem 2.5.

The following two examples illustrate our results.

Example 2.6. Consider the Euler differential system

(2.21) Y ′′ + diag

(

γ

t2
,

β

t2

)

Y = 0, t ≥ 1,

where γ ≥ β > 0 are constants. Our Theorem 2.3 can be applied to (2.21) and easily

reveal the well-known fact that (2.21) is oscillatory for γ > 1/4. In fact, if we choose

f(t) = 0, Φ(t, s, r) = (t − s)(s − r)α for α > 1/2, then we have

M2(t, s, r) = (t − s)2(s − r)2αg

[

diag

(

γ

t2
,

β

t2

)]

.

Let the positive linear functional g[A] = a11, where A = (aij) is a 2× 2 matrix. Note

that g[B−1
1 (t)] = 1 and for each r ≥ 1

lim
t→∞

1

t2α+1

∫ t

r

(t − s)2(s − r)2α γ

s2
ds =

γ

α(2α − 1)(2α + 1)
.

For any γ > 1/4, there exists an constant α > 1/2 such that

γ

α(2α − 1)(2α + 1)
>

α

(2α − 1)(2α + 1)
,

i.e., γ > α2. This means that (2.12) holds. By Theorem 2.3, we find that (2.21) is

oscillatory for γ > 1/4. However, we can easily see that criteria in [3, 6, 8] fail to

reveal this fact.

Example 2.7. Consider the 4−dimensional matrix Hamiltonian system (2.22) with

system parameters

(2.22) A(t) =

[

0 −1/t

2/t 0

]

, B(t) =

[

t 0

0 2t

]

, C(t) = −

[

θ/t3 0

0 η/t3

]

,

where t ≥ 1, η ≥ θ > 0 are constants. If we let f(t) = − 1
2t

, Φ(t, s, r) = (t− s)(s− r)α

for α > 1/2, and the positive linear functional g[A] = a22, where A = (aij) is a 2 × 2

matrix, then we have

a(t) = t, g [M2(t, s)] = (t − s)2(s − r)2α(η − 11/8)/s2,

and g[B−1
1 (t)] = g[a(t)B−1(t)] = 1/2 for t ≥ 1. Similar to the proof of Example 2.6,

we can obtain that system (2.22) is oscillatory for η > 3/2 by Theorem 2.3.
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