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ABSTRACT. In this paper, we study the existence and uniqueness of positive solutions of the

nonlinear fourth-order beam equation u(4)(t) + ηu′′(t) − ζu(t) = λf(t, u(t)), 0 < t < 1, u(0) = u(1)

= u′′(0) = u′′(1) = 0, where f(t, u) : [0, 1] ×[0, +∞) → [0, +∞) is continuous and η, ξ and λ are

parameters. By using the semiorder method on cones in a Banach space, we show that there exists

a λ∗ > 0 such that the boundary value problem (BVP) has a unique positive solution for 0 < λ < λ∗

and no positive solutions for λ ≥ λ∗. In particular, we also give an estimate for λ∗. Furthermore, we

show that such a positive solution uλ(t) depends continuously on the parameter λ. More precisely,

we prove that uλ(t) is increasing and continuous in λ for λ ∈ [0, λ∗), limλ→λ0

∥

∥uλ − uλ0

∥

∥ = 0 for

λ0 ∈ [0, λ∗), and limλ→λ∗−0 ‖uλ‖ = +∞.

AMS (MOS) Subject Classification: 34B15.

1. INTRODUCTION

In this paper, we continue our work in [7] to study the fourth-order ordinary

differential equation

(1.1) u(4)(t) + ηu′′(t) − ζu(t) = λf(t, u(t)), 0 < t < 1,

with the boundary condition

(1.2) u(0) = u(1) = u′′(0) = u′′(1) = 0,

where ζ, η and λ > 0 are parameters. This equation is often used to describe the

deformation of an elastic beam with both endpoints fixed [1]. Recently, many re-

searchers have paid attention to the BVP (1.1) and (1.2). For example, Bai and

Wang [1], Liu [6], Ma [8, 10] and Yao [11] considered the BVP (1.1) and (1.2) for the

case η = ζ = 0, and Li [4] and Liu and Li [7] for the case η > 0 and ζ > 0.

For the sake of convenience, we list some conditions:
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(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous.

(H2) ζ, η ∈ R and η < 2π2, ζ ≥ −η2

4
, ζ/π4 + η/π2 < 1.

(H3) f(t, u) is nondecreasing in u for t ∈ [0, 1].

(H4) f(t, 0) ≥ h > 0, for all t ∈ [0, 1], where h is a constant.

(H5) f∞ = limu→∞
f(t,u)

u
= ∞ for any t ∈ [0, 1].

(H6) f(t, ρu) ≥ ραf(t, u), for any 0 < ρ < 1, where 0 < α < 1 and α is

independent of ρ and u, and t ∈ [0, 1].

By a positive solution u(t) of the BVP (1.1) and (1.2), we mean that u(t) satisfies

(1.1) and (1.2), and u(t) > 0 for 0 < t < 1.

In 2003, Li [4] studied the problem (1.1) and (1.2) when λ = 1 and obtained that

(1.1) and (1.2) has at least one positive solution by using the fixed point index in

cones. Recently, Liu and Li [7] further considered the BVP (1.1) and (1.2) when λ is

a positive parameter and obtained the following main results.

Theorem 1.1 (Liu and Li [7]). Assume that (H1)-(H5) hold. Then there exists

a λ∗ > 0 such that (1.1) and (1.2) has at least two, one and no positive solutions for

0 < λ < λ∗, λ = λ∗ and for λ > λ∗, respectively.

Theorem 1.2 (Liu and Li [7]). Assume that (H1)-(H4) and (H6) hold. Then

(1.1) and (1.2) has a unique positive solution uλ(t) for any λ > 0. In addition, such

a solution uλ(t) satisfies the following properties:

(i) uλ(t) is nondecreasing in λ. Furthermore, λ1 > λ2 > 0 implies uλ1
(t) � uλ2

(t)

for t ∈ [0, 1].

(ii) limλ→0+ ‖uλ‖ = 0, limλ→+∞ ‖uλ‖ = +∞.

(iii) uλ(t) is continuous with respect to λ, i.e., λ → λ0 > 0, implies ‖uλ − uλ0
‖ →

0.

Note that if the function f(t, u) satisfies all conditions (H1)-(H6), then Theorems

1.1 and 1.2 hold simultaneously. That is to say, if (H1)-(H6) hold, then there exists

a 0 < λ∗ < ∞ such that (1.1) and (1.2) has a unique positive solution uλ(t) for any

λ ∈ (0, λ∗], and has no positive solutions for λ > λ∗. Furthermore, such a unique

positive solution uλ(t) satisfies (i), (ii) and (iii) of Theorem 1.2.

However, the conditions (H5) and (H6) on the function f(t, u) can not be satisfied

simultaneously. For example, let u > 1 and ρ = 1/u. Then by (H6) we have

f (t, 1) = f

(

t,
1

u
u

)

≥ f(t, u)

uα
≥ f(t, u)

u
.

However, (H5) implies that

∞ = lim
u→∞

f(t, u)

u
≤ lim

u→∞
f (t, 1) ,

which contradicts (H1).
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Now it is natural to ask if there exist some appropriate sufficient conditions to

ensure that there exists a λ∗ > 0 such that the BVP (1.1) and (1.2) has a unique

positive solution and has no positive solutions for 0 < λ < λ∗ and λ ≥ λ∗, respectively.

In this paper we shall consider this problem and find such some sufficient conditions

(see (H3) and (H4) in this Section, (C1) and (3.13) in Section 3). In particular, we

also give an estimate for λ∗.

2. PRELIMINARIES

In this section, we introduce some definitions and lemmas which are important

to prove our main results.

Let E be a real Banach space which is partially ordered by a cone P of E, i.e.,

for x, y ∈ E, x ≤ y if and only if y− x ∈ P. Recall that a cone P is said to be normal

if there exists a constant N > 0 such that θ ≤ x ≤ y implies ‖x‖ ≤ N ‖y‖, where θ

is the zero element of E. Let, for e > θ,

Pe = {x ∈ E|there exist α, β > 0 such that αe ≤ x ≤ βe},

where α = α(x) and β = β(x) are real numbers. Then we have

(P1) Pe ⊂ P ;

(P2) for all x, y ∈ Pe there exists ε0 ∈ (0, 1) such that x ≥ ε0y.

Definition 2.1 [3]. The operator A : P → P is concave if

A(`x + (1 − `)y) ≥ `Ax + (1 − `)Ay

for x, y ∈ P and ` ∈ (0, 1).

Definition 2.2 [3]. The operator A : P → P is increasing if Ax ≥ Ay for

x, y ∈ P and x ≥ y.

Definition 2.3 [2]. Let P be a cone in the real Banach space E, A : P → P be

an operator, and e > θ. A is called an e-concave operator if the following conditions

hold:

(a1) For any x > θ there exist α = α(x) > 0 and β = β(x) > 0 such that

αe ≤ Ax ≤ βe;

(a2) for any s ∈ (0, 1) and any x ∈ P satisfying α1e ≤ x ≤ β1e where α1 =

α1(x) > 0 and β1 = β1(x) > 0, there exists η = η(x, s) > 0 such that

A(sx) ≥ s(1 + η)Ax.

Lemma 2.1 [3]. Suppose that P is a normal cone of the Banach space E, ϑ > θ,

and A : [θ, ϑ] → E is a concave increasing operator. Suppose further that there

exist ε, λ0 > 0 satisfying ελ0 < 1 such that Aθ ≥ εϑ and λ0Aϑ ≤ ϑ. Then, for any



418 X-L. LIU AND W-T. LI

λ ∈ (0, λ0], the equation x = λAx has a minimal solution x∗ > θ in [θ, ϑ]. In addition,

set x0 = θ, xn = λAxn−1, n = 1, 2, · · · . Then

(2.1) ‖xn − x∗‖ ≤ λN ‖Aθ‖ (ελ0)
−2(1 − ελ0)

n,

where N is the normal constant of P, n = 1, 2, · · · .

Lemma 2.2 [2]. If A : P → P is an increasing and e-concave operator, then A

has at most one positive fixed point.

We let C[0, 1] be the Banach space of all continuous functions defined on [0, 1]

with the sup-norm ‖·‖ and C+[0, 1] = {x|x ≥ 0, x ∈ C[0, 1] }. It is clear that C+[0, 1]

is a normal cone in C[0, 1].

Throughout this paper, we still assume the hypotheses (H1) and (H2) hold.

Let γ1, γ2 be the roots of the polynomial P (γ) = γ2 − ηγ − ζ, i.e.,

γ1, γ2 =
−η ±

√

η2 + 4ζ

2
.

In view of (H2), it is easy to see that γ1 ≥ γ2 > −π2.

It is well known that the BVP (1.1) and (1.2) has a solution u := uλ(t) if and

only if u solves the equation

(2.2) u(t) = λ(Φu)(t) := λ

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, u(s))dsdτ,

where Gi(t, s) are Green’s functions of the linear boundary value problems

(2.3) −u′′(t) + γiu(t) = 0, u(0) = u(1) = 0,

and furthermore

Gi(t, s) =

















































































sinh νit·sinh νi(1−s)
νi sinh νi

, 0 ≤ t ≤ s ≤ 1

sinh νis·sinhνi(1−t)
νi sinh νi

, 0 ≤ s ≤ t ≤ 1

for γi > 0,











t(1 − s), 0 ≤ t ≤ s ≤ 1

s(1 − t), 0 ≤ s ≤ t ≤ 1

for γi = 0,











sin νit·sin νi(1−s)
νi sin νi

, 0 ≤ t ≤ s ≤ 1

sin νis·sin νi(1−t)
νi sin νi

, 0 ≤ s ≤ t ≤ 1

for − π2 < γi < 0,

where νi =
√

|γi|(i = 1, 2). For more information regarding to the Green’s function

of (2.3), we refer to [4] and [7].
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3. MAIN RESULTS

Before stating our results, we list the condition which will be needed in the sequel.

(C1) f(t, u) : [0, 1] × [0,∞) → [0,∞) is concave in u for t ∈ [0, 1].

If no confusion arises, in some situations we write (Φu)(t) as Φu and u(t) as u.

Lemma 3.1. Assume that (C1), (H3) and (H4) hold. Then Φ : C+[0, 1] → Pe is

a continuous, increasing and concave operator, where Φ is defined by (2.2) and e(t)

=
∫ 1

0

∫ 1

0
G1(t, τ)G2(τ, s)dsdτ .

Proof. We first prove that Φ maps C+[0, 1] into Pe. For any u ∈ C+[0, 1], we

consider three cases: (i) 0 < ‖u‖ < 1; (ii) ‖u‖ > 1; (iii) ‖u‖ = 0 or ‖u‖ = 1.

Assume that (i) holds. Then, for t ∈ [0, 1], we have

f(t, u) = f

(

t, ‖u‖
(

u

‖u‖

))

≥ ‖u‖ f

(

t,

(

u

‖u‖

))

+ (1 − ‖u‖) f(t, θ)

≥ (1 − ‖u‖) f(t, θ),

and

(Φu)(t) =

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, u(s))dsdτ.

≥ (1 − ‖u‖)
∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dsdτ

≥ h (1 − ‖u‖) e(t).

Assume that (ii) holds. Then, for t ∈ [0, 1], we have

f(t, u) = f

(

t,

(

1

‖u‖

)

‖u‖u

)

≥ 1

‖u‖f (t, ‖u‖u) +

(

1 − 1

‖u‖

)

f(t, θ)

≥
(

1 − 1

‖u‖

)

f(t, θ),

and

(Φu)(t) =

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, u(s))dτds ≥ h

(

1 − 1

‖u‖

)

e(t).

Assume ‖u‖ = 0 or ‖u‖ = 1. Then

(Φu)(t) ≥
∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dτds ≥ he(t).

Thus, (Φu)(t) ≥ µ2e(t), where

µ2 =































h(1 − ‖u‖), 0 < ‖u‖ < 1,

h(1 − 1/ ‖u‖), ‖u‖ > 1,

h, ‖u‖ = 0, 1.
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On the other hand, for any u ∈ C+[0, 1], we have

(Φu)(t) =

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, u(s))dsdτ

≤
∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f (s, ‖u‖) dsdτ

≤ µ1e(t),

where µ1 = maxτ∈[0,1] f(τ, ‖u‖) > 0. That is to say Φu ∈ Pe for any u ∈ C+[0, 1].

It is easy to obtain that Φ is concave, increasing and continuous by virtue of

(C1), (H3) and (H1). The proof is complete.

Theorem 3.1. Suppose that (C1), (H3) and (H4) hold. Then there exists a

0 < λ∗ ≤ ∞ such that (1.1) and (1.2) has a unique solution uλ(t) ∈ Pe ∪ {θ} for

λ ∈ [0, λ∗) and has no solutions in Pe for λ ≥ λ∗. Furthermore, for any u0 ∈ C+[0, 1],

we have

(3.1) lim
n→∞

∥

∥uλ
n − uλ

∥

∥ = 0, λ ∈ [0, λ∗),

where

(3.2) uλ
n(t) = λΦuλ

n−1(t), n = 1, 2, · · · .

Proof. It is clear that the nonnegative solutions for (1.1) and (1.2) are equivalent

to the solutions of the equation u = λΦu in C+[0, 1]. Let

Θ = {λ ≥ 0|there exist u ∈ C+[0, 1] such that u = λΦu},

and Mf1 = maxt∈[0,1] f(t, 1). Then λ = 0 ∈ Θ and Mf1 > 0. Set w0(t) = e(t)
‖e‖

∈ Pe ⊂
C+[0, 1]. We can choose two positive numbers λ0 and ε0 satisfying λ0Mf1 ‖e‖ ≤ 1 and

0 < ε0 < min
{

h ‖e‖ , 1
λ0

, 1
}

so that ε0λ0 < 1,

Φθ =

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dsdτ

≥ he(t) = h ‖e‖ · e(t)

‖e‖ ≥ ε0w0(t),(3.3)

and

λ0(Φw0)(t) = λ0

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, w0(s))dsdτ

≤ λ0

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f (s, ‖w0‖) dsdτ

≤ λ0Mf1

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)dsdτ.

= λ0Mf1 ‖e‖ ×
e(t)

‖e‖ ≤ w0(t)(3.4)
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for t ∈ [0, 1]. By (3.3) and (3.4), it follows from Lemma 2.1 that [0, λ0] ⊂ Θ. Set

λ∗ = sup Θ. Then λ∗ ≥ λ0 > 0. We assert that Θ = [0, λ∗). By the above discussion,

we only need to prove λ∗ /∈ Θ. If λ∗ = ∞, then ∞ /∈ Θ = [0,∞) is obvious. Suppose,

to the contrary, that λ∗ < ∞ and λ∗ ∈ Θ. Then, by Lemma 3.1, there exists an u ∈ Pe

such that u = λ∗Φu. Since (C1) holds, then

λ∗(Φu)(t) = λ∗

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, u(s))dsdτ

= λ∗

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f

(

s,
1

2
× 2u(s) +

1

2
θ

)

dsdτ

≥ 1

2
λ∗

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 2u(s))dsdτ

+
1

2
λ∗

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, θ)dsdτ

=
1

2
λ∗ (Φ(2u)) (t) +

1

2
λ∗Φθ(3.5)

for t ∈ [0, 1], which leads to

(3.6) λ∗Φ(2u) ≤ 2λ∗Φu − λ∗Φθ = 2u − λ∗Φθ < 2u.

This implies that there exists a λ̂ > λ∗ such that λ̂Φ(2u) ≤ 2u. By (P2), similar to

(3.3), we can choose ε1 > 0 satisfying ε1λ̂ < 1 such that Φθ ≥ ε1 · (2u). In view of

Lemma 2.1, we have [0, λ̂] ⊂ Θ, which is a contradiction to the definition of λ∗.

Next, we show that for any fixed λ ∈ [0, λ∗), there exists a unique u ∈ Pe ∪ {θ}
that solves the equation u = λΦu. It is easy to see that u = θ is the unique solution

of (1.1) and (1.2) if λ = 0. We assert that for any λ ∈ (0, λ∗), λΦ is an e-concave

operator. Indeed, by Lemma 3.1, for any u ∈ Pe we have Φu ∈ Pe, and so there exists

an ε̂u ∈ (0, 1) such that Φθ ≥ ε̂uΦu by (P2). Hence, by virtue of the concavity of the

operator Φ, for any s ∈ (0, 1), we have

Φ(su) ≥ sΦ(u) + (1 − s)Φ(θ) ≥ sΦ(u) + (1 − s)ε̂uΦ(u)(3.7)

= s(1 + (
1

s
− 1)ε̂u)Φ(u) = s(1 + η(s, u))Φ(u),

where η(s, u) = ( 1
s
− 1)ε̂u. Hence Φ and λΦ (λ ∈ (0, λ∗)) are e-concave operators. So

by Lemma 2.1, Lemma 2.2, and Lemma 3.1, the problem (1.1) and (1.2) has a unique

positive solution in Pe for λ ∈ (0, λ∗).

We now show that (3.1) holds. It is true by (2.1) if u0 = θ. If u0 ∈ C+[0, 1]\{θ},
then Φu0 := x0 ∈ Pe according to Lemma 3.1. For fixed λ ∈ (0, λ∗), we assume that

w̄0 ∈ Pe is the unique solution of (1.1) and (1.2). Then, there exists t̄ ∈ (0, 1) such

that w̄0 ≥ t̄x0. Set v̄0 = t̄−1w̄0, ū0 = θ, ūn = λΦūn−1, v̄n = λΦv̄n−1 and xn = λΦxn−1

(n = 1, 2, · · · ). Then, v̄0, Φv̄0 ∈ Pe, and we can choose a number σ ∈ (0, 1) such that
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Φθ ≥ σΦv̄0, i.e., ū1 ≥ σv̄1. Similar to (3.7), we have

w̄0 = λΦw̄0 = λΦ(t̄v̄0) ≥ λt̄ (1 + η̄(t̄, v̄0)) Φv̄0,

where η̄(t̄, v̄0) =
(

1
t̄
− 1

)

σ, and furthermore

λΦ(v̄0) ≤ (t̄(1 + η̄(t̄, v̄0)))
−1 w̄0 = (1 + η̄(t̄, v̄0))

−1 v̄0 ≤ v̄0,

which implies that v̄1 = λΦ(v̄0) ≤ v̄0. Thus, by the increasing property of Φ, we

obtain that

(3.8) ū0 ≤ ū1 ≤ · · · ≤ ūn ≤ · · · ≤ v̄n ≤ · · · ≤ v̄1 ≤ v̄0.

Since ūn and v̄n (n = 1, 2, ....) belong to Pe, by (3.8), we can obtain the numbers

c∗n = sup{c∗ > 0|ūn ≥ c∗v̄n}, n = 1, 2, · · · .

Furthermore, we have

(3.9) ‖ūn+m − ūn‖ ≤ |1 − c∗n| ‖v̄n − ūn‖ ≤ |1 − c∗n| ‖v̄0‖ , m, n = 1, 2, · · · ,

and lim
n→∞

c∗n = ĉ = 1. It is clear that the sequence {c∗n} is bounded above (c∗n ≤ 1)

and increasing. We only verify that ĉ = 1. If this is not true, i,e., c∗n ≤ ĉ < 1, then

there exists a subset [σ, τ ] ⊂ (0, 1) such that c∗n ≤ ĉ ∈ [σ, τ ]. By the concavity and

increasing property of Φ, we have

ūn+1 = λΦūn ≥ λΦ(c∗nv̄n) ≥ c∗nλΦ(v̄n) + (1 − τ)λΦθ

≥ c∗nλΦ(v̄n) + (1 − τ)σλΦv̄0 ≥ c∗n

(

1 +
(1 − τ) σ

τ

)

λΦ(v̄n)

= c∗n

(

1 +
(1 − τ) σ

τ

)

v̄n+1

which leads to

c∗n+1 ≥ c∗n

(

1 +
(1 − τ) σ

τ

)

,

and

(3.10) c∗n+1 ≥ σ

(

1 +
(1 − τ) σ

τ

)n

n = 1, 2, · · · .

It is evident that (3.10) can imply the contradiction

∞ = lim
n→∞

c∗n = ĉ ≤ 1.

So ĉ = 1. From (3.9) and the following inequalities

‖v̄n+m − v̄n‖ ≤ ‖v̄n+m − ūn+m‖ ≤
∣

∣

∣

∣

1

c∗n+m

− 1

∣

∣

∣

∣

‖ūn+m‖

≤
∣

∣

∣

∣

1

c∗n+m

− 1

∣

∣

∣

∣

‖v̄0‖ , n, m = 1, 2, · · · ,
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we know that both {ūn} and {v̄n} are Cauchy sequences. Let x∗ = limn→∞ ūn =

limn→∞ v̄n. Then, by the inequality ū0 ≤ x̄0 ≤ w̄0 ≤ v̄0, we have

ūn+1 = λΦūn ≤ λΦxn ≤ λΦw̄0 ≤ λΦv̄n = v̄n+1,

and

ūn ≤ xn ≤ w̄0 ≤ v̄n

(n = 1, 2, · · · ) by induction, and so limn→∞ xn = x∗ = w̄0. The proof is complete.

Theorem 3.2. Suppose that (C1), (H3) and (H4) hold and that uλ(t) ∈ Pe∪{θ}
is the unique solution of (1.1) and (1.2). Then we have

(i) uλ(t) is continuous and increasing in λ for λ ∈ [0, λ∗), and

(ii) limλ→λ∗−0

∥

∥uλ
∥

∥ = ∞.

Proof. By Theorem 3.1, (1.1) and (1.2) has a unique solution uλ(t) ∈ Pe ∪ {θ}.
(i) It is easy to see that uλ(t) = θ is the unique solution of (1.1) and (1.2) if

λ = 0. We first show that uλ(t) is increasing in λ. Indeed, if we let u0(t) = θ and

uλ
n(t) = λΦuλ

n−1(t) (n = 1, 2, · · · ), then

uλ1

1 (t) = λ1

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dsdτ

≥ λ2

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dsdτ = uλ2

1 (t)

for any λ1, λ2 ∈ [0, λ∗), λ1 ≥ λ2 and t ∈ [0, 1]. By induction, together with Lemma

2.1, we obtain that uλ
n(t) (n = 1, 2, · · · ) is increasing in λ, and uλ(t) is also increasing

in λ by (3.1). We next show that uλ(t) is continuous in λ ∈ (0, λ∗) for t ∈ [0, 1]. Note

that for any λ0 ∈ (0, λ∗)

∥

∥uλ
1 − uλ0

1

∥

∥ = |λ − λ0|
∥

∥

∥

∥

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dsdτ

∥

∥

∥

∥

≤ |λ − λ0| · ‖e‖ max
s∈[0,1]

|f(s, 0)| ,

which implies that limλ→λ0
uλ

1(t) = uλ0

1 (t) for t ∈ [0, 1]. By induction, uλ
n(t) (n =

1, 2, · · · ) is continuous in λ ∈ (0, λ∗) for t ∈ [0, 1]. Let [λ1, λ2] be a closed subset of

(0, λ∗). Then uλ
n(t) (n = 1, 2, · · · ) is continuous uniformly in λ ∈ [λ1, λ2], and so uλ(t)

is continuous in λ ∈ [λ1, λ2] by (3.1). Finally, we show that uλ(t) is continuous in

λ = 0. Since uλ(t) is increasing in λ ∈ [0, λ∗), then for any λ0 ∈ (0, λ∗) and 0 ≤ λ ≤ λ0,

we have for t ∈ [0, 1]

θ ≤ uλ(t) ≤ uλ0(t),

and

θ < Φθ ≤ (Φuλ)(t) ≤ (Φuλ0)(t).

Thus,
∥

∥Φuλ
∥

∥ ≤
∥

∥Φuλ0

∥

∥
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together with

(3.11)
∥

∥uλ
∥

∥ =
∥

∥λΦuλ
∥

∥ = λ
∥

∥Φuλ
∥

∥

leads to

lim
λ→0+

∥

∥uλ
∥

∥ = 0 =
∥

∥u0
∥

∥

for t ∈ [0, 1]. This implies the first part of the proof.

(ii) In order to finish the second part of proof, we consider two cases. The first

case is λ∗ = ∞. In this case, it is easy to see that
∥

∥uλ
∥

∥ → ∞ as λ → λ∗ by (3.11) and

λ(Φuλ)(t) ≥ λΦθ ≥ λhe(t) for t ∈ [0, 1]. The second case is 0 < λ∗ < ∞. Under this

assumption, we claim that (ii) of Theorem 3.2 is still true. Suppose, to the contrary,

that limλ→λ∗−0

∥

∥uλ
∥

∥ < ∞. Then, there exist a sequence {λn}∞n=1 (λn ∈ (0, λ∗)) and

a constant $ > 0 such that the solutions uλn(t) ∈ Pe of (1.1) and (1.2) satisfying
∥

∥uλn(t)
∥

∥ ≤ $ (n = 1, 2, · · · ) for t ∈ [0, 1]. Thus, we can take y0 ∈ Pe such that

uλn(t) ≤ y0 (n = 1, 2, · · · ) for t ∈ [0, 1]. Also, by (P2) we can take ε∗ > 0 satisfying

2ε∗λ∗ < 1 such that Φθ ≥ 2ε∗y0. As in (3.5) and (3.6), for t ∈ [0, 1], we have

λn

(

Φ(2uλn)
)

(t) ≤ 2λn(Φuλn)(t) − λnΦθ ≤ 2λn(Φuλn)(t) − 2λnε∗y0

≤ 2uλn(t) − 2λnε
∗uλn(t) = 2uλn(t)(1 − λnε

∗).

That is,
λn

1 − λnε∗
(

Φ(2uλn)
)

(t) ≤ 2uλn(t).

We know that

Φθ ≥ ε∗ · (2y0) ≥ ε∗
(

2uλn(t)
)

and

ε∗
λn

1 − λnε∗
< ε∗

λ∗

1 − λ∗ε∗
< 2λ∗ε∗ < 1.

It follows from Lemma 2.1 that

(3.12)
λn

1 − λnε∗
< λ∗, n = 1, 2, · · · .

By passing to the limit n → ∞ in (3.12), we have λ∗

1−λ∗ε∗
< λ∗, which contradicts the

fact that λ∗, ε∗ ∈ (0, 1). The proof is complete.

We now give an estimate for λ∗. Define

(3.13) f∞ = lim
u→∞

f(t, u)

u
for any t ∈ [0, 1].

Then, 0 ≤ f∞ ≤ ∞. Furthermore, if (C1) holds, then f∞ < ∞. Indeed, if u > 1, in

view of the concavity of f , we see that

f(t, 1) = f

(

t,
1

u
× u +

(

1 − 1

u

)

× 0

)

≥ 1

u
f(t, u) +

(

1 − 1

u

)

f(t, 0),
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and so

f(t, u) ≤ uf(t, 1) − (u − 1)f(t, 0)

= [f(t, 1) − f(t, 0)]u + f(t, 0),

i,e.,

f(t, u)

u
≤ [f(t, 1) − f(t, 0)] +

f(t, 0)

u
,

which implies that f∞ < ∞.

Theorem 3.3. Suppose that (C1), (H3), (H4) and (3.13) hold. If f∞ > 0, then

λ∗ >
1

f∞ ‖e‖ ,

where λ∗ is defined in Theorem 3.1.

Proof. In view of (3.13), for any ε > 0 and any t ∈ [0, 1], there exists r > 0 such

that

f(t, r) ≤ (f∞ + ε)r.

Set z0(t) = r
‖e‖

e(t) for t ∈ [0, 1], and take λ̃ε = 1/[(f∞ + ε) ‖e‖]. Then, for t ∈ [0, 1],

we have

λ̃ε(Φz0)(t) = λ̃ε

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, z0(s))dsdτ

= λ̃ε

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f

(

s,
r

‖e‖e(s)

)

dsdτ

≤ λ̃ε ((f∞ + ε) ‖e‖) × r

‖e‖

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)dsdτ

≤ z0(t),(3.14)

and so λ̃Φz0 ≤ z0 by passing to the limit ε → 0 in (3.14), where λ̃ = 1/(f∞ ‖e‖).
Similarly, we can choose an ε̌ > 0 satisfying ε̌ < min

{

(h ‖e‖)/r, 1/λ̃, 1
}

such that

Φθ =

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)f(s, 0)dsdτ

≥ h

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)dsdτ

=
h

r
‖e‖ · r

‖e‖

∫ 1

0

∫ 1

0

G1(t, τ)G2(τ, s)dsdτ

=
h

r
‖e‖ · z0(t) ≥ ε̌z0(t)(3.15)

for t ∈ [0, 1]. We know that C+[0, 1] is a normal cone in C[0, 1] and then λ∗ > λ̃ holds

by (3.14), (3.15) and Lemma 2.1. This completes our proof.

We can easily obtain the following results from the proof of Theorem 3.3.
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Corollary 3.1. Suppose that (C1), (H3) and (H4) hold. Suppose further that

there exist R̃, fR̃ > 0 such that

f(t, R̃) ≤ fR̃ · R̃

for any t ∈ [0, 1]. Then,

λ∗ >
1

fR̃ ‖e‖ .

Corollary 3.2. Suppose that (C1), (H3), (H4) and (3.13) hold. If f∞ = 0, then

λ∗ = ∞.

Remark 3.1. From Corollary 3.2, it is easy to see that (1.1) and (1.2) has a

unique positive solution for any λ > 0. Hence, Corollary 3.2 is similar to Theorem

1.2 in Section 1 (see Theorem 4.2 of [7]).

Remark 3.2. It is not difficult to find some functions that satisfy the conditions

(C1), (H3) and (H4). For example, the function

f(t, u) = 1 + 2u +
√

u +

(

3

2
− t

)2

, t ∈ [0, 1]

satisfies the conditions (C1), (H3), (H4) and f∞ = 2.
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