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ABSTRACT. New oscillation and nonoscillation criteria are established for the second order half-

linear difference equation

∆(rnΦ(∆xn)) + qnΦ(xn+1) = 0, Φ(x) = |x|p−2
x, p > 1,

via the Riccati technique. Some known results are also improved including the discrete version of

the Hille-Wintner comparison theorem.
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1. INTRODUCTION

The aim of this paper is to study the oscillatory character of the half-linear

difference equation

(1.1) ∆(rnΦ(∆xn)) + qnΦ(xn+1) = 0,

in which Φ(x) = |x|p−2x, p > 1, and {rn}, {qn} are real sequences.

An interval (m, m + 1] is said to contain a generalized zero of a solution {xn} if

xm 6= 0 and rmxmxm+1 ≤ 0. A solution is called oscillatory if it has infinitely many

generalized zeros in the set of positive integers. Otherwise, the solution is called

nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

Equation (1.1) is said to be nonoscillatory if it has at least one nonoscillatory solution.

If rn > 0 for all n ≥ n0 and some positive integer n0, then the nonoscillation of {xn}

is equivalent to saying that xn is either eventually positive or eventually negative.

Recently, there have been an extensive investigation on the various qualitative

properties of equation (1.1) (e.g., oscillation, nonoscillation, conjugacy). Among the

papers dealing with the oscillation and/or the nonoscillation of (1.1) and some related

equations we refer to [3, 7, 8, 14, 18], [20]-[25] and to [1] for further results on the

oscillation as well as the general theory of the difference equations. The study of (1.1)
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draws its importance from the fact that (1.1) can be viewed as the discrete version

of the second order half-linear differential equation

(1.2) (r(t)Φ(x′(t)))′ + q(t)Φ(x(t)) = 0, t > 0,

which has been studied by many authors, (see, e.g. [4]-[6], [13] and [15]-[17]). Also,

when p = 2 equation (1.1) is reduced to the famous second order linear difference

equation

(1.3) ∆(rn∆xn) + qnxn+1 = 0.

It is known (see [7, 20]) that many fundamental results of the oscillation theory of

(1.3) can be extended to the half-linear generalization (1.1). In particular, the Sturm

comparison and separation results have been proved for (1.1) (see [7]). Accordingly,

equation (1.1) can not have both oscillatory and nonoscillatory solutions. Also, many

known results for (1.2) have their discrete versions holding true for (1.1) with some-

times extra conditions due to the discrete nature of the utilized techniques. However,

these similarities do not mean necessarily that all oscillation (nonoscillation) criteria

for (1.2) must have discrete analogies for (1.1). For instance, when rn ≡ 1, [9]-[11]

have proved that (1.3) is oscillatory provided that

(1.4) lim sup
n→∞

1

n

n
∑

k=n0

k
∑

i=n0

qi = ∞

although the continuous version of this condition, i.e.,

(1.5) lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

q(r)drds = ∞

does not ensure the oscillation of (1.2) when p = 2 and r(t) ≡ 1 according to Hartman

[12].

Our approach to the oscillation/nonoscillation of equation (1.1) will depend on

the so called Riccati technique by which (1.1) is related to the generalized Riccati

difference inequality

(1.6) Rp(wn) ≤ 0, n ≥ n0

by the substitution

wn =
rnΦ(∆xn)

Φ(xn)
, n ≥ n0

for some positive integer n0, where

Rp(wn) = ∆wn + qn + wn

(

1 −
rn

Φ(Φ−1(rn) + Φ−1(wn))

)

,

and Φ−1 is the inverse function of Φ, that is Φ−1(x) = |x|ρ−2x, ρ = p
p−1

. This relation

is established by the following fundamental result which generalizes Chen and Erbe

[2, Lemma 1.2].
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Lemma 1.1. [7, Lemma 2] Equation (1.1) is nonoscillatory if and only if there exists

a sequence wn with rn + wn > 0 for large n such that (1.6) holds.

A brief outline of the paper is as follows. The next section studies the effect of

changing the value of p on the nonoscillation of (1.1). The third section investigates

the nonoscillation of (1.1) when
∑∞ qi exists. A comparison technique is developed

and used to extract an improved discrete version of the well known Hille-Wintner

comparison criterion. We also improve the condition

(1.7) lim
n→∞

r1−ρ
n

∑n−1 r1−ρ
i

= 0

and hence give a partial answer to a related open problem raised by [7]. The last

section contains some new oscillation criteria. Most of these results do not require

the positivity restriction of rn.

2. COMPARISON RESULTS WITH RESPECT TO p

Throughout this section we assume that rn > 0, n ≥ n0 for some positive integer

n0.

Lemma 2.1. Let f be a function defined by

f(x) =
x

Φ(Φ−1(a) + Φ−1(x)) − a
, −a < x 6= 0, a > 0.

Then

f(x)

{

∈ (0, 1], if p ≥ 2

> 1, if p ∈ (1, 2)

for all x ∈ (−a, ∞), x 6= 0.

Proof. Note that f is well defined since Φ(Φ−1(a) + Φ−1(x)) − a 6= 0 for any x 6= 0

in (−a, ∞). If p = 2, then f(x) = 1 for all x > −a. If p > 2, we have two separate

cases; when x > 0 and when x < 0. Consider the first case; then

f(x) =
x

(aρ−1 + xρ−1)p−1 − a
> 0,

and

f ′(x) =
(aρ−1 + xρ−1)p−2aρ−1 − a

((aρ−1 + xρ−1)p−1 − a)2
> 0, (′= d/dx).

In view of the fact that

(aρ−1 + xρ−1)p−2aρ−1 − a > a(ρ−1)(p−2)aρ−1 − a

= a − a = 0,

we conclude that f ′(x) > 0 for all x > 0. Thus,

0 < f(x) < lim
x→∞

f(x) = 1, x > 0
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which is our desired conclusion for this case.

When x ∈ (−a, 0), we have

f(x) =
x

(aρ−1 − (−x)ρ−1)p−1 − a
> 0.

On the other hand, the first derivative of f is found to be

f ′(x) =
(aρ−1 − (−x)ρ−1)p−2aρ−1 − a

((aρ−1 − (−x)ρ−1)p−1 − a)2
> 0,

now

(aρ−1 − (−x)ρ−1)p−2aρ−1 − a < a(ρ−1)(p−2)aρ−1 − a

= a − a = 0, x ∈ (−a, 0)

so f ′(x) < 0 for all x ∈ (−a, 0), and hence,

0 < f(x) < lim
x→−a

f(x) = 1, x ∈ (−a, 0)

as required. When p < 2, similar arguments imply the proof. We omit the details to

avoid repetition. The proof is complete.

Now assume that {wn} and {rn} are such that wn + rn > 0 for all n ≥ n0. One

can show that Φ(Φ−1(rn) + Φ−1(wn)) > 0 for n ≥ n0. Moreover,

Φ(Φ−1(rn) + Φ−1(wn)) = rn

if and only if Φ−1(wn) = 0 that is; if and only if wn = 0. Therefore, the sequence

{ρn} given by

(2.1) ρn =

{

rn, if wn = 0,
wnrn

Φ(Φ−1(rn)+Φ−1(wn))−rn
, if wn 6= 0,

is well defined for n ≥ n0. On the other hand, if for each n the values a and x in

Lemma 2.1 are replaced by rn and wn respectively, it follows, when wn 6= 0, that

wn

Φ(Φ−1(rn) + Φ−1(wn)) − rn

{

∈ (0, 1], if p ≥ 2

> 1, if p < 2.

This arguments proves the following result.

Lemma 2.2. Let rn and wn be such that wn + rn > 0 for all n ≥ n0. Then the

sequence {ρn} defined by (2.1) satisfies

(2.2)
0 < ρn ≤ rn, if p ≥ 2,

ρn ≥ rn, if p < 2,

for all n ≥ n0.



HALF-LINEAR SECOND ORDER DIFFERENCE EQUATIONS 433

Lemma 2.3. If there exists a sequence {wn} with wn + rn > 0 for all n ≥ n0 then

wn satisfies (1.6) if and only if it satisfies

(2.3) ∆wn + qn +
w2

n

wn + ρn
≤ 0, n ≥ n0,

where ρn is defined by (2.1) and wn + ρn > 0 for all n ≥ n0.

Proof. When wn = 0, the inequalities (1.6) and (2.3) coincide. For wn 6= 0, (2.1)

implies that

ρn

(

Φ(Φ−1(rn)) + Φ−1(wn)) − rn

)

= wnrn, n ≥ n0,

which yields

ρnΦ(Φ−1(rn) + Φ−1(wn)) = rn(wn + ρn), n ≥ n0,

and hence,

F (wn, rn) = wn

(

1 −
rn

Φ(Φ−1(rn) + Φ−1(wn))

)

= wn

(

1 −
ρn

wn + ρn

)

=
w2

n

wn + ρn
, n ≥ n0.

Therefore, (1.6) and (2.3) coincide also in this case. The proof is complete.

Theorem 2.4. Assume that (1.1) is nonoscillatory for some p > 2. Then (1.3) is

nonoscillatory.

Proof. Since (1.1) is nonoscillatory then, according to Lemma 1.1, there exists a

sequence {wn} with wn + rn > 0 for large n (say n ≥ n0) such that Rp(wn) ≤ 0, for

all n ≥ n0. Let ρn be defined by (2.1). Then (2.2) holds for p > 2 which implies that

w2
n

wn + ρn
≥

w2
n

wn + rn
, n ≥ n0.

Then (2.3) yields

∆wn + qn +
w2

n

wn + rn
≤ 0, n ≥ n0,

which, in view of Lemma 1.1, leads to the nonoscillation of (1.3). This completes the

proof.

Theorem 2.5. Assume that p < 2. If (1.3) is nonoscillatory, then (1.1) is nonoscil-

latory.

Proof. Since (1.3) is nonoscillatory, there exists wn such that wn + rn > 0 for n ≥ n0

and

∆wn + qn +
w2

n

wn + rn
≤ 0, n ≥ n0.
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Using (2.2) when p < 2, we get

wn + ρn ≥ wn + rn > 0, n ≥ n0.

Then
w2

n

wn + rn
≥

w2
n

wn + ρn
, n ≥ n0.

Therefore, wn satisfies the Riccati inequality (2.3). This means that (1.1) is nonoscil-

latory according to Lemma 1.1. The proof is complete.

The contrapositives of Theorem 2.4 and Theorem 2.5 are the following two results

respectively.

Corollary 2.6. Assume that p > 2. If the linear equation (1.3) is oscillatory, then

the half-linear equation (1.1) is oscillatory.

Corollary 2.7. Assume that p < 2. If the half-linear equation (1.1) is oscillatory,

then the linear equation (1.3) is also oscillatory.

Combining Theorem 2.4 and Theorem 2.5, we obtain the following interesting

result.

Corollary 2.8. Assume that (1.1) is nonoscillatory for some p > 2. Then it is also

nonoscillatory for all p ≤ 2.

The following result is a partial improvement of Corollary 2.8.

Theorem 2.9. Assume that (1.1), with p = p0, has a nonoscillatory solution {xn}

such that wn = rn
Φ(∆xn)
Φ(xn)

> 0 for all n ≥ n0. Then (1.1) is nonoscillatory for all

1 < p < p0.

Proof. Let

F (x, y, p) = x(1 −
x

Φ(Φ−1(x) + Φ−1(y))
), x > 0, y > 0.

Then

F (x, y, p) = x(1 − (1 + (x/y)ρ−1)1−p

Differentiating with respect to p, we get

Fp(x, y, p) =
x((1 + (x/y)ρ−1) ln(1 + (x/y)ρ−1) − (x/y)ρ−1 ln(x/y)ρ−1)

1 + (x/y)ρ−1

>
x ln(1 + (x/y)ρ−1)

1 + (x/y)ρ−1
> 0 for all x > 0, y > 0.

Thus F (wn, rn, p0) > F (wn, rn, p) for all 1 < p < p0 and n ≥ n0. Since Rp0
(wn) = 0,

then Rp(wn) ≤ 0, for all 1 < p < p0, n ≥ n0. Therefore, (1.1) is nonoscillatory, when

1 < p < p0, according to Lemma 1.1.
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Note that to apply Theorem 2.9, one needs further assumptions on the coefficients

rn, qn to guarantee the positivity of wn. Such conditions are not difficult to obtain.

For example, the reader is referred to Lemma 2 and Lemma 4 in [23] as well as Lemma

4.2 in this work. However, it would be better if Theorem 2.9 holds without those extra

restrictions. Indeed, this author believes that the following conjecture is true.

Conjucture 2.10. Assume that (1.1) is nonoscillatory for some p = p0. Then (1.1)

is also nonoscillatory for all other values of p satisfying that 1 < p < p0.

Using Theorem 2.4 and Theorem 2.5, one can apply many known linear oscilla-

tion (nonoscillation) criteria to the half-linear equation (1.1). Some of these criteria

seem to be difficult to drive directly from (1.1) due to the presence of the half-linear

parameter p. For example, an application to [19, Lemma 3] leads, using Theorem 2.4,

to the following result.

Corollary 2.11. If there exists a subsequence {nk}, nk → ∞ as k → ∞, such that

rnk−1 + rnk
− qnk

≤ 0 for large k, then (1.1) oscillates for all p ≥ 2.

If the above corollary fails, one may use the following one which is an immediate

application of [10, Corollary 2.5] and Theorem 2.4.

Corollary 2.12. Let {λn} be a positive real sequence satisfying

(
rn + rn−1 − qn

2rn

)
λn

λn−1

≤ d < 1 eventually.

If there exists a subsequence {nk}, nk → ∞ as k → ∞ and a nonnegative real number

M such that

rnk−1 + rnk
− qnk

− Mλnk−1r
2
nk−1 ≤ 0 for large k,

then (1.1) oscillates for all p ≥ 2.

3. SOME RESULTS WHEN
∑∞ qi CONVERGES

Lemma 3.1. Assume that rn > 0 for n ≥ n0,

(3.1)

∞
∑

i=n0

1

rρ−1
i

= ∞,

and

(3.2) Qn =

∞
∑

i=n

qi exists, n ≥ n0,

such that Qn > 0 for infinitely many values of n. If (1.1) is nonoscillatory, then there

exists an eventually nonnegative solution zn of the inequality

(3.3)

∞
∑

i=n

F (ui, ri) + Qn ≤ un, n ≥ n0.
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Proof. Let xn be a nonoscillatory solution of (1.1). Then xn is either eventually

positive or eventually negative. It is easy to see that xn is a solution of (1.1) if and

only if −xn is a solution of (1.1), so without loss of generality, we assume that xn is

eventually positive. That is, there exists n1 ≥ n0 such that xn > 0 for all n ≥ n1.

Using the Riccati transformation

wn =
rnΦ(∆xn)

Φ(xn)
, n ≥ n1,

equation (1.1) implies that

(3.4) ∆wn + qn + F (wn, rn) = 0, n ≥ n1

where wn + rn > 0 for all n ≥ n1 (see Lemma 1.1). Summing from n1 to n − 1, we

obtain

(3.5) wn − wn1
+

n−1
∑

i=n1

qi +
n−1
∑

i=n1

F (wi, ri) = 0.

Since F (wi, ri) ≥ 0 for all i ≥ n1, we have either

(3.6)

∞
∑

i=n1

F (wi, ri) = ∞,

or

(3.7)
∞
∑

i=n1

F (wi, ri) < ∞ exists.

If (3.6) holds, then (3.5) yields

lim
n→∞

wn = −∞

which, in view of the definition of wn, implies that Φ(∆xn) is eventually negative.

Consequently, ∆xn is also eventually negative. Thus there exists n2 ≥ n1 such that

∆xn < 0 for all n ≥ n2. But Φ is increasing on the real line, so ∆Φ(yn) < 0 for all

n ≥ n2. Choosing the integer n2 so large that Qn2
> 0, we can find another integer

N > n2 such that

(3.8)
N−1
∑

i=n2

qi ≤ 0 and
n
∑

i=n2

qi > 0, n ≥ N.

Note that

∆(Φ(xn+1)

n−1
∑

i=n2

qi) = (∆Φ(xn+1))

n
∑

i=n2

qi + qnΦ(xn+1).
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Summing both sides of this identity from N to n and using (3.8), we see that

n
∑

i=N

qiΦ(xi+1) = Φ(xn+1)
n
∑

i=n2

qi − Φ(xN+1)
N−1
∑

i=n2

qi

−

n
∑

i=N

(

i
∑

k=n2

qk)∆Φ(xi+1) > 0 for all n ≥ N.

Therefore, (1.1) yields

rn+1Φ(∆xn+1) − rN∆Φ(∆xN ) = −
n
∑

i=N

qiΦ(xi+1)

≤ 0, for all n ≥ N.

Hence,

Φ(∆xn+1) ≤ rN∆Φ(∆xN )
1

rn+1

,

or equivalently,

∆xn+1 ≤ Φ−1(rN∆Φ(∆xN ))
1

rρ−1
n+1

, n ≥ N.

Summing, we have

xn+1 − xN ≤ Φ−1(rN∆Φ(∆xN ))
n−1
∑

i=N

1

rρ−1
i+1

, n ≥ N.

But

Φ−1(rN∆Φ(∆xN )) < 0 and
∞
∑

i=N

1

rρ−1
i+1

= ∞,

so xn → −∞ as n → ∞, which is a contradiction.

Suppose now that (3.7) holds. Let n → ∞ in (3.5). It follows that limn→∞ wn

exists. In fact limn→∞ wn ≥ 0, since otherwise we have limn→∞ wn < 0 which yields

limn→∞ xn = −∞ as in the above case.

Now summing both sides of (3.4) from n ≥ n1 to ∞, we obtain

∞
∑

i=n

qi +

∞
∑

i=n

F (wi, ri) ≤ wn, n ≥ n1.

Let Wn = max{0, wn}, n ≥ n1. Then, Wn ≥ 0 (6≡ 0 eventually), Wn ≥ wn for all

n ≥ n1, and
∞
∑

i=n

F (wi, ri) ≥

∞
∑

i=n

F (Wi, ri), n ≥ n1.

Therefore, Wn satisfies the inequality

∞
∑

i=n

qi +
∞
∑

i=n

F (Wi, ri) ≤ Wn, n ≥ n1,

which is our desired conclusion.
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Lemma 3.2. Assume that (3.2) holds, rn > 0 for n ≥ n0, and

(3.9)

∞
∑

i=n

F (Q+
i , ri) + Qn ≥ 0, for n ≥ n0

where Q+
n = max{0, Qn}. If (3.3) has a nonnegative solution zn, then (1.1) has a

nondecreasing positive solution.

Proof. Let us define a mapping T : l∞ → l∞ by

(Tv)n =

∞
∑

i=n

F (vi, ri) + Qn, n ≥ n0.

Consider the successive approximation sequences {y0
n}, {y

1
n},. . . defined by

y0
n = Q+

n , n ≥ n0

y(m+1)
n = (Ty(m))n, for m = 0, 1, 2, . . . n ≥ n0.(3.10)

Since (Tz)n ≤ zn, n ≥ n0, then zn ≥ Q+
n for n ≥ n0 and this in turn leads to

zn ≥ (TQ+)n = (Ty(0))n = y(1)
n , n ≥ n0.

But

y(1)
n =

∞
∑

i=n

F (Q+
i , ri) + Qn ≥ 0, n ≥ n0,

so

y(1)
n > max{0, Qn} = Q+

n = y(0)
n , n ≥ n0.

Consequently, a simple induction yields

0 ≤ y(0)
n ≤ y(1)

n ≤ . . . ≤ zn, n ≥ n0.

Thus, there exists a sequence {yn}n≥n0
∈ l∞ such that

lim
m→∞

y(m)
n = yn, yn ≥ 0 for n ≥ n0.

Allowing m → ∞ in (3.10), Lebesgue’s dominated convergence theorem implies that

yn = (Ty)n for all n ≥ n0, that is;

yn =
∞
∑

i=n

F (yi, ri) +
∞
∑

i=n

qi, n ≥ n0,

and hence

∆yn + F (yn, rn) + qn = 0, n ≥ n0.

Let {xn} be defined by

xn = un−1
i=n0

(

1 + (
yi

ri
)ρ−1

)

, n > n0.
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Then xn is a solution of (1.1) for n > n0 (see [7]). Moreover, the nonnegativity of yn

implies that

xn+1 = un
i=n0

(

1 + (
yi

ri
)ρ−1

)

= xn

(

1 + (
yn

rn
)ρ−1

)

≥ xn for all n ≥ n0.

Thus, xn is a positive nondecreasing solution of (1.1). The proof is complete.

Combining Lemma 3.1 and Lemma 3.2, we obtain the following fundamental

result that improves [14, Theorem 1] and [23, Lemma 3].

Theorem 3.3. Assume that rn > 0 for n ≥ n0, (3.1), (3.2) and (3.9) are satisfied.

Then (1.1) is nonoscillatory if and only if the inequality (3.3) has a nonnegative

solution.

The following Hille-Wintner type comparison result is an improvement to [14,

Corollary 1]. Its proof is a direct application of Theorem 3.3 and hence is omitted.

Corollary 3.4. Assume that {Rn} and {cn} are real sequences such that

∞
∑

i=n

ci exists for all n ≥ n0 > 0,

∞
∑

i=n

F (C+
i , Ri) +

∞
∑

i=n

ci ≥ 0, n ≥ n0,

where C+
n = max{0,

∑∞

i=n ci} (6≡ 0 eventually) for n ≥ n0,

∞
∑

i=n0

1

Rρ−1
i

= ∞,

0 < rn ≤ Rn, n ≥ n0,
∞
∑

i=n

qi exists,

and
∞
∑

i=n

qi ≥

∞
∑

i=n

ci, n ≥ n0.

Then the half-linear equation

∆(RnΦ(∆yn)) + cnΦ(yn+1) = 0

is nonoscillatory provided that (1.1) is nonoscillatory.

The argument used in the proofs of Lemma 3.1 and Lemma 3.2 leads to the

following result which will be used in the next section.
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Corollary 3.5. Assume that rn > 0 for n ≥ n0, (3.1), (3.2) and (3.9) are satisfied.

If (1.1) is nonoscillatory, then the sequence {y
(m)
n } in (3.10) is well defined and there

exists a nonnegative nontrivial sequence {yn} such that limm→∞ y
(m)
n = yn for n ≥ n0.

Throughout the rest of this section, we consider the real numbers β, λ and γ such

that 0 < β < λ
p
, λ = (p−1

p
)p−1, and γ = λ−β

β(p−1)
.

Lemma 3.6. Assume that rn > 0 for n ≥ n0,

qn = −β∆(
n−1
∑

i=n0

1

rρ−1
i

)1−p, n > n0,

and

(3.11) rρ−1
n

n−1
∑

i=n0

1

rρ−1
i

≥

{

1
γρ−1−1

, if p ≥ 2
1

γ−1
, if p < 2.

Then wn = λ(
∑n−1

i=n0

1

rρ−1

i

)1−p is a positive solution of the Riccati inequality (1.6) for

n > n0.

Proof. Note that qn = −β
λ
∆wn for all n > n0. Then,

Rp(wn) = (1 −
β

λ
)∆wn + F (wn, rn)

= (1 −
β

λ
)wn+1 +

β

λ
wn −

wnrn

(rρ−1
n + wρ−1

n )p−1
, n > n0.(3.12)

Let vn =
∑n−1

n0
r1−ρ
i for all n > n0. Then

vn+1 = r1−ρ
n + vn, wn =

λ

vp−1
n

,

and

wn+1 =
λ

(r1−ρ
n + vn)p−1

=
λrn

(1 + rρ−1
n vn)p−1

, for all n > n0.

Substituting into (3.12), we obtain

Rp(wn) = (1 −
β

λ
)

λrn

(1 + rρ−1
n vn)p−1

+
β

vp−1
n

−
λrn

vp−1
n (rρ−1

n + λρ−1

vn
)p−1

= (λ − β)
rn

(1 + rρ−1
n vn)p−1

+
β

vp−1
n

−
λrn

(vnrρ−1
n + λρ−1)p−1

=
Dn

vp−1
n (1 + rρ−1

n vn)p−1(vnrρ−1
n + λρ−1)p−1

, n > n0,

where

Dn = (λ − β)rnvp−1
n (vnrρ−1

n + λρ−1)p−1 + β(1 + rρ−1
n vn)p−1(vnrρ−1

n + λρ−1)p−1

−λrnvp−1
n (1 + rρ−1

n vn)p−1, n > n0.
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Our proof will be complete if Dn < 0 for all n > n0. Let λ − β = σ and zn = rρ−1
n vn;

then we see that

Dn = σzp−1
n

(

(zn + λρ−1)p−1 − (1 + zn)p−1
)

+ β(1 + zn)p−1
(

(zn + λρ−1)p−1 − zp−1
n

)

.

Using the Mean Value Theorem, we have

(3.13) Dn = σzp−1
n (p − 1)(λρ−1 − 1)ηp−2

n + β(1 + zn)p−1λρ−1(p − 1)ξp−2
n ,

where η ∈ (zn + λρ−1, 1 + zn) and ξ ∈ (zn, zn + λρ−1) for all n > n0. Assume that

p ≥ 2. Then,

Dn ≤ σ(p − 1)(λρ−1 − 1)zp−1
n (zn + λρ−1)p−2 + β(p − 1)λρ−1(1 + zn)p−1(zn + λρ−1)p−2

= (p − 1)(zn + λρ−1)p−2

(

σ(−
1

p
)zp−1

n + β
p − 1

p
(1 + zn)p−1

)

, n > n0.

Suppose that for a certain n1 > n0, we have Dn1
> 0. Then

σ(−
1

p
)zp−1

n1
+ β

p − 1

p
(1 + zn1

)p−1 > 0,

which implies that
(

1 + zn1

zn1

)p−1

>
ρ

β(p − 1)
= γ.

Note that γ > 1 since otherwise we get λ − β = σ ≤ β(p − 1), i.e., λ ≤ pβ which is

impossible according to our assumption that β < λ
p
. Now solving the above inequality

with respect to zn1
, we obtain

zn1
<

1

γρ−1 − 1
, i.e., rρ−1

n1

n1
∑

i=n0

r1−ρ
i <

1

γρ−1 − 1
,

which contradicts (3.11). Thus, Dn ≤ 0 for all n > n0 as required and the proof is

complete for this case.

When p < 2, combining the inequalities

ηn < 1 + zn and ξn > zn

with (3.13), it follows that

Dn ≤ (p − 1)(1 + zn)p−2zp−2
n

(

σzn(−
1

p
) + β(

p − 1

p
)(1 + zn)

)

, n > n0.

Using the same argument as in the above case, we can prove that

−σ

p
zn + β(

p − 1

p
)(1 + zn) ≤ 0, n > n0,

that is Dn ≤ 0 for all n > n0. Hence, Rp(wn) ≤ 0 for all n > n0, which is our desired

conclusion. The proof is complete.
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Note that the above result implies that wn = λ(
∑n−1

i=n0
r1−ρ
i )1−p is a positive

solution of the inequality

∞
∑

i=n

F (wi, ri) +
∞
∑

i=n

qi ≤ wn, n ≥ n0,

where condition (3.1) (
∑∞ r1−ρ

i = ∞) is not needed here due to the fact that wn > 0

for n ≥ n0. We claim also that this wn satisfies the inequality

∞
∑

i=n

F (wi, ri) + β(

n−1
∑

i=n0

r1−ρ
i )1−p < wn, n ≥ n0.

For this purpose, let

I(wn) =
∞
∑

i=n

F (wi, ri) + β(
n−1
∑

i=n0

r1−ρ
i )1−p − wn, n ≥ n0.

Then, using (3.12), we get

I(wn) =

∞
∑

i=n

F (wi, ri) + (
β

λ
− 1)wn

=

∞
∑

i=n

(F (wi, ri) + (1 −
β

λ
)∆wi) + (

β

λ
− 1)w∞

=

∞
∑

i=n

Rp(wi) + (
β

λ
− 1)w∞, n ≥ n0,

where w∞ = λ(
∑∞

i=n0
r1−ρ
i )1−p ≥ 0, β < λ and Rp(wn) ≤ 0 for all n ≥ n0. Therefore,

I(wn) ≤ 0 for all n ≥ n0, which proves our claim. So, if {qn} is any real sequence

such that
∑∞ qi exists and

(3.14)

n
∑

i=n0

qi ≤ β(

n−1
∑

i=n0

r1−ρ
i )1−p, n > n0,

then (3.3) has a positive solution. This conclusion, together with Lemma 3.2, imply

the following important result.

Theorem 3.7. Assume that rn > 0 for all n ≥ n0 and that (3.2), (3.9), (3.11) and

(3.14) are satisfied. Then (1.1) has a nondecreasing positive solution.

Corollary 3.8. Assume that rn > 0 for all n ≥ n0 and that (3.2), (3.9) and (3.11)

are satisfied. If

lim sup
n→∞

(
n−1
∑

i=n0

r1−ρ
i )p−1

∞
∑

i=n

qi < β,

then (1.1) has a nondecreasing positive solution.
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Corollary 3.9. Assume that rn > 0 for all n ≥ n0 and (3.11) holds. If
∑∞

i=n q+
i

exists for all n ≥ n0 and

lim sup
n→∞

(
n−1
∑

i=n0

r1−ρ
i )p−1

∞
∑

i=n

q+
i < β,

then (1.1) is nonoscillatory.

Proof. In view of the assumptions and Corollary 3.8, we see that the equation

∆(rnΦ(∆xn)) + q+
n Φ(xn+1) = 0

is nonoscillatory. But q+
n ≥ qn, so (1.1) is also nonoscillatory according to the Sturm

comparison theorem (see [7]).

Remark 3.10. Došlý and Řehák [7] questioned the need of condition (1.7) in some of

their results. The reader can see that condition (3.11) has weakened this restriction,

so that Corollary 3.8 improves [7, Theorem 3] particularly when Qn ≥ 0 eventually.

The following example is illustrative.

Example 3.11. Consider the difference equation (1.3) in which rn = 2−n and

qn = −∆





1 + 3(−1)n

3n+1
+

(

(

2 + 2(−1)n

3n+1

)2

+
4 + 4(−1)n

2n3n+1

)1/2


 , n > n0 > 1.

Then the reader can see that

n−1
∑

i=n0

1

ri

= 2n − 2n0,

and

Qn =

∞
∑

i=n

qi =
1 + 3(−1)n

3n+1
+

(

(

2 + 2(−1)n

3n+1

)2

+
4 + 4(−1)n

2n3n+1

)1/2

, n > n0.

Moreover,

Q+
n =

2 + 2(−1)n

3n+1
+

(

(

2 + 2(−1)n

3n+1

)2

+
4 + 4(−1)n

2n3n+1

)1/2

, n > n0,

F (Q+
n , rn) =

4 + 4(−1)n

3n+1
,

∞
∑

i=n

F (Q+
i , ri) =

2 + (−1)n

3n
,

and

rn

n−1
∑

i=n0

1

ri
= 1 − 2n0−n ≥

1

2
, n > n0.
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Therefore, condition (3.13) is satisfied with β = 1/8 (since γ = 3),

∞
∑

i=n

F (Q+
i , ri) + Qn ≥

1

3n+1
, n ≥ n0,

and

lim sup
n→∞

n−1
∑

i=n0

1

ri

Qn = 0 <
1

8
.

Thus, all requirements of Corollary 3.8 are satisfied. Accordingly, the given equation

has a nondecreasing positive solution.

4. SOME OSCILLATION CRITERIA

The first result in this section is the contrapositive of Corollary 3.5. It improves

[23, Theorem 1].

Theorem 4.1. Assume that (3.1), (3.2) and (3.9) are satisfied. Let ym
n be defined by

(3.10). Then equation (1.1) is oscillatory if either one of the following conditions is

satisfied:

(i)

lim
m→∞

ym
n = ∞ for all n ≥ n0.

or

(ii) There exists an integer m0 ≥ 1 such that

ym0

n = ∞ for all n ≥ n0.

Lemma 4.2. Let {wn} satisfy Rp(wn) = 0 with wn + rn > 0 for all n ≥ n0 (i.e.,

(1.1) is nonoscillatory). If

(4.1) lim sup
n→∞

n−1
∑

i=n0

qi − rn > −∞,

then
∞
∑

i=n0

F (wi, ri) < ∞.

Moreover, if

(4.2) lim sup
n→∞

n−1
∑

i=n0

qi − rn ≥ 0,

then wn > 0 for all n ≥ n0.

Proof. Summing both sides of the Riccati equation Rp(wn) = 0 from k ≥ n0 to n− 1,

we obtain

(4.3) wn + rn − wk +

n−1
∑

i=k

F (wi, ri) +

n−1
∑

i=k

qi − rn = 0, n > k ≥ n0.
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Since wn + rn > 0 for all n ≥ n0, it follows from (4.1) and (4.3) that
∑∞

i=n0
F (wi, ri)

is convergent as required.

If condition (4.2) is satisfied, then (4.3) yields

wk = wn + rn +

n−1
∑

i=k

F (wi, ri) +

n−1
∑

i=k

qi − rn(4.4)

> lim inf
n→∞

(wn + rn +
n−1
∑

i=k

F (wi, ri)) + lim sup
n→∞

(
n−1
∑

i=k

qi − rn)

> 0, n > k ≥ n0.

The proof is complete.

Theorem 4.3. Assume that (4.1) holds. If there exists a subsequence of positive

integers {nk} with nk → ∞ as k → ∞ such that lim supk→∞ rnk
< 0, then (1.1) is

oscillatory.

Proof. Suppose, for the sake of obtaining a contradiction, that (1.1) is nonoscillatory.

Then (1.1) has a solution {xn} such that rnxnxn+1 > 0 for all n ≥ n0. Therefore,

wn = rnΦ(∆xn)
xn

satisfies the Riccati equation Rp(wn) = 0, n ≥ n0 with wn + rn > 0 for

all n ≥ n0. Applying Lemma 4.2, we obtain

∞
∑

i=n0

F (wi, ri) < ∞,

so, it is necessary that

(4.5) lim
n→∞

F (wn, rn) = 0.

In view of the assumption that lim supk→∞ rnk
< 0, we obtain

lim
k→∞

1

rnk

F (wnk
, rnk

) = 0,

that is,

lim
k→∞

(

1 −
1

Φ(1 + Φ−1(
wnk

rnk

))

)

wnk

rnk

= 0,

which implies that

(4.6) lim
k→∞

wnk

rnk

= 0.

Then

lim
k→∞

wnk
+ rnk

rnk

= lim
k→∞

wnk

rnk

+ 1 = 1,

which is impossible as wnk
+rnk

is eventually positive while rnk
is eventually negative.

This completes the proof.
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Theorem 4.4. Assume that (4.1) holds. If there exist a positive real number M and

a subsequence of positive integers {nk}, nk → ∞ as k → ∞ such that |rnk
| < M for

all nk > n0, and

(4.7) lim
k→∞

nk−1
∑

i=n0

qi does not exist,

then (1.1) is oscillatory.

Proof. Proceed as in the proof of Theorem 4.3. Then (4.5) yields

lim
k→∞

(

1 −
1

Φ(1 + Φ−1(
wnk

rnk

))

)

wnk
= 0,

which holds only if limk→∞ wnk
= 0 (since |rnk

| is bounded). From (4.3), we obtain

(4.8) wnk
− wn0

+

nk−1
∑

i=n0

F (wi, ri) +

nk−1
∑

i=n0

qi = 0, nk > n0.

Then,

lim
k→∞

nk−1
∑

i=n0

qi = − lim
k→∞

(wnk
− wn0

+

nk
∑

i=n0

F (wi, ri))

= wn0
−

∞
∑

i=n0

F (wi, ri) exists,

which contradicts (4.7). The proof is complete.

Combining the above two theorems, we obtain the following result:

Corollary 4.5. Assume that {nk} is a subsequence of positive integers such that

nk → ∞ as k → ∞ and rnk
< M for some M > 0 and all nk. If (4.1) and (4.7) are

satisfied, then (1.1) is oscillatory.

Remark 4.6.

1. As {rn} is not required to be bounded above, Corollary 4.5 improves [21, Corol-

lary 1].

2. Since

(4.9) lim inf
n→∞

n
∑

qi ≤ lim inf
n→∞

1

n

n
∑

k
∑

qi ≤ lim sup
n→∞

1

n

n
∑

k
∑

qi ≤ lim sup
n→∞

n
∑

qi,

then (4.7) is better than the averaging criterion

lim inf
n→∞

1

n

n
∑

k
∑

qi < lim sup
n→∞

1

n

n
∑

k
∑

qi.

Thus, Theorem 4.4 improves Corollary 2.7 and Corollary 2.8 of [2] for the linear

case (1.3).



HALF-LINEAR SECOND ORDER DIFFERENCE EQUATIONS 447

The following result completes partially Corollary 4.5.

Theorem 4.7. Assume that {nk} is a subsequence of positive integers such that

nk → ∞ as k → ∞. If (4.1) holds,

lim
k→∞

rnk
= ∞,

and

(4.10) lim
k→∞

1

rnk

nk−1
∑

qi 6= 0 or does not exist,

the (1.1) is oscillatory.

Proof. Using the same reasoning of the proofs of Theorem 4.3 and Theorem 4.4, we

obtain (4.6) and (4.8). Dividing both sides of (4.8) by rnk
, rnk

> n0, it follows that

wnk

rnk

−
wn0

rnk

+
1

rnk

nk−1
∑

i=n0

F (wi, ri) +
1

rnk

nk−1
∑

i=n0

qi = 0, nk > n0.

Taking into account that (4.6) holds and
∑∞

i=n0
F (wi, ri) < ∞, then

lim
k→∞

1

rnk

nk−1
∑

i=n0

qi = lim
k→∞

(
wnk

rnk

−
wn0

rnk

+
1

rnk

nk−1
∑

i=n0

F (wi, ri))

= 0,

which contradicts (4.6). The proof is complete.

If (4.1) holds and limn→∞ rn = ∞, then one can find a number A > 0 and a

positive integer sequence {nk} with limk→∞ nk = ∞ such that

nk−1
∑

i=n0

qi − rnk
> −A, for all nk.

Dividing by rnk
, it follows that

1

rnk

nk−1
∑

i=n0

qi − 1 > −
A

rnk

.

As k → ∞, we obtain

lim inf
k→∞

1

rnk

nk−1
∑

i=n0

qi − 1 ≥ 0

which, clearly, implies that condition (4.10) is satisfied. Therefore, we conclude the

following corollary of Theorem 4.7.

Corollary 4.8. Assume that (4.1) holds and limn→∞ rn = ∞. Then (1.1) is oscil-

latory.
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Theorem 4.9. Assume that

lim sup
n→∞

n−1
∑

i=n0

qi − rn = ∞.

Then (1.1) is oscillatory.

Proof. Assume that (1.1) is nonoscillatory. Proceeding as in the proof of Lemma 4.2,

we obtain (4.4). Taking the upper limit of both sides of (4.4) as n → ∞, we obtain

wk = ∞ which is impossible. This completes the proof.

If the upper limit in the above result is a finite number, one may use the following

result.

Theorem 4.10. Assume that there exists a sequence {ϕn} such that

lim sup
n→∞

(

n−1
∑

i=k

qi − rn) ≥ ϕk for all k ≥ n0.

If lim infn→∞ ϕn > −∞, and

(4.11) lim sup
n→∞

n
∑

qi = ∞,

then (1.1) is oscillatory.

Proof. Assume that (1.1) is nonoscillatory. Proceeding as in the proof of Lemma 4.2,

we obtain (4.3). Remembering that wn + rn > 0 for n ≥ n1, (4.3) yields

(4.12)
n−1
∑

i=k

F (wi, ri) + (
n−1
∑

i=k

qi − rn) ≤ wk, n > k ≥ n1.

Note that (4.1) is satisfied due to the given assumptions and hence
∑∞

i=k F (wi, ri) <

∞. Accordingly, taking the upper limit of both sides of inequality (4.12), we obtain
∞
∑

i=k

F (wi, ri) + ϕk ≤ wk, k ≥ n1.

Thus, lim infn→∞ wn > −∞. On the other hand, letting n → ∞ in (3.5) and using

(4.11), we get

lim inf
n→∞

wn = −∞,

which is a contradiction. The proof is complete.

The following result is an immediate consequence of the above theorem.

Corollary 4.11. Assume that rn ≡ 1 and (4.11) is satisfied. Then (1.1) is oscillatory.

Taking into account the relation (4.9), we conclude from Corollary 4.11 the fol-

lowing result.

Corollary 4.12. Assume that rn ≡ 1 and (1.4) is satisfied. Then (1.1) is oscillatory.
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Remark 4.13. Corollary 4.12 generalizes [11, Corolary 2.2](see [11, Remark 2.1(2)])

to the half-linear case. As we have mentioned in the introduction of this work,

Corollary 4.12 does not have a continuous analogue for p = 2. So it is very interesting

to see if it does not have a continuous analogue for all p > 1.
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