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1. INTRODUCTION

In this paper we employ the method of Lyapunov functions (MLF) to discuss

the stability properties of set differential equations (SDEs) with causal operators. It

is well-known that the MLF can be used to reduce the study of differential systems

to that of scalar differential equations [3]. In [2, 4] this idea was exploited and the

Lyapunov stability criteria for SDEs under suitable conditions were studied.

SDEs have recently been the subject of much attention and the theory of SDEs

is rapidly becoming an independent discipline. One of the advantages of the theory

of SDEs is its unifying approach. For example, under appropriate conditions, such

theory reduces to either that of ordinary differential systems, differential equations

in a Banach space, multivalued differential inclusions, or even fuzzy differential equa-

tions. On the other hand, causal operators present yet another form of unification

since they include several types of differential and integro-differential maps. For a

monograph on the subject see [1].

In this paper, we combine the unifying approach of both the theory of SDEs

and that of causal operators and extend the MLF to obtain stability results in the

general framework of SDEs with causal operators. First, we obtain comparison results

in terms of Lyapunov-like functions. Next, we use the comparison results to prove

several stability theorems.
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2. PRELIMINARIES

Let Kc(R
n) denote the set of all nonempty compact convex subsets of R

n. We

define the Hausdorff metric between two nonempty bounded sets A and B of R
n by

(2.1) D(A, B) = max[sup
x∈B

d(x, A), sup
y∈A

d(y, B)]

where d(x, A) =inf [d(x, y) : y ∈ A]. We observe that (Kc(R
n), D) is a complete

metric space. When equipped with the natural algebraic operations of addition and

nonnegative scalar multiplication, Kc(R
n) becomes a semilinear metric space, which

can be embedded as a complete cone into a corresponding Banach space.

The following properties of the Hausdorff metric (2.1) will be useful in the sequel:

(2.2) D(A + C, B + C) = D(A, B) and D(A, B) = D(B, A),

(2.3) D(λA, λB) = λD(A, B),

(2.4) D(A, B) ≤ D(A, C) + D(C, B),

for all A, B, C ∈ Kc(R
n) and λ ∈ R+. Given two sets, A and B ∈ Kc(R

n) if there

exists a set C ∈ Kc(R
n) satisfying A = B + C, then we say that the Hukuhara

difference of the two sets A and B exists, and we denote it by A − B.

Let I be an interval of real numbers and let the mapping U : I → Kc(R
n) be given.

U is Hukuhara differentiable at a point t0 ∈ I, if there exists DHU(t0) ∈ Kc(R
n) such

that the limits

lim
h→0+

U(t0 + h) − U(t0)

h
and lim

h→0+

U(t0) − U(t0 − h)

h

both exist in the topology of Kc(R
n) and are equal to DHU(t0). If F : I → Kc(R

n)

is a continuous function, then it is integrable and the integral

G(t) = G(t0) +

∫ t

t0

F (s) ds, t ∈ I,

is Hukuhara differentiable, and D
H
G(t) = F (t).

3. COMPARISON RESULTS

In this section, we first prove some basic comparison results, which are used

subsequently to establish stability properties of SDEs with causal operators. We

begin with some definitions. Let E = C[[t0,∞), Kc(R
n) ] with norm

sup
t∈[t0,∞)

D[U(t), θ]

h(t)
< ∞,

where θ is the zero element of R
n, which is regarded as a point set and h : [t0,∞) → R+

is a continuous map. E equipped with such a norm is a Banach space.
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Definition 3.1. Let Q ∈ C[E, E]. Q is said to be a causal map or nonanticipative

map if U(s) = V (s), t0 ≤ s ≤ t < ∞, and U, V ∈ E then (QU)(s) = (QV )(s), t0 ≤
s ≤ t < ∞.

Consider the initial-value problem (IVP) for SDEs with causal map, defined using

the Hukuhara derivative:

(3.1) DHU(t) = (QU)(t)

U(t0) = U0 ∈ Kc(R
n).

In order to use the MLF, it is necessary to select minimal subsets of E over which

the derivative of the Lyapunov function can be conveniently estimated. For that

purpose, let L ∈ C[R+ x B, R+], where B = B(θ, b) = {U ∈ Kc(R
n) : D[U, θ] ≤ b}.

Define the following sets:

Eα = {U ∈ Kc(R
n) : L(s, U(s)) α(s) ≤ L(t, U(t)) α(t), t0 ≤ s ≤ t},

E1 = {U ∈ Kc(R
n) : L(s, U(s)) ≤ L(t, U(t)) , t0 ≤ s ≤ t},

E0 = {U ∈ Kc(R
n) : L(s, U(s)) ≤ f(L(t, U(t))), t1 ≤ s ≤ t, t1 ≥ t0},

where

(i) α(t)> 0 is a continuous function on R+,

(ii) f(r) is a continuous on R+, nondecreasing in r and f(r) > r for r > 0.

We now prove the comparison results.

Theorem 3.2. Let L ∈ C[R+ × B, R+] and let L(t, U) be locally Lipschitzian in

U , i.e., for U, V ∈ B, t ∈ R+, and K > 0, |L(t, U) − L(t, V )| ≤ K D(U, V ).

(i) Assume that for t ≥ t0 and U ∈ E1

(3.2) D−L(t, U(t)) ≤ g(t, L(t, U(t)))

where D−L(t, U(t)) = lim infh→0−
1
h
[L((t+h, U(t)+h(QU)(t)) −L(t, U(t))], and

g ∈ C[R+ × R+, R+].

(ii) Let r(t) = r(t, t0, w0) be the maximal solution of

(3.3) w′ = g(t, w), w(t0) = w0 ≥ 0,

existing on t0 ≤ t < ∞.

Let U(t, t0, U0) be any solution of (3.1) such that U(t, t0, U0) ∈ B for t ∈ [t0, t1]

and let L(t0, U0) ≤ w0. Then L(t, U(t, t0, U0) ) ≤ r(t) for all t ∈ [t0, t1].

Proof. Let U(t, t0, U0) be any solution of (3.1) such that U(t, t0, U0) ∈ B for

t ∈ [t0, t1]. Define m(t) = L(t, U(t)), t ∈ [t0, t1]. For sufficiently small ε > 0, consider

the differential equation

w′ = g(t, w) + ε = gε(t, w),

w(t0) = w0 + ε,
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whose solutions w(t, ε) = w(t, t0, w0, ε) exist as far as r(t) exists to the right of t0.

Since the continuity of w(t) implies that limε→0 w(t, ε) = r(t), it is sufficient to show

that

(3.4) m(t) < w(t, ε), t ∈ [t0, t1].

Suppose that (3.4) is not true. Then there exists t2 ∈(t0, t1) such that

(a) m(t) ≤ w(t, ε), t0 ≤ t ≤ t2, and

(b) m(t2) = w(t2, ε).

It then follows from (a) and (b) that

(3.5) D−m(t2) ≥ lim infh→0−
w(t

2+h, ε) − w(t2, ε)

h
= D−w(t2, ε) = g(t2, w(t2, ε))+ε.

From the assumption on g, the solutions w(t, ε) are increasing functions of t. Since,

m(t) = L(t, U(t)) and using (a) and (b), we have

L(s, U(s)) ≤ L(t2, U(t2)), t0 ≤ s ≤ t2.

Consequently, U(t, t0, U0) ∈ E1, t0 ≤ t ≤ t2. Since L(t, U) is Lipschitzian in U and

satisfies condition (i), we have

m(t + h) − m(t) = L(t + h, U(t + h)) − L(t, U(t))

= L(t + h, U(t + h)) − L(t + h, U(t) + h(QU)(t))

+L(t + h, U(t) + h (QU)(t)) − L(t, U(t))

≥ −K D[U(t + h), U(t) + h(QU)(t)]

+L(t + h, U(t) + h(QU)(t)) − L(t, U(t)),

which, upon taking the lim inf as h → 0− and using the fact that DHU(t) exists and

is equal to (QU)(t) yields

D−m(t) ≤ D−L(t, U(t)) ≤ g(t, L(t, U(t)) = g(t, m(t)).

Therefore, it follows, for t = t2, that

D−m(t2) ≤ g(t2, m(t2)) = g(t2, w(t2, ε)),

which is a contradiction to (3.5). Hence the proof of the theorem is complete.

Corollary 3.3. Let L ∈ C[R+ ×B, R+] and let L(t, U) be locally Lipschitzian in

U . Assume that

D−L(t, U(t)) ≤ 0 for t ≥ t0 and U ∈ E0.

Let U(t) = U(t, t0, U0) be any solution of (3.1), then L(t, U(t)) ≤ L(t0, U0), t ≥ t0.

Proof. Proceeding as in the previous theorem with g(t, w) = 0, we have

L(s, U(s)) ≤ L(t2, U(t2)), t2 ∈ (t0, t1), t0 ≤ s ≤ t2.
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Since L(t2, U(t2)) = w(t2, ε) = L(t0, U0) + ε(t2 − t0) + ε > 0, we have L(s, U(s)) ≤
f(L(t2, U(t2))) for t0 ≤ s ≤ t2. The rest of the proof is similar to that of Theorem

3.2.

Theorem 3.4. Assume the hypotheses of Theorem 3.2 hold, except for inequality

(3.2), which is replaced by

(3.6) α(t) D−L(t, U(t)) + L(t, U(t)) D−α(t) ≤ w(t, L(t, U(t)) α(t)),

for t > t0, U ∈ Eα, where α(t) > 0 is continuous on R+ and

D−α(t) = lim infh→0−
α(t+h)−α(t)

h
. Then α(t0) L(t0, U0) ≤ w0 implies that

α(t) L(t, U(t)) ≤ r(t), t ≥ t0.

Proof. Let P (t, U(t)) = L(t, U(t)) α(t). Let t ≥ t0 and U ∈ Eα. For sufficiently

small h > 0, we have

P (t + h, U(t) + h(QU)(t)) − P (t, U(t))

= L(t + h, U(t) + h(QU)(t)) α(t + h) − L(t, U(t)) α(t)

= L(t + h, U(t) + h(QU)(t)) (α(t + h) − α(t))

+[L(t + h, U(t) + h(QU)(t)) − L(t, U(t))] α(t),

from which it follows,

D−P (t, U(t)) = L(t, U(t)) D−α(t) + α(t) D−L(t, U(t))

≤ w(t, L(t, U(t)) α(t) ) = w(t, P (t, U(t)) ),

for t∈ (t0, t1] and U ∈ E1, where E1, in this case, is to be defined with P (t, U(t))

replacing L(t, U(t)) in the definition of set E1. Since P (t, U) is locally Lipchitzian

in U , then all the assumptions of Theorem 3.2 are satisfied with P (t, U(t)) replacing

L(t, U(t)). Hence, the conclusion of the theorem follows from the proof of Theorem

3.2.

To prove a general comparison result in terms of Lyapunov-like functions, we

need the following know result [5].

Lemma 3.5. Let g0, g ∈ C[R2
+, R] be such that

(3.7) g0(t, w) ≤ g(t, w), (t, w) ∈ R
2
+.

Then the right maximal solution r(t, t0, w0) of (3.3) and the left maximal solution

η(t, T0, v0) of

(3.8) v′ = g0(t, v), v(T0) = v0,

satisfy the relation

r(t, t0, w0) ≤ η(t, T0, v0), t ∈ [t0, T0],

whenever r(T0, t0, w0) ≤ v0.

Theorem 3.6. Assume that
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(i) L ∈ C[R+ × B, R+] and L(t, U) is locally Lipschitzian in U ,

(ii) g0, g ∈ C[R2
+, R] are such that g0(t, w) ≤ g(t, w), (t, w) ∈ R

2
+, and η(t, T0, v0)

is the left maximal solution of (3.8) existing on t0 ≤ t ≤ T0, and r(t, t0, w0) the

right maximal solution of (3.3) existing on [t0,∞);

(iii) D−L(t, U(t)) ≤ g(t, L(t, U(t))) on Ω, where

Ω = {U ∈ E : L(s, U(s)) ≤ η(s, t, L(t, U(t))), t0 ≤ s ≤ t}.

Then we have

(3.9) L(t, U(t, t0, U0)) ≤ r(t, t0, w0) , t ≥ t0,

whenever L(t0, U0
) ≤ w0.

Proof. Set m(t) = L(t, U(t, t
0
, U

0
)), t ≥ t

0
, so that m(t

0
) = L(t

0
, U

0
) ≤ w

0
. Let

w(t, ε) be any solution of

w′ = g(t, w) + ε , w(t0) = w0 + ε,

for sufficiently small ε > 0. Then since r(t, t
0
, w

0
) = limε→0+ w(t, ε), it is enough to

prove that m(t) < w(t, ε) for t ≥ t
0
. If this is not true, there exists a t1 > t0 such

that m(t1) = w(t1, ε) and m(t) < w(t, ε) for t
0

< t < t1. This implies that

(3.10) D−m(t1) ≥ w′(t, ε) = g(t1, m(t1)) + ε.

Now consider the left maximal solution η(s, t1, m(t1)) of (3.8) with v(t1) = m(t1) on

the interval t
0

< t < t1. By Lemma 3.5, we have

r(s, t
0
, w

0
) ≤ η(s, t1, m(t1)), s ∈ [t

0
, t1].

Since

r(t1, t0
, w

0
) = lim

ε→0+
w(t, ε) = m(t1) = η(t1, t1, m(t1))

and m(s) ≤ w(s, ε) for t
0
< s ≤ t1, it follows that

m(s) ≤ r(s, t
0
, w

0
) ≤ η(s, t1, m(t1)), s ∈ [t

0
, t1].

This inequality implies that hypothesis (iii) holds for U(s, t0, U0) on t0 < s ≤ t1, and

hence, standard computation yields

D−m(t1) ≤ g(t1, m(t1)),

which contradicts (3.10). Thus m(t) ≤ r(t, t
0
, w

0
), t ≥ t

0
, and the proof is complete.
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4. STABILITY CRITERIA

In order to discuss the stability properties of (3.1), let us assume that the solutions

of (3.1) exist and are unique for all t ≥ t0. In addition, in order to match the

behavior of solutions of (3.1) with those of the corresponding ordinary differential

equation with causal map, we assume that U0 = V0 +W0, so the Hukuhara difference

U0 −V0 = W0 exists. Consequently, in what follows, we consider the solutions U(t) =

U(t, t0, U0 − V0) = U(t, t0, W0 ). Thus we have the initial-value problem

(4.1) DHU(t) = (QU)(t),

U(t0) = W0.

To illustrate the idea mentioned above, we present a simple example in Kc(R
n).

Consider

DHU(t) = −
∫ t

0

U(s) ds, U(0) = U0 ∈ Kc(R
n).

Then using interval methods, we get

u′
1 = −

∫ t

0

u2(s) ds,

u′
2 = −

∫ t

0

u1(s) ds,

where U(t) = [u1(t), u2(t)] and U0 = [u10, u20] . Clearly, this yields

u
(4)
1 = u1, u1(0) = u10,

u
(4)
2 = u2, u2(0) = u20,

whose solutions are given by

u1(t) =

(

u10 − u20

2

) (

et + e−t

2

)

+

(

u10 + u20

2

)

cos(t),

u2(t) =

(

u20 − u10

2

) (

et + e−t

2

)

+

(

u10 + u20

2

)

cos(t).

That is, for t ≥ 0,

U(t, t0, U0) =
[

−1
2
(u20 − u10),

1
2
(u20 − u10)

]

(

et+e−t

2

)

+
[

1
2
(u10 + u20) , 1

2
(u10 + u20)

]

cos(t), t ≥ 0.

Then choosing

V0 =

[

−1

2
(u20 − u10),

1

2
(u20 − u10)

]

,

we obtain

U(t, t0, W0) =

[

1

2
(u10 + u20) ,

1

2
(u10 + u20)

]

cos(t), t ≥ 0,

which implies the stability of the trivial solution of the initial value problem.
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Next, we give an example which illustrates that one can get asymptotic stability

as well in SDE with causal maps. Consider the following differential equation

(4.2) DHU(t) = −a U − b

∫ t

0

U(s) ds, U(0) = U0 ∈ Kc(R
n),

a, b > 0. As before we take U(t) = [u1(t), u2(t)] and U0 = [u10, u20] . Then equation

(4.2) reduces to

u′
1 = −au2 − b

∫ t

0
u2(s) ds,

u′
2 = −a u1 − b

∫ t

0
u1(s) ds,

and
u

(4)
1 = a2 u′′

1 + 2 ab u′
1 + b2 u1 , u1(0) = u10,

u
(4)
2 = a2 u′′

2 + 2 ab u′
2 + b2 u2 , u2(0) = u20,

from which, by choosing a = 1 and b = 2, we obtain

u1(t) = 1
6
(u10 − u20) e−t + 1

3
(u10 − u20) e2t

+e−
1

2
t
[

1
2
(u10 + u20) cos(

√
7

2
t) − 1

2
√

7
(u10 + u20) sin(

√
7

2
t)

]

,

u2(t) = 1
6
(u20 − u10) e−t + 1

3
(u20 − u10) e2t

+e−
1

2
t
[

1
2
(u10 + u20) cos(

√
7

2
t) − 1

2
√

7
(u10 + u20) sin(

√
7

2
t)

]

.

Thus, it follows that

U(t, t0, U0) = (u20 − u10

)[

−1

6
,
1

6

]

e−t + (u20 − u10)
[

−1

3
,
1

3

]

e2t

+(u20 + u10

)[1

2
,
1

2

]

e−
1

2
t cos(

√
7

2
t)

−(u20 + u10

)[ 1

2
√

7
,

1

2
√

7

]

e−
1

2
t sin(

√
7

2
t), t ≥ 0.

Now, choosing u10 = u20, we eliminate the undesirable terms and, therefore, we get

asymptotic stability of the zero solution of (4.2).

We are now in a position to give sufficient conditions for the stability, and the

asymptotic and uniform asymptotic stability of the zero solution of (4.1). First, we

state some basic definitions.

Definition 4.1. σ is said to be a K-class function, or σ ∈ K, if σ ∈ C[[0,∞),

R+], σ(0) = 0 and σ(w) is increasing in w.

Definition 4.2. The trivial solution U = θ of (4.1) is said to be stable if, for each

ε > 0 and t0 ∈ R+, there exists a positive function δ = δ( t0, ε) such that D[W0, θ] < δ

implies D[U(t), θ] < ε, t ≥ t0, where U(t) = U(t, t0, W0) is the solution of (4.1).

Other notions of Lyapunov stability can be formulated in a similar way following

the standard stability definitions given in [3]. We start by proving a stability result.

Theorem 4.3. Assume that there exist functions L(t, U(t)) and g(t, w) satisfying

the following conditions

(i) g ∈ C[R+ × R+, R+] and g(t, 0) ≡ 0;
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(ii) L ∈ C[R+ × B, R+] where B = B(θ, ρ) = {U ∈ Kc(R
n) : D[U, θ] ≤ ρ}, L(t, θ) ≡

0, and L(t, U) is positive definite and locally Lipschitzian in U ;

(iii) for t > t0 and U ∈ E1, D−L(t, U(t)) ≤ g(t, L(t, U(t)).

Then the stability of the zero solution of (3.3) implies the stability of the zero

solution of (4.1).

Proof. Let 0 < ε < ρ and t0 ∈ R+ be given. Since L(t, U) is positive definite, it

follows that there exists a function b ∈ K such that

(4.3) b(D[U, θ] ) ≤ L(t, U) for (t, U) ∈ R+ × B.

Suppose that the zero solution of (3.3) is stable. Then given b(ε) > 0, t0 ∈ R+, there

exists a δ = δ(t0, ε) > 0 such that whenever w0 < δ, we have

(4.4) w(t) < b(ε), t ≥ t0,

where w(t, t0, w0) is any solution of (3.3). Choose w0 = L( t0, W0). Since L(t, U(t))

is continuous and L(t, θ) ≡ 0, there exists a positive function δ1 = δ1(t0, ε) > 0 such

that D[W0, θ] ≤ δ1 and L( t0, W0) ≤ δ hold simultaneously.

We claim that if D[W0, θ] ≤ δ1, then D[U(t), θ] < ε for all t ≥ t0. Suppose this

not true. Then there exists a solution U(t) = U(t, t0, W0) of (4.1) satisfying the

properties D[U(t2), θ] = ε and D[U(t), θ] < ε for t0 < t < t2, t2 ∈ (t0, t1). Together

with (4.3), this implies that

(4.5) L(t2, U(t2)) ≥ b(ε).

Furthermore, U(t) ∈ B for t ∈ [t0, t2]. Hence, the choice of w0 = L(t0, W0) and

condition (iii) give, as a consequence of Theorem 3.2, the estimate

L(t, U(t)) ≤ r(t), t ∈ [t0, t2],

where r(t) = r(t, t0, w0) is the maximal solution of the comparison problem (3.3).

Now from equations (4.3)-(4.5), we have

b(ε) ≤ L(t2, U(t2)) ≤ r(t2) < b(ε),

which is a contradiction. Therefore the proof of the theorem is complete.

The following theorem provides sufficient conditions for asymptotic stability of

(4.1).

Theorem 4.4. Assume that

(i) there exist functions L(t, U), g(t, w) satisfying the conditions of Theorem 4.3;

(ii) there exits a function α(t) such that α(t) > 0 is continuous for t ∈ R+ and

α(t) → ∞ as t → ∞.
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Further, assume that relation (3.6) holds for t > t0, U ∈ Eα. Then, if the zero

solution of (3.3) is stable, then the zero solution of (4.1) is asymptotically stable.

Proof. Let 0 < ε < ρ and t0 ∈ R+ be given. Set α
0

= mint∈R+
α(t) , then α

0
> 0

follows from assumption (ii). Since L(t, U) is positive definite, there exists a b ∈ K
such that (4.3) holds. Define

(4.6) ε1 = α
0
b(ε).

Then, the stability of the zero solution of (3.3) implies that, given ε1 > 0 and a

t0 ∈ R+, there exists a δ = δ(ε1, t0) such that w0 < δ implies that

(4.7) w(t, t0, w0) < ε1, t ≥ t0,

where w(t, t0, w0) is any solution of (3.3). Choose w0 = L(t0, W0). Then proceeding

as in the proof of Theorem 3.7 with ε1 instead of b(ε), we can prove that the zero

solution of (4.1) is stable.

Let U(t, t0, W0) be any solution of (4.1) such that D[W0, θ] ≤ δ0, where δ0 =

δ(t0,
1
2
ρ). Since the zero solution of (4.1) is stable, it follows that D[U(t), θ] < 1

2
ρ, t ≥

t0. Since α(t) → ∞ as t → ∞, there exists a number T = T (t0, ε) > 0 such that

(4.8) b(ε) α(t) > ε1, t ≥ t0 + T.

Now from Theorem 4.3 and relation (4.3), we get

α(t) b(D[U(t), θ])

(4.9) ≤ α(t) L(t, U(t)) ≤ r(t), t ≥ t0,

where U(t) = U(t, t0, W0) is any solution of (4.1) such that D[W0, θ] ≤ δ0.

If the zero solution of (4.1) is not asymptotically stable, then there exists a

sequence {tk}, tk ≥ t0 + T and tk → ∞ as k → ∞ such that D[U(tk), θ] ≥ ε for

some solution U(t) satisfying D[W0, θ] ≤ δ0. The relations (4.7) and (4.9) yield

that b(ε) α(tk) ≥ ε1,a contradiction to (4.8). Thus, the zero solution of (4.1) is

asymptotically stable.

The next theorem gives sufficient conditions for the uniform asymptotic stability

of (4.1).

Theorem 4.5. Assume there exists a function L(t, U) satisfying the following

properties:

(i) L ∈ C[R+ × B, R+], whereB = B(θ, ρ) = {U ∈ Kc(R
n) : D[U, θ] ≤ ρ}, L(t, U)

is positive definite, decrescent and locally Lipschitzian in U ;

(ii) D−L(t, U(t)) ≤ −c(D[U(t), θ]) for t > t0, U ∈ E0,and c ∈ K.
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Then the zero solution of (4.1) is uniformly asymptotically stable.

Proof. Since L(t, U) is positive definite and decrescent, there exist a, b ∈ K such

that

(4.10) b(D[U, θ] ) ≤ L(t, U) ≤ a(D[U, θ])

for (t, U) ∈ R+ × B. Let 0 < ε < ρ and t0 ∈ R+ be given. Choose δ = δ(ε) > 0 such

that

(4.11) a(δ) < b(ε).

We claim that if D[W0, θ] ≤ δ, D[U(t), θ] < ε for all t ≥ t0, where U(t) =

U(t, t0, W0) is any solution of (4.1). Suppose this is not true. Then there exists a

solution U(t) of (4.1) with D[W0, θ] ≤ δ and t2 > t0, such that D[U(t2, t0, W0), θ] = ε

and D[U(t, t0, W0), θ] ≤ ε for t ∈ [t0, t2]. Thus, in view of (4.10), we have

(4.12) L(t2, U(t2)) ≥ b(ε).

It is clear that, since ε < ρ, U(t) ∈ B. By our choice of w0 = L(t0, W0) and by the

condition that D−L(t, U(t)) ≤ 0 for t > t0, U ∈ E0, and by Corollary 3.3, we have

the estimate

(4.13) L(t, U(t)) ≤ L(t0, W0), t ∈ [t0, t2].

Now the relations (4.10)-(4.13) lead to the contradiction b(ε) ≤ L(t2, U(t2)) ≤
a(D[W0, θ] ) ≤ a(δ) < b(ε).

This proves uniform stability. Now let U(t) = U(t, t0, W0) be any solution of

(4.1) such that D[W0, θ] ≤ δ0, where δ0 = δ(ρ

2
), δ being the same as before. It then

follows from uniform stability that D[U(t), θ] ] ≤ ρ

2
for t ≥ t0, and hence U(t) ∈ B

for all t > t0. Let 0 < η < δ0 be given. Clearly, we have b(η) ≤ a( δ0). In view of the

assumptions on f(r), there exists a β = β(η) > 0 such that

(4.14) f(r) > r + β if b(η) ≤ r ≤ a(δ0).

Furthermore, there exists a positive integer N = N(η) such that

(4.15) b(η) + Nβ > a(δ0).

If we have, for some t ≥ t0, L(t, U(t)) ≥ b(η), it follows from (4.10) that there

exists a δ2 = δ(η) > 0, such that D[U(t), θ] ≥ δ2. This in turn implies that

(4.16) c(D[U(t), θ]) ≥ c(δ2) = δ3,

where δ3 = δ3(η). We construct N + 1 numbers tk = tk(t0, η) such that t0(t0, η) = t0

and tk+1(t0, η) = tk(t0, η) + β/ δ3. By letting T (η) = Nβ/ δ3, we have tk(t0, η) =

t0 + T (η).
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Now to prove uniform asymptotic stability, we still have to prove D[U(t), θ] < η

for all t ≥ t0 + T (η). It is therefore sufficient to show that

(4.17) L(t, U(t)) < b(η) + (N − k) β, t ≥ tk, k = 0, 1, 2, . . . , N.

Now we prove (4.17) by induction. For k = 0, t ≥ t0, we have, using (4.10) and

(4.11),

(4.18) L(t, U(t)) ≤ L(t0, U0) ≤ a(δ0) < b(η) + Nβ

Suppose we have, for some k,

L(s, U(s)) < b(η) + (N − k) β, s ≥ tk,

and, if possible, assume that for t ∈ [tk, tk+1],

L(t, U(t)) ≥ b(η) + (N − k − 1) β.

It then follows that

a(δ0) ≥ a(D[U(s), θ]) ≥ L(s, U(s)) ≥ b(η) + Nβ − (k + 1) β ≥ b(η).

Therefore from (4.14), we conclude that

f(L(s, U(s))) ≥ L(s, U(s)) + β > b(η) + (N − k)β > L(s, U(s))

for tk < s < t, t ∈ [tk, tk+1]. In turn, this implies that U(t) ∈ E0 for tk < s < t,

t ∈ [tk, tk+1]. Hence, we obtain from assumption (ii) and (4.18) that

L(tk+1, U(tk+1)) ≤ L(tk, U(tk)) −
∫ tk+1

tk

c(D[U(s), θ]) ds

< b(η) + (N − k)β − δ3 (tk+1 − tk)

< b(η) + (N − k)β.

This contradiction shows that there exists t∗ ∈ [tk, tk+1] such that

(4.19) L(t∗, U(t∗)) < b(η) + (N − k − 1) β.

Now we show that (4.19) implies that

L(t, U(t)) < b(η) + (N − k − 1) β, t ≥ t∗.

If not true, then there exists t1 > t∗ such that L( t1, U( t1)) = b(η)+(N−k−1) β,

or for small h < 0, L( t1 + h, U( t1 + h)) < b(η) + (N − k − 1) β, which implies that

(4.20) D−L(t1, U(t1)) ≥ 0.

As we did before, we can show that U(t) ∈ B, for t∗ ≤ s ≤ t1, and D−L(t1, U(t1)) ≤
−δ3 < 0. This contradicts (4.20), and hence

L(t, U(t)) < b(η) + (N − k − 1) β, t ≥ tk+1.

This completes the proof of the theorem.
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Our final stability result is a general result, which offers various stabillity criteria

in a single set-up. The proof of this theorem, which can be obtained using the

comparison result given in Theorem 3.6, is omitted.

Theorem 4.6. Assume that there exists a function L(t, U) satisfying properties

(i), (ii), and (iii) of Theorem 3.6. Then the stability properties of the zero solution

of (3.3) imply the corresponding properties of the zero solution of (4.1).

We now show that Theorem 4.6 unifies the various stability results discussed

earlier. To that end, consider the following special cases:

(a) Suppose g0(t, w) ≡ 0. Then η(s, T0, v0) = v0, and hence Ω reduces to E1.

(b) Suppose g0(t, w) = −[α′(t)/α(t)] w, where α(t) > 0 is continuously differentiable

on R+ and α(t) → ∞ as t → ∞. Let g(t, w) = g0(t, w) + [1/α(t)] g1(t, α(t)w)]

with g1 ∈ C[R+ × R+, R+], then η(s, T0, v0) = v0[α(T0) /α(s)]. Thus Ω = Eα.

(c) Let g0 = g = −c(w), c ∈ K. Then it is easy to show that η(s, T0, v0) = φ−1[φ(v0)

−(s − T0)], t0 ≤ s ≤ T0 where φ(w) = φ(w0) +
∫ w

w0

ds
c(s)

and φ−1 is the inverse

function of φ. Since η(s, T0, v0) is increasing in s to the left of T0, on choosing a

fixed s0 ≤ T0 and defining f(r) = η(s0, T0, v0), it is clear that f(r) > r for r > 0.

Thus f(r) is continuous and increasing in r. Hence, Ω = E0.
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