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ABSTRACT. We establish results concerning the global existence, uniqueness, and controllability

of mild solutions for a class of first-order abstract McKean-Vlasov stochastic evolution equations

with variable delay in a real separable Hilbert space. We allow the nonlinearities at a given time

t to depend on the probability distribution at time t corresponding to the solution at time t. The

results are obtained by imposing a so-called Caratheódory condition on the nonlinearities, which is

weaker than the classical Lipschitz condition. Examples illustrating the applicability of the general

theory are also provided.
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1. INTRODUCTION

In this paper we are concerned with the existence, uniqueness, and controllability

of mild solutions to McKean-Vlasov stochastic semilinear differential equations with

variable time delay of the form

dX (t) = [AX (t) +Bu (t) + f (t, X (θ (t)) , µ (t))] dt

+σ (t, X (θ (t)) , µ (t)) dW (t) , t ∈ [0, T ](1.1)

X (t) = φ (t) , t ∈ [−r, 0] ,

where A is the infinitesimal generator of a strongly continuous semigroup of bounded

linear operators {S (t) : t ≥ 0} in a separable Hilbert space H, W (t) is a Wiener

process on a separable Hilbert space K, B : U → H is a linear bounded operator

from a separable Hilbert space U to H, u(t) is a control and X(t) is a state process,

f : [0, T ] × H × Mλ2 (H) → H and σ : [0, T ] × H × Mλ2 (H) → L0
2 are given

functions to be specified later, θ : [0,∞) → [−r,∞) is a suitable delay function,
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φ : [−r, 0] × Ω → H is the initial datum, and µ(t) is the probability distribution of

X(t) at time t.

Stochastic partial functional differential equations with finite delay arise naturally

in the mathematical modelling of phenomena in the natural sciences (see [28]). A

recent survey article [15] recounts the work on such problems in the finite dimensional

setting during the past 3 decades. Researchers have recently begun to extend this

work to infinite dimensional stochastic evolution equations with delay (see [13], [17]).

It is known that if the nonlinearities f and σ do not depend on the probability

distribution µ(t) of the state process, then the process described by (1.1) is a standard

Markov process [1]. The introduction of the dependence of the nonlinearities on

µ(t) is not superficial and, in fact, such problems arising in the study of diffusion

processes have been studied extensively in the finite dimensional setting [11], [12],

[21]. Ahmed and Ding [1] established an abstract formulation of such problems in

a Hilbert space. Subsequently, Keck and McKibben [16] considered a Sobolev-type

variant of the equation considered in [3], [13], [18], [24] and more recently, have

extended this theory to a class of integro-differential stochastic evolution equations

with finite delay related to (1.1) under Lipschitz growth conditions (see [17]). This was

the first attempt at developing a general theory of abstract McKean-Vlasov equations

with finite delay. A discussion of numerical schemes related to convergence issues for

such finite-dimensional McKean-Vlasov equations have also been considered, first

by Bossy and Talay (cf. [5], [6], and the references therein) and subsequently by

Antonelli and Kohatsu-Higa [2]. These results were established assuming standard

Lipschitz growth restrictions on the data; the question concerning the convergence

the numerical scheme in the case in which the Lipschitz conditions are replaced by the

weaker Caratheodory growth conditions (as in the current manuscript) is still open

even in the finite dimensional case, as far as the authors are aware.

The results presented in the current manuscript constitute a continuation and

generalization of existence, uniqueness, and controllability results from [1], [3], [13],

[14], [17], [19], [20] in two ways. For one, we incorporate a so-called variable delay

function (as in [13], [17]) into (1.1). And two, more importantly, we replace the

Lipschitz growth conditions by more general Caratheódory-type conditions of the type

introduced by [23] and subsequently adapted in [3], [7], [13]. The point of interest

here is that the convergence scheme used in the proof still enables us to conclude

uniqueness without any additional restriction on the operator A or the data. As

such, the results in the references mentioned above are recovered as corollaries of the

main results in this manuscript.

The following is the outline of the paper. First, we make precise the necessary

notation, function spaces, and definitions, and gather certain preliminary results in
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Section 2. We then formulate the main results in Section 3, while we devote Section

4 to a discussion of some concrete examples.

2. PRELIMINARIES

Let us first introduce some notation. For details, we refer the reader to [8], [10],

[11], [16], [22] and the references therein. Throughout this paper, H and K shall

denote real separable Hilbert spaces with respective norms ‖·‖ and ‖·‖K , while L0
2

denotes the space of all Hilbert-Schmidt operators from K into H (the norm will be

denoted as ‖·‖L0
2

). Let (Ω,FT , P ) be a complete probability space equipped with a

normal filtration {Ft : t ≥ 0} generated by the Wiener process W . For brevity, we

suppress the dependence of all mappings on ω throughout the manuscript.

The function spaces needed in this manuscript coincide with those used in [1],

[16]; we recall them here for convenience. First, B(H) stands for the Borel class on H

and M(H) represents the space of all probability measures defined on B(H) equipped

with the weak convergence topology. Let λ(x) = 1+ ‖x‖ , x ∈ H and define the space

Cρ(H) = {ϕ : H → H : ϕ is continuous and

‖ϕ‖Cρ
= sup

x∈H

‖ϕ(x)‖

λ2(x)
+ sup

x6=y in H

‖ϕ(x) − ϕ(y)‖

‖x− y‖
<∞

}

For p ≥ 1, we let

Ms
λp(H) = {m : H → R |m is a signed measure on H such that

‖m‖λp =

∫

H

λp(x) |m| (dx) <∞

}

where |m| = m+ +m−, m = m+ −m− is the Jordan decomposition of m. Then, we

can define the space

Mλ2(H) = Ms
λ2(H) ∩ M(H)

equipped with the metric ρ given by

ρ (ν1, ν2) = sup

{∫

H

ϕ(x) (ν1 − ν2) (dx) : ‖ϕ‖Cρ
≤ 1

}
.

It is has been shown that (Mλ2(H), ρ) is a complete metric space. The space of all con-

tinuous Mλ2(H)-valued measures defined on [0, T ], denoted by C ([0, T ] ; (Mλ2 (H) , ρ)),

is complete when equipped with the metric

(2.1) DT (ν1, ν2) = sup
t∈[0,T ]

ρ (ν1(t), ν2(t)) , ν1, ν2 ∈ C ([0, T ] ; (Mλ2 (H) , ρ)) .

Throughout the paper, L2
F(0, T ;U) denotes the space square integrable and Ft-

adapted processes from [0, T ]×Ω into U . C ([0, T ] ;L2 (Ω,FT , H)) denotes the Banach

space of continuous maps from [0, T ] into L2 (Ω,FT , H) satisfying supt∈[0,T ] E ‖X (t)‖2
<

∞, and H2 stands for the closed subspace of C ([0, T ] ;L2 (Ω,FT , H)) consisting of
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measurable, Ft-adapted processes. It is known that H2 is a Banach space with the

norm topology given by ‖X‖
H2

= supt∈[0,T ] E ‖X (t)‖2.

3. MAIN RESULTS

In this section we study the existence, uniqueness, and approximate controllabil-

ity of mild solutions of (1.1) in the sense of the following definition.

Definition 3.1. A continuous stochastic process X : [−r, T ] × Ω → H is a mild

solution of (1.1) if the following conditions are satisfied:

(i) X(t) is measurable and Ft-adapted, for all −r ≤ t ≤ T ,

(ii)
∫ T

0
‖X(s)‖2

ds <∞, a.s.[P ],

(iii) X satisfies the equation

X (t) = S (t)φ (0) +

∫ t

0

S (t− s)Bu (s) ds+

∫ t

0

S (t− s) f (s,X (θ (s)) , µ (s)) ds

+

∫ t

0

S (t− s)σ (s,X (θ (s)) , µ (s)) dW (s) , 0 ≤ t ≤ T,

X (t) = φ (t) , t ∈ [−r, 0] .

The following are the main assumptions assumed in the manuscript.

(A1): A is the infinitesimal generator of a C0-semigroup {S (t) , t ≥ 0} on H.

(A2): (f, σ) : [0, T ] ×H × Mλ2 (H) → H × L0
2 are Ft-measurable mappings satis-

fying:

(i): There exists K : [0,∞) × [0,∞) → [0,∞) such that

(a): K(·, ·) is continuous, monotone nondecreasing, and concave,

(b): ‖f (t, x, µ)‖2 + ‖σ (t, x, µ)‖2
L0

2

≤ K
(
‖x‖2

, ‖µ‖2
λ2

)
, for all (t, x, µ) ∈

[0, T ] ×H × Mλ2 (H) .

(ii): There exists N : [0,∞) → [0,∞) such that

(a): N is continuous, monotone nondecreasing and concave, and N(0) = 0,

(b): ‖f (t, x, µ) − f (t, y, ν)‖2+‖σ (t, x, µ) − σ (t, y, ν)‖2
L0

2
≤ N

(
‖x− y‖2)+

ρ2 (µ, ν), for all (t, x, µ) , (t, y, ν) ∈ [0, T ] ×H × Mλ2 (H).

(A3): The function N of (A2)(ii) is such that if a nonnegative, continuous func-

tion z(t) satisfies z(0) = 0 and

z (t) ≤ D

∫ t

0

N (z (s)) ds,

for all t ∈ [0, T ] , where D > 0, then z(t) = 0, for all t ∈ [0, T ].

(A4): For any fixed T > 0, β > 0, and z ≥ 0 the initial-value problem

(3.1) u′ (t) = βK (u, z) , u (0) = u0 ≥ 0,

has a global solution on [0, T ].
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(A5): For each 0 ≤ t < T, the operator
(
αI + ΓT

t

)−1
→ 0 as α→ 0+ in the strong

operator topology, where ΓT
t =

∫ T

t
S (T − s)DD∗S∗ (T − s) ds is the controlla-

bility Grammian.

(A6): θ : [0,∞) → [−r,∞) is a continuously differentiable function of delay sat-

isfying the conditions that

θ′ (t) ≥ 1, −r ≤ θ (t) ≤ t, for r > 0 andt ≥ 0.

(Observe that there exists a constant k > 0 such that θ−1 (t) ≤ t+k, for all t ≥

−r.)

(A7): The function φ (t) : [−r, 0] × Ω → H is an F0-measurable random variable

independent of W with almost surely continuous paths.

Observe that the linear deterministic system

x′(t) = Ax(t) +Bu (t) , 0 ≤ t ≤ T,

x(0) = x0,

corresponding to (1.1) is approximately controllable on [t, T ] if and only the operator(
αI + ΓT

t

)−1
→ 0 strongly as α→ 0+ (see [19], [20] ).

Definition 3.2. The system (1.1) is approximately controllable on [0, T ] if R(T ) =

L2 (Ω,FT , H), where

R(T ) =
{
X(T ; u) : X (t, u) is a solution of (1.1) corresponding to u ∈ L2

F(0, T ;U)
}
.

It is known that for any h ∈ L2 (Ω,FT , H) there exists ϕ ∈ L2
F(0, T ;L0

2) such that

h = Eh+

∫ t

0

ϕ (s) dW (s) .

Now, using this presentation for any (α, h, z, µ) ∈ (0,∞) × L2 (Ω,FT , H) × H2 ×

Mλ2 (H), we define the control function by

uα (t, z) = B∗S∗ (T − t)
(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

+B∗S∗ (T − t)

∫ t

0

(
αI + ΓT

s

)−1
ϕ (s)W (s)

−B∗S∗ (T − t)

∫ t

0

(
αI + ΓT

s

)−1
S(T − s)f (s, z (θ(s)) , µ(s)) ds

−B∗S∗ (T − t)

∫ t

0

(
αI + ΓT

s

)−1
S(T − s)g (s, z (θ(s)) , µ(s)) dW (s).(3.2)
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To present the result concerning the approximate controllability of mild solutions

of (1.1), we fix α > 0 and define the operator Φα : H2 → H2 by

(ΦαX) (t) = S(t)φ (0) + Γt
0S

∗ (T − t)
(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

+

∫ t

0

[
S(t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S(T − s)

]
f (s,X (θ(s)) , µ(s)) ds

+

∫ t

0

[
S(t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S(T − s)

]
g (s,X (θ(s)) , µ(s)) dW (s)

+

∫ t

0

Γt
sS

∗ (T − t)
(
αI + ΓT

s

)−1
ϕ(s)dW (s) .(3.3)

The operator Φα : H2 → H2 is naturally obtained by inserting the control (3.2)

into the variation of parameters formula in Definition 3.1.

Lemma 3.3. Under the conditions (A1) and (A2), the operator Φα : H2 → H2 is

well-defined and there exist positive constants M1 (α) ,M2 (α) ,and MT (α) such that

E ‖(ΦαX) (t)‖2 ≤M1 (α) +M2 (α)

∫ t

0

K
(
E ‖X (u)‖2

, γ
)
du,(3.4)

E ‖(ΦαX) (t) − (ΦαY ) (t)‖2 ≤MT (α)

∫ t

0

N
(
E ‖X (u) − Y (u)‖2)

du,(3.5)

for each t ∈ [0, T ] and X, Y ∈ H2, where

M1 (α) = 5M2
SE ‖φ (0)‖2 +

5

α2
M2

ΓM
2
S

(
2 ‖Eh‖2 + 2M2

SE ‖φ (0)‖2 +

∫ t

0

E ‖ϕ(s)‖2
L0

2
ds

)
,

M2 (α) = 10

(
1 +

1

α2
M2

ΓM
2
S

)
M2

S (T + 1) ,

MT (α) = 2

(
1 +

1

α2
M2

ΓM
2
S

)
M2

S (T + 1) , γ = sup
t∈[0,T ]

‖µ (t)‖2
λ2 ,

MS = sup
t∈[0,T ]

‖S (t)‖ ,MΓ = sup
0≤s≤t≤T

∥∥Γt
s

∥∥ .

Proof. Observe that standard computations yield

E ‖(ΦαX) (t)‖2 ≤ 5E ‖S (t)φ (0)‖2 + 5
∥∥∥Γt

0S
∗ (T − t)

(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

∥∥∥
2

+5E

∥∥∥∥
∫ t

0

Γt
sS

∗ (T − t)
(
αI + ΓT

s

)−1
ϕ(s)dW (s)

∥∥∥∥
2

+5E

∥∥∥∥
∫ t

0

[
S (t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S (T − s)

]
f (s,X (θ (s)) , µ (s)) ds

∥∥∥∥
2

+5E

∥∥∥∥
∫ t

0

[
S (t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S (T − s)

]
σ (s,X (θ (s)) , µ (s)) dW (s)

∥∥∥∥
2

≤ 5M2
SE ‖φ (0)‖2 +

5

α2
M2

ΓM
2
S

(
2 ‖Eh‖2 + 2M2

SE ‖φ (0)‖2 +

∫ t

0

E ‖ϕ(s)‖2
L0

2
ds

)
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+5

(
2 +

2

α2
M2

ΓM
2
S

)
M2

ST

∫ t

0

E ‖f (s,X (θ (s)) , µ (s))‖2
ds

+5

(
2 +

2

α2
M2

ΓM
2
S

)
M2

S

∫ t

0

E ‖σ (s,X (θ (s)) , µ (s))‖2
L0

2
ds

≤ 5M2
SE ‖φ (0)‖2 +

5

α2
M2

ΓM
2
S

(
2 ‖Eh‖2 + 2M2

SE ‖φ (0)‖2 +

∫ t

0

E ‖ϕ(s)‖2
L0

2
ds

)

+ 10

(
1 +

1

α2
M2

ΓM
2
S

)
M2

S (T + 1)

∫ t

0

K
(
E ‖X (θ (s))‖2

, γ
)
ds

≤ 5M2
SE ‖φ (0)‖2 +

5

α2
M2

ΓM
2
S

(
2 ‖Eh‖2 + 2M2

SE ‖φ (0)‖2)

+ 10

(
1 +

1

α2
M2

ΓM
2
S

)
M2

S (T + 1)

∫ θ(t)

θ(0)

K
(
E ‖X (u)‖2

, γ
) 1

θ′ (θ−1 (u))
du

≤M1 (α) +M2 (α)

∫ t

0

K
(
E ‖X (u)‖2

, γ
)
du <∞.

This proves (3.4). Next, (3.5) follows since

E ‖(ΦαX) (t) − (ΦαY ) (t)‖2

≤ 2

(
1 +

1

α2
M2

ΓM
2
S

)
M2

ST

∫ t

0

E ‖f (s,X (θ (s)) , µ (s)) − f (s, Y (θ (s)) , µ (s))‖2
ds

+ 2

(
1 +

1

α2
M2

ΓM
2
S

)
M2

S

∫ t

0

E ‖σ (s,X (θ (s)) , µ (s)) − σ (s, Y (θ (s)) , µ (s))‖2
L0

2
ds

≤MT (α)

∫ t

0

N
(
E ‖X (θ (s)) − Y (θ (s))‖2)

ds

= MT (α)

∫ θ(t)

θ(0)

N
(
E ‖X (u) − Y (u)‖2) 1

θ′ (θ−1 (u))
du

≤MT (α)

∫ t

0

N
(
E ‖X (u) − Y (u)‖2)

du.

This completes the proof.

We now construct successive approximations using a Picard-type iteration. For

any fixed T > 0, let

X0 (t) = S (t)φ (0) + Γt
0S

∗ (T − t)
(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

+

∫ t

0

Γt
sS

∗ (T − t)
(
αI + ΓT

s

)−1
ϕ(s)dW (s) ,
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and let Xn (t) be the sequence defined recursively by

Xn (t) = X0 (t)

+

∫ t

0

[
S (t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S (T − s)

]

× f (s,Xn−1 (θ (s)) , µ (s)) ds(3.6)

+

∫ t

0

[
S (t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S (T − s)

]

× σ (s,Xn−1 (θ (s)) , µ (s)) dW (s) .

Lemma 3.4. Under the conditions (A1) and (A2), the sequence {Xn : n ≥ 0} satisfies

the following inequality for all 0 ≤ t ≤ T :

(3.7) E ‖Xn (t)‖2 ≤ u (t) .

Proof. It follows from Lemma 3.3 that

(3.8) E ‖Xn (t)‖2 ≤M1 (α) +M2 (α)

∫ t

0

K
(
E ‖Xn−1 (s)‖2

, γ
)
ds,

where M1 (α) and M2 (α)are positive constants independent of n. Let u (t) be the

global solution of the equation (3.1) with u0 ≥ max
(
M1 (α) , supt∈[0,T ] E ‖X0 (t)‖2).

We will establish inequality (3.7) using mathematical induction. To begin, note that

for n = 0 the inequality (3.7) holds by the definition of u. Indeed, we have

u (t) = u0 +M2 (α)

∫ t

0

K (u (s) , γ) ds

≥ max

(
M1 (α) , sup

t∈[0,T ]

E ‖X0 (t)‖2

)
+M2 (α)

∫ t

0

K (u (s) , γ) ds ≥ E ‖X0 (t)‖2
.

Next, suppose that

E ‖Xn−1 (t)‖2 ≤ u (t) , for all 0 ≤ t ≤ T.

Then, from (3.1) and (3.8), we conclude that

u (t) − E ‖Xn (t)‖2 ≥M2 (α)

∫ t

0

[
K (u (s) , γ) −K

(
E ‖Xn−1‖

2
, γ
)]
ds ≥ 0.

Hence, (3.7) holds for all n (thanks to (A2)).

Lemma 3.5. Under the conditions (A1) and (A2), {Xn : n ≥ 1} is a Cauchy se-

quence in H2.

Proof. Define the sequence of functions rn : [0, T ] → R by

rn (t) = sup
m≥n

E ‖Xm+n (t) −Xn (t)‖2
, t ∈ [0, T ] , n ≥ 1.

Note that for each n ≥ 1, rn is well-defined, uniformly bounded, and monotone

nondecreasing (in t). Since {rn : n ≥ 1}is a monotone nonincreasing sequence, for
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each t ∈ [0, T ], there exists a monotone nondecreasing function r : [0, T ] → R such

that

(3.9) lim
n→∞

rn (t) = r (t) .

It follows from Lemma 3.3 that for any n,m ≥ 1,

E ‖Xm (t) −Xn (t)‖2 ≤MT (α)

∫ t

0

N
(
E ‖Xm−1 (s) −Xn−1 (s)‖2)

ds,

from which we subsequently obtain

r (t) ≤ rn (t) ≤MT (α)

∫ t

0

N (rn−1 (s)) ds,

for any n ≥ 1. Using (3.9), together with the Lebesgue dominated convergence

theorem, then yields

r (t) ≤MT (α)

∫ t

0

N (r (s)) ds.

But, supt∈[0,T ] E ‖Xm+n (t) −Xn (t)‖2 ≤ rn (T ) and limn→∞ rn (T ) = r (T ) = 0.

Therefore, supt∈[0,T ] E ‖Xm+n (t) −Xn (t)‖2 = 0, so that {Xn, n ≥ 1} is indeed a

Cauchy sequence in H2. This completes the proof.

Theorem 3.6. If the conditions (A1)-(A7) hold, then (1.1) has a unique mild solution

in H2 with probability distribution µ ∈ C ([0, T ] ; (Mλ2 (H) , ρ)).

Proof. Let µ ∈ C ([0, T ] ; (Mλ2 (H) , ρ)) be fixed. The completeness of H2 guarantees

the existence of a process X such that

lim
n→∞

sup
t∈[0,T ]

E ‖Xn (t) −X (t)‖2 = 0.

Further, we may infer from (A2) that

N

(
sup

t∈[0,T ]

E ‖Xn (t) −X (t)‖2

)
→ N (0) = 0,

and hence,

lim
n→∞

sup
t∈[0,T ]

E ‖(ΦαXn) (t) − (ΦαX) (t)‖2 = 0.

Thus, X is a fixed point of Φα which is, in fact, a mild solution to (1.1) on [0, T ].

Further, if X, Y ∈ H2 are two fixed points of Φα, then

sup
s∈[0,t]

E ‖(ΦαX) (s) − (ΦαY ) (s)‖2 ≤MT (α)

∫ t

0

N

(
sup

r∈[0,s]

E ‖X (r) − Y (r)‖2

)
ds,

so that (A3) would imply that supt∈[0,T ] E ‖(ΦαX) (t) − (ΦαY ) (t)‖2 = 0. Conse-

quently, X = Y in H2. Hence, Φα has a unique fixed point.

We now show that µ is, in fact, the probability law of Xµ employing the approach

used in [1]. Toward this end, let L (Xµ) = {L (Xµ (t)) : t ∈ [0, T ]} denote the proba-

bility law of Xµ and define an operator Ψ on C ([0, T ] ; (Mλ2 (H) , ρ)) by Ψ (µ) =
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L (Xµ). We first prove that L (Xµ) ∈ C ([0, T ] ; (Mλ2 (H) , ρ)); that is, Ψ maps

C ([0, T ] ; (Mλ2 (H) , ρ)) into itself. Indeed, note that since Xµ ∈ H2, L (Xµ (t)) ∈

Mλ2 (H), for any t ∈ [0, T ]. As such, we need only show that t → L (Xµ (t)) is

continuous. To do so, first let −r ≤ c ≤ 0 and |h| > 0 be small enough so that

−r ≤ c+ h ≤ 0. For all such c and h,

E ‖Xµ (c+ h) −Xµ (c)‖2 = E ‖φ (c+ h) − φ (c)‖2
,

which approaches 0 as h → 0 due to the sample path continuity of φ. Next, let

0 ≤ c ≤ T and observe that for sufficiently small |h| > 0, the continuity of Xµ, K

and N ensures that

lim
h→0

E ‖Xµ (c+ h) −Xµ (c)‖2 = 0, for all − r ≤ c ≤ T.

Next, for all c ∈ [−r, T ] and ϕ ∈ Cλ2 (H), the definition of the metric ρ yields

|〈ϕ,L (Xµ (c+ h)) − L (Xµ (c))〉| = |E [ϕ (Xµ (c+ h)) − ϕ (Xµ (c))]|

≤ ‖ϕ‖C
λ2

E ‖Xµ (c+ h) −Xµ (c)‖ .

So, we may conclude that

lim
t→s

ρ (L (Xµ (c+ h)) ,L (Xµ (c)))

= lim
t→s

sup
‖ϕ‖≤1

∫

H

ϕ (x) (L (Xµ (c + h)) − L (Xµ (c))) dx = 0,

thereby showing that L (Xµ) ∈ C ([0, T ] ; (Mλ2 (H) , ρ)). Secondly, we show that Ψ

has a unique fixed point in C ([0, T ] ; (Mλ2 (H) , ρ)). If X is a fixed point of Φα, then

clearly its probability law L (X) = µ is a fixed point of Ψ. Conversely, if µ is a fixed

point of Ψ, then the variation of parameters formula (cf. Definition 3.1) parametrized

by µ defines a solution Xµ which, in turn, has a probability law µ belonging to the

space C ([0, T ] ; (Mλ2 (H) , ρ)). Thus, in order to complete the proof it suffices to show

that the operator Ψ has a unique fixed point in C ([0, T ] ; (Mλ2 (H) , ρ)) . To this end,

let µ, ν be any two elements of C ([0, T ] ; (Mλ2 (H) , ρ)) and let Xµ and Xν be the

corresponding fixed points of Φα. Using (A2), in conjunction with the technique

used to establish Lemma 3.3, we arrive at

E ‖Xµ (t) −Xν (t)‖2 ≤MT (α)

∫ t

0

[
N
(
E ‖Xµ (s) −Xν (s)‖2)+ ρ2 (µ (s) , ν (s))

]
ds.

Since N (u) is concave on [0,∞), there exist positive constants a and b such that

N (u) ≤ au+ b. So,
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E ‖Xµ (t) −Xν (t)‖2

≤MT (α)

∫ t

0

[
aE ‖Xµ (s) −Xν (s)‖2 + b + ρ2 (µ (s) , ν (s))

]
ds

≤MT (α)

∫ t

0

[
b + ρ2 (µ (s) , ν (s))

]
ds+ aMT (α)

∫ t

0

E ‖Xµ (s) −Xν (s)‖2
du,

from which it follows from an application of Gronwall’s inequality that

E ‖Xµ (t) −Xν (t)‖2

≤MT (α)

∫ t

0

[
b+ ρ2 (µ (s) , ν (s))

]
ds exp

(
aMT (α) t

)

≤MT (α) bt exp
(
aMT (α) t

)
+MT (α) exp

(
aMT (α) t

)
tD2

T (µ, ν) .

For sufficiently small t > 0, we have

MT (α) bt exp
(
aMT (α) t

)
+MT (α) exp

(
aMT (α) t

)
tD2

T (µ, ν) < CD2
T (µ, ν) ,

for some 0 < C < 1. Thus, we are guaranteed the existence of 0 < T1 ≤ T such that

E ‖Xµ (t) −Xν (t)‖2 ≤ CD2
T (µ, ν) , for all t ∈ [0, T1] .

Hence,

‖Ψ (µ) − Ψ (ν)‖2
C

λ2
= D2

T (Ψ (µ) ,Ψ (ν)) ≤ ‖Xµ −Xν‖
2
< CD2

T (µ, ν) ,

for all t ∈ [0, T1]. Thus, Ψ is a contraction on

C ([0, T1] ; (Mλ2 (H) , ρ))

and therefore has a unique fixed point. As such, (1.1) has a unique mild solution on

[0, T1] with probability distribution µ ∈ C ([0, T1] ; (Mλ2 (H) , ρ)) . This procedure can

be repeated in order to extend the solution, by continuity, to the entire interval [0, T ]

in finitely many steps, thereby completing the proof.

The following corollary follows immediately from Theorem 3.6 and provides a

generalization and extension of the main existence result in [13].

Corollary 3.7. Assume that B = 0 in the equation (1.1). Then, the equation (1.1)

(without the control operator) has a unique mild solution.

We conclude from Theorem 3.6 that for any α > 0, the operator Φα has a unique

fixed point which is clearly a mild solution of the following equation:

xα(t) = S(t)φ (0)

+Γt
0S

∗ (T − t)
(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

+

∫ t

0

[
S(t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S(T − s)

]
f (s, xα (θ(s)) , µ(s)) ds
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+

∫ t

0

[
S(t− s) − Γt

sS
∗ (T − t)

(
αI + ΓT

s

)−1
S(T − s)

]
g (s, xα (θ(s)) , µ(s)) dW (s)

+

∫ t

0

Γt
sS

∗ (T − t)
(
αI + ΓT

s

)−1
ϕ(s)dW (s) .(3.10)

The next main result in this section concerning the approximate controllability of

mild solutions of (1.1) can now be stated as follows:

Theorem 3.8. Assume that conditions (A1)-(A7) hold. If the functions f and σ are

uniformly bounded on their respective domains, and the semigroup {S (t) : t > 0} is

compact, then the system (1.1) is approximately controllable on [0, T ].

Proof. It is easily follows from (3.10) that

Xα(T ) = h− α
(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

+α

∫ T

0

(
αI + ΓT

s

)−1
S(T − s)f (s,Xα (θ(s)) , µ(s))ds

+α

∫ T

0

(
αI + ΓT

s

)−1
S(T − s) [σ (s,Xα (θ(s)) , µ(s)) − ϕ (s)] dW (s) .(3.11)

It follows from properties of f and σ that

‖f (s,Xα (θ(s)) , µ(s))‖2 + ‖σ (s,Xα (θ(s)) , µ(s))‖2 ≤ N,

a.e. on [0, T ] × Ω. Then, there exists a subsequence, still denoted by

{f (s,Xα (θ(s)) , µ(s)) , σ (s,Xα (θ(s)) , µ(s))} ,

which converges weakly to, say, {f (s) , σ (s))} in H × L0
2. The compactness of

{S (t) : t > 0} then implies that
{
S (T − s) f (s,Xα (θ(s)) , µ(s)) → S (T − s) f (s) ,

S (T − s) σ (s,Xα (θ(s)) , µ(s)) → S (T − s) σ (s) ,

a.e on [0, T ] × Ω. On the other hand, by assumption (A5), for all 0 ≤ s < T ,

α
(
αI + ΓT

s

)−1
→ 0 strongly as α → 0+. Moreover, since

∥∥∥α
(
αI + ΓT

s

)−1
∥∥∥ ≤ 1, it

follows from (3.11) (using the Lebesgue dominated convergence theorem) that

E ‖Xα(T ) − h‖ ≤ 4
∥∥∥α
(
αI + ΓT

0

)−1
(Eh− S(T )φ (0))

∥∥∥
2

+4T

∫ T

0

∥∥∥α
(
αI + ΓT

s

)−1
∥∥∥

2

‖S(T − s) [f (s,Xα (θ(s)) , µ(s)) − f (s)]‖2
ds

+4

∫ T

0

∥∥∥α
(
αI + ΓT

s

)−1
∥∥∥

2

‖S(T − s) [σ (s,Xα (θ(s)) , µ(s)) − σ (s)]‖2
ds

+4

∫ T

0

∥∥∥α
(
αI + ΓT

s

)−1
ϕ (s)

∥∥∥
2

ds,

as α→ 0+, thereby establishing the approximate controllability of (1.1).
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Corollary 3.9. Assume that (A1), (A5), and (A6) hold. If the functions f and σ are

uniformly bounded and globally Lipschitz on their respective domains, and the semi-

group {S (t) : t > 0} is compact, then the system (1.1) is approximately controllable

on [0, T ].

Remark 3.10. Theorem 3.8 is new even when θ (t) = t, and it provides a general-

ization of the results presented in [19], [20].

4. APPLICATIONS

Example 4.1 Let D be a bounded domain in R
N with smooth boundary ∂D.

Consider the following initial boundary value problem.

∂

∂t
x(t, z) = ∆zx(t, z) + F1(t, z, x(t− r, z)) +

∫

L2(D)

F2(t, z, y)µ(t, z)(dy)

+g(s, z, x(s− r, z))dβ(s), a.e. on (0, T ) ×D

x(t, z) = 0, a.e. on (0, T ) × ∂D,

x(t, z) = ψ(t, z), −r ≤ t ≤ 0, a.e. on ∂D,(4.1)

where x : [0, T ]×D → R, F1 : [0, T ]×D×R → R, F2 : [0, T ]×D×L2(D) → L2(D),

µ(t, ·) ∈ Mλ2(L2(D)) is the probability law of µ(t, ·), a : ∆ → R, g : [0, T ]×D×R →

L0
2(R

N , L2(D)), β is a standard N−dimensional Brownian motion, and ψ : [0, T ] ×

D → R. We impose the following conditions:

(A8): F1 satisfies the Caratheódory conditions (i.e., measurable in (t, z) and con-

tinuous in the third variable) such that

(i): |F1(t, z, y)| ≤ ξ1(z)Γ1(y), for all 0 ≤ t ≤ T, z ∈ D, y ∈ R, where

(a): ξ1 ∈ L2(D),

(b): Γ1(·) is a continuous, concave, nondecreasing function from R
+ into

R
+ such that Γ1(0) = 0, Γ1(y) > 0 for y > 0, and

∫
0+

1

Γ1(y)
= +∞,

(ii): |F1(t, z, y1) − F1(t, z, y2)| ≤ ξ1(z)Γ1 (|y1 − y2|) , for all 0 ≤ t ≤ T, z ∈

D, y1, y2 ∈ R, where ξ1 and Γ1satisfy (i) (a) and (b), respectively.

(A9): F2 satisfies the Caratheódory conditions and

(i): ‖F2(t, y, z)‖L2(D) ≤ M̄F2

[
1 + ‖z‖L2(D)

]
, for all 0 ≤ t ≤ T, y ∈ D, z ∈

L2(D), and some M̄F2
> 0,

(ii): F2(t, y, ·) : L2(D) → L2(D) is in C, for each 0 ≤ t ≤ T, y ∈ D.

(A10): g satisfies the Caratheodory conditions and

(i): ‖g(t, z, y)‖L0
2
(RN ,L2(D)) ≤ ξ2(z)Γ2(y), for all 0 ≤ t ≤ T, z ∈ D, y ∈ R,

where ξ2 and Γ2 satisfy (A8)(i) (a) and (b), respectively.

(ii): ‖g(t, z, y1) − g(t, z, y2)‖L0
2
(RN ,L2(D)) ≤ ξ2(z)Γ2 (|y1 − y2|) , for all 0 ≤ t ≤

T, z ∈ D, y1, y2 ∈ R, where ξ2 and Γ2satisfy (A8)(i) (a) and (b), respec-

tively.
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(A11): ψ is an F0−measurable random variable independent of β with almost

surely continuous paths.

We have the following theorem:

Theorem 4.1. If (A8)-(A11) are satisfied, then (4.1) has a unique mild solution

x ∈ C ([−r, T ];L2(Ω, L2(D))) with probability law {µ(t, ·) : 0 ≤ t ≤ T} .

Proof. Let H = L2(D) and K = R
N and denote

∂x

∂t
by x′(t). Define the operator

(4.2) Ax(t, ·) = ∆zx(t, ·), x ∈ H2(D) ∩H1
0 (D).

It is known that A generates a strongly continuous semigroup {S(t)} on L2(D) (see

[22]). Define the maps f : [0, T ] × H × Mλ2(H) → H, σ : [0, T ] × H × Mλ2(H) →

L0
2(K,H), and φ : [0, T ] ×D → R respectively by

(4.3) f(t, x(θ(t)), µ(t))(z) = F1(t, z, x(t− r, z)) +

∫

L2(D)

F2(t, z, y)µ(t, z)(dy),

(4.4) σ(t, x(θ(t)), µ(t))(z) = g(t, z, x(t− r, z)),

(4.5) φ(t, z) = ψ(t)(z),

for all 0 ≤ t ≤ T , z ∈ D, and x(θ(t)) ∈ H. Taking B ≡ 0, observe that these

identifications enable us to view (4.1) in the abstract form (1.1). It is easy to see that

(A1), (A6), and (A7) are satisfied. We now show that f and σas defined in (4.3) and

(4.4) satisfy (A2) and (A3). To this end, observe that from (A8)(i), it follows (with

the help of Jensen’s inequality) that

‖F1(t, ·, x(θ(t), ·)‖
2
L2(D) ≤ ‖ξ1(·)Γ1(x(θ(t), ·))‖

2
L2(D)

≤ m(D) ‖ξ1(·)‖
2
L2(D) ‖Γ1(x(θ(t), ·))‖

2
L2(D)

≤ α̂1Γ1

(
‖x(θ(t), ·)‖2

L2(D)

)
,(4.6)

for all 0 ≤ t ≤ T , x(θ(t)) ∈ H, where α̂1 = m(D) ‖ξ1(·)‖
2
L2(D). (Here, m denotes

Lebesgue measure in R
N .) A similar computation (with the help of (A8)(ii)) enables

us to conclude that

(4.7)

‖F1(t, ·, x(θ(t), ·) − F1(t, ·, y(θ(t), ·)‖L2(D) ≤ β̂1Γ1

(
‖x(θ(t), ·) − y(θ(t), ·)‖2

L2(D)

)
,

for all 0 ≤ t ≤ T , x(θ(t)), y(θ(t)) ∈ H, where β̂1 = m(D)
∥∥ξ1(·)

∥∥2

L2(D)
. Next, using

(A9)(i) together with Hölder, we observe that

∥∥∥∥
∫

L2(D)

F2(t, ·, y)µ(t, ·)(dy)

∥∥∥∥
L2(D)

=

[∫

D

[∫

L2(D)

F2(t, z, y)µ(t, z)(dy)

]2

dz

]1

2
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≤

[∫

D

∫

L2(D)

‖F2(t, z, y)‖
2
L2(D) µ(t, z)(dy)dz

]1

2

≤ M̄F2

[∫

D

(∫

L2(D)

(1 + ‖y‖L2(D))
2µ(t, z)(dy)

)
dz

]1

2

≤ M̄F2

√
m(D)

√
‖µ(t)‖λ2

≤ M̄F2

√
m(D)(1 + ‖µ(t)‖λ2),(4.8)

for all 0 ≤ t ≤ T , µ ∈ Mλ2(H). Also, invoking (A9)(ii) enables us to see that for all

µ, ν ∈ Mλ2(H),
∥∥∥∥
∫

L2(D)

F2(t, ·, y)µ(t, ·)(dy)−

∫

L2(D)

F2(t, ·, y)ν(t, ·)(dy)

∥∥∥∥
L2(D)

=

∥∥∥∥
∫

L2(D)

F2(t, ·, y)(µ(t, ·)− ν(t, ·))(dy)

∥∥∥∥
L2(D)

≤ ‖ρ(µ(t), ν(t))‖L2(D)

≤
√
m(D)ρ(µ(t), ν(t)),(4.9)

for all 0 ≤ t ≤ T. Along similar lines, we use (A9) (i) and (ii) to obtain the following

estimates on g:

(4.10) ‖g(t, ·, x(θ(t), ·)‖2
L0

2
(K,L2(D)) ≤ α̂2Γ2

(
‖x(θ(t), ·)‖2

L2(D)

)
,

‖g(t, ·, x(θ(t), ·)− g(t, ·, y(θ(t), ·)‖L0
2
(K,L2(D))

≤ β̂2Γ2

(
‖x(θ(t), ·) − y(θ(t), ·)‖2

L2(D)

)
,(4.11)

where α̂2 = m(D) ‖ξ2(·)‖
2
L2(D)and β̂2 = m(D)

∥∥ξ2(·)
∥∥2

L2(D)
. Now, define the mappings

K : [0,∞) × [0,∞) → [0,∞) and N : [0,∞) → [0,∞) by

(4.12) K (w1, w2) = α̂1Γ1

(
w2

1

)
+ α̂2Γ2

(
w2

1

)
+ M̄2

F2
m(D)(1 + w2

2),

(4.13) N(w1) = β̂1Γ1

(
w2

1

)
+ β̂2Γ2

(
w2

1

)
.

One can show that these two mappings satisfy the criterion in (A2) – (A4) (see [8]).

(The reader can find particular examples of the mappings Γi in [8] as well.) Further,

combining (4.6) - (4.9), we see that fand σsatisfy (A2). Thus, we can invoke Theorem

3.6 to conclude that (4.1) has a unique mild solution x ∈ C ([−r, T ];L2(Ω, L2(D)))

with probability law {µ(t, ·) : 0 ≤ t ≤ T}.
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Example 4.2 Consider the following initial-boundary value problem of Sobolev

type:

∂

∂t
(x(t, z) − xzz(t, z)) − xzz(t, z) = F1(t, z, x(t − r, z)) +

∫

L2(0,π)

F2(t, z, y)µ(t, z)(dy)

+g (s, z, x(s− r, z)) dW (s), 0 ≤ z ≤ π, 0 ≤ t ≤ T,

x(t, 0) = x(t, π) = 0, 0 ≤ t ≤ T,

x(t, z) = ψ(t, z), 0 ≤ z ≤ π, −r ≤ t ≤ 0,(4.14)

where x : [0, T ]×[0, π] → R, F1 : [0, T ]×[0, π]×R → R, F2 : [0, T ]×[0, π]×L2 (0, π) →

L2 (0, π) , µ(t, ·) ∈ Mλ2(L2(0, π))is the probability law of µ(t, ·), g : [0, T ]×[0, π]×R →

L0
2(R

N , L2(0, π)), W is a standard L2(0, π)−valued Wiener process, and ψ : [0, T ] ×

[0, π] → R are mappings satisfying (A8) – (A11) (in the appropriate spaces). We

have the following theorem.

Theorem 4.2. Under the above assumptions, (4.14) has a unique mild solution x ∈

C ([−r, T ] ;L2(Ω, L2(0, π))) with probability law {µ(t, ·) : 0 ≤ t ≤ T} .

Proof. Let H = L2(0, π), K = R, and define the operators A : D(A) ⊂ H → H and

B : D(B) ⊂ H → H,

respectively, by

Ax(t, ·) = −xzz(t, ·), Bx(t, ·) = x(t, ·) − xzz(t, ·),

with domains

D(A) = D(B) =
{
x ∈ L2(0, π) : x, xzare absolutely continuous,

xzz ∈ L2 (0, π) , x(0) = x(π) = 0
}
.

Define f, σ, and φ as in Example 4.1 (with L2(0, π) in place of L2(D)). Then, (4.14)

can be written in the abstract form

(Bx(t))′ + Ax(t) = f (t, X (θ (t)) , µ (t)) dt

+σ (t, X (θ (t)) , µ (t)) dW (t) , 0 ≤ t ≤ T,(4.15)

x(t) = φ(t), −r ≤ t ≤ 0.

Upon making the substitution v(t) = Bx(t) in (4.15), we arrive at the equivalent

problem

v′(t) + AB−1v(t) = f
(
t, B−1v (θ (t)) , µ (t)

)
dt

+σ
(
t, B−1v (θ (t)) , µ (t)

)
dW (t) , 0 ≤ t ≤ T,(4.16)

v(t) = Bφ(t), −r ≤ t ≤ 0.
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It is known that B is a bijective operator possessing a continuous inverse and that

−AB−1 is a bounded linear operator on L2(0, π) which generates a strongly contin-

uous semigroup {T (t)} on L2(0, π) satisfying (A1) with MT = α = 1 (see [22]).

Further, f and σ are shown to satisfy (A2) as in Example 4.1. Consequently,

we can again invoke Theorem 3.6 to conclude (4.16) has a unique mild solution

v ∈ C ([−r, T ] ;L2(Ω, L2(0, π))). Consequently, x = B−1v is the corresponding mild

solution of (4.15) and hence, of (4.14).

Remark 4.3. This example provides a generalization of the work in [8], [18], [24],

[27] to the stochastic setting. Such initial-boundary value problems arise naturally in

the mathematical modelling of various physical phenomena (e.g., thermodynamics [9],

shear in second-order fluids [27], fluid flow through fissured rocks [4], and consolidation

of clay [27]).
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