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ABSTRACT. If a time scale T is in a sense small, then for any linear Hamiltonian dynamic system
x∆ = S(t)x on T its translation operator eS(·)(t,s) is a restriction of a translation operator generated
by a linear Hamiltonian ordinary differential system ẋ = H(t)x.

AMS (MOS) Subject Classification. 34A05, 34A30, 35C99, 39A99.

1. INTRODUCTION

The development of the theory of time scales was initiated by Hilger in his PhD

thesis in 1988 as a theory capable to contain both difference and differential calculus in

a consistent way. In the last decade we have been witnesses of great efforts especially

in the theory of dynamic equations of time scales. Nevertheless there are considerable

difficulties, mainly due to the fact that at the present time the kernel of the theory–

the time scale calculus is still no match for the traditional calculus of Newton and

Leibniz (as we can see on difficulties with the chain rule).

One of possibilities how to overcome such technical difficulties is to use an idea

of embedding, more precisely the idea that solutions of dynamic equations on a time

scale are projections of solutions of suitable ordinary differential equations to the time

scale.

This beautiful idea is well known in the geometric and topological dynamics,

where usually some kind of flow interpolation method is used. This approach was

applied to dynamic equations on time scales by Garay and Hilger [6] who used a flow

interpolation based on a parametrized Hermite interpolation. Of course the resulting

ordinary differential equations are not uniquely determined.

In our paper [2] we proposed an entirely different, much more analytical approach.

Our method was limited to linear systems and we had to resort to the Carathéodory

theory of ordinary differential equations whereas the method of Garay and Hilger
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(GHM) guarantees continuity of the right-hand side of the resulting ordinary differ-

ential equation. Surprisingly even our “clumsy” approach has some advantages, e.g.,

proofs of some classical assertions are relatively straightforward [1].

In this paper we will demonstrate another advantage of our approach. We will

prove that if the original dynamic equation is linear and Hamiltonian ([4, 5]) then so

is the resulting ordinary differential equation constructed via our method.

2. HYPOTHESES AND AUXILIARY RESULTS

Throughout this paper we will use mostly the standard notation widely used in

the theory of time scales (e.g. [4] or [6]) and ordinary differential equations (e.g. [7]).

A time scale T is a nonempty closed subset of R. The most prominent examples are

T = R and T = Z, but of course even the middle third Cantor set is a time scale.

For any time scale T we define the forward jump operator σ : T → T, σ(t) :=

inf {s ∈ T : s > t} and the graininess function µ : T → [0,∞) by µ(t) := σ(t)− t, so

if T = R, then µ(t) ≡ 0 and if T = Z, then µ(t) ≡ 1.

If f : T → R is a function, then by fσ we will denote the composition f ◦ σ.

We say that a function f : T → R is (∆) differentiable at t ∈ T, if there exists a

real number, denoted as f∆(t), called the (∆) derivative of f at t, such that for all

ε > 0 in a neighbourhood Ω(t) of t

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, for s ∈ Ω(t).

For any time scale ‖T‖, we can define its norm as ‖T‖ := sup{µ(t) : t ∈ T}.
Clearly ‖T‖ ∈ [0, +∞], e.g. ‖R‖ = 0, ‖Z‖ = 1, if a, b > 0, then ‖

⋃∞
k=1[k(a+ b), k(a+

b) + a]‖ = b, and ‖{n2 : n ∈ N}‖ = +∞.

Any interval on a time scale T will be denoted by the subscript T, so e.g. [a, b]T =

{t ∈ T : a ≤ t ≤ b}. If it is clear that for T = R, we omit the subscript R.

Moreover we will use Mat(d× d) for the set of all (real) d× d matrices equipped

with the spectral norm ‖A‖. That is ‖A‖ is the square root of the largest eigenvalue of

A∗A, where A∗ is the conjugate transpose of A. By Id we will denote the d-dimensional

identity matrix and by J the standard 2d-dimensional symplectic matrix, so

J :=

[
0, Id

−Id, 0

]
,

where 0 is the d-dimensional zero matrix.

Finally we will need the following result from [2].

Theorem 2.1. Let T be a time scale, t0, T ∈ T, t0 ≤ T < ∞. Let A(t) be a

d× d matrix function continuous on [t0, T ]R. If ‖T‖ < ‖A(t)‖−1 on [t0, T ]T, then the
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translation operator eA(·)(t, t0) of the matrix equation

(2.1) X∆ = A(t)X, t ∈ [t0, T ]T,

is the restriction of the translation operator Y (t, t0) of the matrix equation

(2.2) Ẋ = H(t, A(ρ̄(t)))X, t ∈ [t0, T ]R,

on the time scale T, where the matrix function H : [t0, T ]R×Mat(d×d) → Mat(d×d)

is defined by

H(t, B) := B − m(t)

2
B2 +

m2(t)

3
B3 − · · ·+ (−1)n mn(t)

n + 1
Bn+1 + · · · ,

ρ̄ : [t0, T ]R → T is defined by ρ̄(t) := sup {s ∈ T : s ≤ t}, and m : [t0, T ]R → R is

defined by m(t) := (µ ◦ ρ̄)(t).

3. MAIN RESULT

We will start with a traditional definition of a 2d-dimensional linear Hamiltonian

dynamic system on a time scale T

(3.1)

[
p

q

]∆

=

[
A(t), B(t)

C(t), −A∗(t)

] [
pσ

q

]
, t ∈ T.

The right-hand side matrix is continuous and Hamiltonian, so A(t), B(t), C(t) are

continuous d × d matrix functions, B(t) = B∗(t), C(t) = C∗(t) and the matrix

I2d − µ(t)A(t) is invertible (the “strange condition” [8, p. 216]). On the very first

view (3.1) is a nicely looking system, but its right hand side depends on the state

x = [p, q]∗ not only at the time t, but also at the time t+µ(t). This makes impossible

to apply any of the known theories of embedding.

Therefore we rewrite (3.1) as

(3.2)

[
p

q

]∆

=

[
A(t)(Id − µ(t)A(t))−1, (Id − µ(t)A(t))−1B(t)

C(t)(Id − µ(t)A(t))−1,−A∗(t) + µ(t)C(t)(Id − µ(t)A(t))−1B(t)

][
p

q

]
for t ∈ T, or shortly as

(3.3) x∆ = S(t)x for t ∈ T,

where S(t) is the matrix on the right hand side of (3.2). Even this system is called

Hamiltonian ([3, 8]) and it is well known ([3, Proposition 1.2]), that S(t) is T-

symplectic, which means that

S∗(t)J + JS(t) + µ(t)S∗(t)JS(t) = 0

for t ∈ T. The T-symplecticity of S(t) implies that

(3.4) (I2d + µ(t)S(t))∗J(I2d + µ(t)S(t)) = J

for t ∈ T.
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Clearly S(t) is continuous, but we will need more – namely some kind of pro-

portional smallness of S(t) and T. The usual approach here is to put an upper limit

on the term ‖S(t)‖ · ‖T‖. (For example, in [6], Garay and Hilger use the condition

31‖S(t)‖ · ‖T‖+ 4(‖S(t)‖ · ‖T‖)2 < 27.) In our case it would be sufficient to suppose

‖S(t)‖ · ‖T‖ < 1, but because our resulting ordinary differential equation is linear we

prefer to put limits on T so we will write this condition as

(3.5) ‖T‖ < ‖S(t)‖−1,

and we will say that the time scale T is sufficiently small with respect to the system

(3.2) if (3.5) is fulfilled for all considered t. Of course if ‖S(t)‖ = 0, this condition

holds trivially.

The time scale T is a closed subset of the real line R, therefore for t0, T ∈ T,

t0 < T , we have

[t0, T ]R \ T =
ω⋃

i=1

(ai, bi),

where ω ∈ N∪ {0,∞}, ai, bi ∈ R, ai < bi. If ω > 0, then the complementary intervals

(ai, bi) are pairwise disjoint and uniquely determined with the obvious exception of

their ordering.

If t ∈ T, then t is either right dense or right scattered. In the first case µ(t) = 0,

so (3.2) is reduced to the linear system

(3.6)
d

dt

[
p

q

]
=

[
A(t), B(t)

C(t), −A∗(t)

] [
p

q

]
,

which is clearly Hamiltonian. If t is right scattered, then t is left boundary point

of some complementary interval, hence we can restrict our attention to “time-gaps”

[ai, bi). Let one of them be chosen fixed, say the one given by boundary points a, b ∈ T,

µ(a) = b − a > 0. Then for t ∈ [a, b) Theorem 2.1 gives the corresponding ordinary

differential equation (2.2) on [a, b) as

(3.7) ẋ = N(t)x, t ∈ [a, b),

where

N(t) := S(a)− µ(a)

2
S2(a) +

µ2(a)

3
S3(a)− · · · = 1

µ(a)
log (I2d + µ(a)S(a))

is a 2d × 2d constant matrix. Because T is small with respect to (3.2), the spectral

radius

%(µ(a)S(a)) ≤ ‖µ(a)S(a)‖ = µ(a)‖S(a)‖ ≤ ‖T‖ · ‖S(a)‖ < 1,

and any eigenvalue λ of the matrix I2d + µS(µ) fulfills

<λ(Id + µ(a)S(µ(a))) = 1 + <λ(µ(a)S(µ(a))) ≥ 1− %(µ(a)S(µ(a))) > 0.
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Moreover, due to (3.4) the matrix I2d + µ(a)S(µ(a)) is symplectic in the usual sense.

Finally, we will need the following Lemma ([9, Chap.II, Appendix Lemma 1.]).

Lemma 3.1. Let L be a real symplectic matrix which does not have −1 as an eigen-

value. Then there exists a real, Hamiltonian matrix H such that L = exp(H).

By the Lemma the matrix N(t) is Hamiltonian for t ∈ [a, b).

We can do this for any time-gap [ai, bi) and combine (3.6) and (3.7) into one

system

(3.8) ẋ = H(t)x, t ∈ R,

which is Hamiltonian and its matrix H(t) is Lebesgue measurable in t ∈ R. Summing

this up we have proved the following theorem.

Theorem 3.2. Let a time scale T be sufficiently small with respect to the linear Hamil-

tonian dynamic system (3.2). Then there exists a Lebesgue measurable Hamiltonian

matrix function H : R → Mat(d × d) such that the translation operator eA(·)(t, s) of

(3.1) is exactly the restriction of the unique translation operator X(t, s) of the linear

Hamiltonian ordinary differential equation (3.8) to T.

Remark 3.3. It is interesting to note that GHM cannot guarantee that the resulting

ordinary differential system will be Hamiltonian again. Indeed let us consider the

following 2-dimensional Hamiltonian system[
p

q

]∆

=

[
0, 1

−1, 0

] [
pσ

q

]
,

on a time gap [a, b), a, b ∈ T, 0 < µ(a) = b− a, and T is such that b is a right dense

point, that is µ(b) = 0. The right hand side matrix in (3.2) is

S(t) =

[
0, 1

−1, −µ(t)

]
,

and GHM defines the right hand side of the corresponding differential equation on

[a, b) as

F[a,b)(t, x) = S(a)x + {S(a)x− S(b) [x + (b− a)S(a)x]}P (t),

where x = [p, q]∗ and P (t) := 2 t−a
b−a

− 3 (t−a)2

(b−a)2
. Whence F[a,b)(t, x) = F (t)x is linear in

x, nevertheless the matrix

F = S(a) + {S(a)− S(b)− µ(a)S(b)S(a)}P (t) =

[
µ(a)P (t), 1 + µ2(a)P (t)

−1, −µ(a)

]
is not Hamiltonian.
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