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ABSTRACT. In this paper we study the structure of optimal solutions of one-dimensional second

order variational problems arising in continuum mechanics. We are interested in a turnpike property

of the optimal solutions which is independent of the length of the interval, for all sufficiently large

intervals. To have this property means, roughly speaking, that the approximate solutions of the

variational problems are determined mainly by the integrand, and are essentially independent of

the choice of interval and endpoint conditions. We establish that a generic integrand possess the

turnpike property.
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1. INTRODUCTION

In this paper we study the structure of optimal solutions of variational problems

(P)

∫ T

0

f(w(t), w′(t), w′′(t))dt→ min,

w ∈ W 2,1([0, T ]), (w(0), w′(0)) = x, (w(T ), w′(T )) = y,

where T > 0, x, y ∈ R2, W 2,1([0, T ]) ⊂ C1 is the Sobolev space of functions possessing

an integrable second derivative and f belongs to a space of functions to be described

below.

The interest in variational problems of the form (P ) stems from the theory of

thermodynamical equilibrium for second-order materials developed in (Coleman et

al., 1992; Leizarowitz & Mizel, 1989; Marcus, 1993; Marcus, 1998; Marcus & Za-

slavski, 1999a; Marcus & Zaslavski, 1999b; Marcus & Zaslavski, 2002; Zaslavski,

1995a; Zaslavski, 1995b; Zaslavski, 1996).

We are interested in a turnpike property of the optimal solutions which is inde-

pendent of the length of the interval, for all sufficiently large intervals. To have this

property means, roughly speaking, that the approximate solutions of the variational

problems are determined mainly by the integrand, and are essentially independent of

Received August 23, 2005 1056-2176 $15.00 c©Dynamic Publishers, Inc.



516 A. J. ZASLAVSKI

the choice of interval and endpoint conditions. We establish that a generic integrand

possess the turnpike property.

Denote by A the set of all continuous functions f : R3 → R such that for each

N > 0 the function |f(x, y, z)| → ∞ as |z| → ∞ uniformly on the set {(x, y) ∈ R2:

|x|, |y| ≤ N}. For the set A we consider the uniformity which is determined by the

following base:

(1.1) E(N, ε,Γ) = {(f, g) ∈ A × A :

|f(x1, x2, x3) − g(x1, x2, x3)| ≤ ε

for each (x1, x2, x3) ∈ R3 such that |xi| ≤ N, i = 1, 2, 3

and (|f(x1, x2, x3)| + 1)(|g(x1, x2, x3)| + 1)−1 ∈ [Γ−1,Γ]

for each (x1, x2, x3) ∈ R3 such that |x1|, |x2| ≤ N},

where N > 0, ε > 0 and Γ > 1 (Zaslavski, 1996). Clearly, the uniform space A is

Hausdorff and has a countable base. Therefore A is metrizable (by a metric ρ). It is

easy to verify that the uniform space A is complete.

Let a = (a1, a2, a3, a4) ∈ R4, ai > 0, i = 1, 2, 3, 4 and let α, β, γ be positive

numbers such that 1 ≤ β < α, β ≤ γ, γ > 1. Denote by M(α, β, γ, a) the set of all

functions f ∈ A such that:

(1.2) f(w, p, r) ≥ a1|w|
α − a2|p|

β + a3|r|
γ − a4, (w, p, r) ∈ R3;

(1.3) f, ∂f/∂p ∈ C2, ∂f/∂r ∈ C3, ∂2f/∂r2(w, p, r) > 0 for all (w, p, r) ∈ R3;

there is a monotone increasing function Mf : [0,∞) → [0,∞) such that for every

(w, p, r) ∈ R3

max{f(w, p, r), |∂f/∂w(w, p, r)|, |∂f/∂p(w, p, r)|, |∂f/∂r(w, p, r)|} ≤

(1.4) Mf (|w|+ |p|)(1 + |r|γ).

Denote by M̄(α, β, γ, a) the closure of M(α, β, γ, a) in A. Note that the full de-

scription of integrands belonging to the space M̄(α, β, γ, a) was obtained in (Zaslavski,

2004). We consider the topological subspace M̄(α, β, γ, a) ⊂ A with the relative

topology. Leizarowitz and Mizel (Leizarowitz & Mizel, 1989) and Coleman, Marcus

and Mizel (Coleman et al., 1992) considered problems of type (P ) with integrands

f ∈ M(α, β, γ, a) in order to study certain models in in the theory of thermodynam-

ical equilibrium for materials. A typical example is an integrand

f(w, p, r) = ψ(w) − bp2 + cr2, (w, p, r) ∈ R3,

where b, c are positive constants and ψ(·) is a smooth function satisfying

ψ(w) ≥ a|w|α − d, w ∈ R
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for some α > 2, a, d > 0 (Leizarowitz & Mizel, 1989; Marcus, 1998). In (Marcus &

Zaslavski, 1999b; Zaslavski, 1995b; Zaslavski, 1996) we considered problems of type

(P) with integrands f ∈ M̄(α, β, γ, a).

Consider any f ∈ M̄(α, β, γ, a). Of special interest is the minimal long-run

average cost growth rate

µ(f) = inf{lim inf
T→+∞

T−1

∫ T

0

f(w(t), w′(t), w′′(t))dt :

(1.5) w ∈ W 2,1
loc ([0,∞)) and (w(0), w′(0)) = x},

where x ∈ R2. Here W 2,1
loc ([0,∞)) ⊂ C1 denotes the Sobolev space of functions

possessing a locally integrable second derivative. It was shown in (Leizarowitz &

Mizel, 1989) that µ(f) is well defined and is independent of the initial vector x.

A function w ∈ W 2,1
loc ([0,∞)) is called an (f)-good function if the function

φf
w: T →

∫ T

0

[f(w(t), w′(t), w′′(t)) − µ(f)]dt, T ∈ (0,∞)

is bounded. For every w ∈ W 2,1
loc ([0,∞)) the function φf

w is either bounded or diverges

to +∞ as T → +∞ and moreover, if φf
w is a bounded function, then

sup{|(w(t), w′(t))|: t ∈ [0,∞)} <∞

(see Proposition 3.5 of (Zaslavski, 1995b)). This fact is a continuous version of a

result of (Leizarowitz, 1985) established for discrete time control systems. Its proof

is based on the result of (Leizarowitz, 1985) applied to a function U f
T which is defined

below.

Leizarowitz and Mizel (Leizarowitz & Mizel, 1989) established that for every

function f ∈ M(α, β, γ, a) satisfying µ(f) < inf{f(w, 0, s): (w, s) ∈ R2} there exists a

periodic (f)-good function. In (Zaslavski, 1995a) it was shown that this resut is valid

for every f ∈ M(α, β, γ, a). Recently the existence of a periodic (f)-good function was

established for every f ∈ M̄(α, β, γ, a) (Zaslavski, 2005). Namely, it was established

the following result (see Theorem 1.1 of (Zaslavski, 2005)).

Theorem 1.1. Let f ∈ M̄(α, β, γ, a). Then there exist an (f)-good function vf ∈

W 2,γ
loc ([0,∞)) and Tf > 0 such that vf (t+ Tf ) = vf (t) for each t ≥ 0. Moreover, if

µ(f) < inf{f(t, 0, 0) : t ∈ R},

then there is Tf,0 ∈ (0, Tf) such that vf is strictly increasing in [0, Tf,0] and strictly

decreasing in [Tf,0, Tf ].

This existence result also describes the structure of a periodic (f)-good function.

It was shown in (Marcus & Zaslavski, 1999b) that if f ∈ M(α, β, γ, a), then all

periodic (f)-good functions which are not constant have this structure.
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For each f ∈ M̄(α, β, γ, a) denote by P(f) the set of all periodic (f)-good func-

tions. By Theorem 1.1 P(f) 6= ∅ for all f ∈ M̄(α, β, γ, a).

The following result was established in (Marcus & Zaslavski, 1999b).

Proposition 1.1. Let f ∈ M(α, β, γ, a) and let w ∈ P(f). Assume that

w(0) = inf{w(t) : t ∈ R} and w′(t) 6= 0 for some t ∈ R.

Then there exist τ1 > 0, τ2 > τ1 such that the function w is strictly increasing in

[0, τ1], w is strictly decreasing in [τ1, τ2], and

w(τ1) = sup{w(t) : t ∈ [0,∞)}, w(t+ τ2) = w(t), t ∈ R.

The description of the set M̄(α, β, γ, a) was given in (Zaslavski, 2004) where we

establish the following result.

Theorem 1.2. The space M̄(α, β, γ, a) is the set of all continuous functions f : R3 →

R which satisfy the following assumptions:

f(w, p, r) ≥ a1|w|
α − a2|p|

β + a3|r|
γ − a4, (w, p, r) ∈ R3;

there is a monotone increasing function Mf : [0,∞) → [0,∞) such that for every

(w, p, r) ∈ R3

f(w, p, r) ≤Mf (|w| + |p|)(1 + |r|γ);

for each M, ε > 0 there exist Γ, δ > 0 such that

|f(x1, x2, x3) − f(y1, y2, y3)| ≤ εmax{f(x1, x2, x3), f(y1, y2, y3)}

for each xi, yi ∈ R, i = 1, 2, 3 which satisfy

|xi|, |yi| ≤M, i = 1, 2, |y3|, |x3| ≥ Γ, |xi − yi| ≤ δ, i = 1, 2, 3;

for any (w, p) ∈ R2, the function f(w, p, ·) : R → R is convex.

In this paper we study the structure of (f)-good functions and the structure

of approximate solutions of the problem (P) with f ∈ M̄(α, β, γ, a). The paper is

organized as follows. In Section 2 we discuss the results of (Zaslavski, 1996) and state

the main results of the paper. Some useful properties of periodic good functions are

considered in Section 3. In Section 4 we discuss turnpike results obtained in (Marcus

& Zaslavski, 1999b). The main results of the paper are proved in Section 5.
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2. MAIN RESULTS

In the sequel we use the following notation and definitions. We denote by | · | the

Euclidean norm in Rn. For τ > 0 and v ∈ W 2,1([0, τ ]) we define Xv : [0, τ ] → R2 as

follows:

(2.1) Xv(t) = (v(t), v′(t)), t ∈ [0, τ ].

We also use this definition for v ∈ W 2,1
loc ([0,∞)). Sometimes (v(t), v′(t)) is also denoted

as (v, v′)(t).

We consider the functionals of the form

(2.2) If(T1, T2, w) =

∫ T2

T1

f(w(t), w′(t), w′′(t))dt

where −∞ < T1 < T2 <∞, w ∈ W 2,1([T1, T2]) and f ∈ M̄(α, β, γ, a).

For f ∈ M̄(α, β, γ, a) and T > 0 we consider the function U f
T : R2 × R2 → R

which is defined by

Uf
T (x, y) = inf{If(0, T, w) : w ∈ W 2,1([0, T ]) :

(2.3) (w(0), w′(0)) = x and (w(T ), w′(T )) = y}.

Let f ∈ M̄(α, β, γ, a). In (Leizarowitz & Mizel, 1989) Leizarowitz and Mizel stud-

ied the function U f
T : R2×R2 → R, T > 0 and established the following representation

formula

(2.4) U f
T (x, y) = Tµ(f) + πf (x) − πf(y) + θf

T (x, y), x, y ∈ R2, T > 0,

where πf : R2 → R and (T, x, y) → θf
T (x, y), x, y ∈ R2, T > 0 are continuous

functions,

πf (x) = inf{lim inf
T→∞

[If(0, T, w) − Tµ(f)] :

(2.5) w ∈ W 2,1
loc ([0,∞)) and (w(0), w′(0)) = x}, x ∈ R2,

θf
T (x, y) ≥ 0 for each T > 0, and each x, y ∈ R2, and for every T > 0, and every

x ∈ R2 there is y ∈ R2 satisfying θf
T (x, y) = 0.

Leizarowitz and Mizel established the representation formula for any integrand

f ∈ M(α, β, γ, a), but their result also holds for every f ∈ M̄(α, β, γ, a) without

change in the proofs.

For a function w ∈ W 2,1
loc ([0,∞)) we denote by Ω(w) the set of all points z ∈ R2

such that Xw(tj) → z as j → ∞ for some sequence of numbers tj → ∞.

For each x ∈ Rn and each A ⊂ Rn set

d(x,A) = inf{|x− y| : y ∈ A}

and denote by dist(A,B) the Hausdorff metric for two sets A ⊂ Rn and B ⊂ Rn.
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The main results in this paper deal with the so-called turnpike properties of the

variational problems (P). To have this property means, roughly speaking, that the

approximate solutions of the problems (P) are determined mainly by the integrand,

and are essentially independent of the choice of interval and endpoint conditions.

Turnpike properties are well known in mathematical economics. The term was

first coined by Samuelson in 1948 (see Samuelson, 1965) where he showed that an ef-

ficient expanding economy would spend most of the time in the vicinity of a balanced

equilibrium path (also called a von Neumann path). This property was further in-

vestigated for optimal trajectories of models of economic dynamics (see, for example,

(Makarov & Rubinov, 1977; McKenzie, 2002) and the references mentioned there).

The turnpike properties of problem (P) were studied in (Marcus & Zaslavski, 1999b;

Zaslavski, 1995b; Zaslavski, 1996).

In (Zaslavski, 1995b; Zaslavski, 1996) we studied the structure of (f)-good func-

tions and the structure of approximate solutions of the problem (P) with f ∈ M̄(α, β, γ, a).

In these papers we established the existence of a set F0 ⊂ M̄(α, β, γ, a) which is a

countable intersection of open everywhere dense subsets of M̄(α, β, γ, a) and such

that for every f ∈ F0 the following properties hold:

for every (f)-good function w the equality Ω(w) = H(f) holds, where H(f) ⊂ R2

is a compact set depending only on the function f ;

for any ε > 0 there exist constants L1, L2 > 0 which depend only on |x|, |y| and

ε such that for each optimal solution v of problem (P) and each τ ∈ [L1, T − L1] the

set {(v(t), v′(t)) : t ∈ [τ, τ + L2]} is equal to the set H(f) up to ε in the Hausdorff

metric.

Namely, in (Zaslavski, 1996) we established the existence of a set F0 ⊂ M̄(α, β, γ, a)

which is a countable intersection of open everywhere dense subsets of the space

M̄(α, β, γ, a) and for which the following theorems are valid.

Theorem 2.1. Let f ∈ F0. Then there exists a compact set H(f) ⊂ R2 such that

Ω(w) = H(f) for any (f)-good function w.

Theorem 2.2. Let f ∈ F0 and let ε,K > 0. Then there exist a neighborhood U of f

in M̄(α, β, γ, a) and numbers l0 > l > 0, K∗ > K, δ > 0 such that for each g ∈ U ,

each τ ≥ 2l0 and each v ∈ W 2,1([0, τ ]) which satisfies

|(v(0), v′(0))|, |(v(τ), v′(τ))| ≤ K,

Ig(0, τ, v) ≤ U g
τ ((v(0), v′(0)), (v(τ), v′(τ))) + δ

the relation |(v(t), v′(t))| ≤ K∗ holds for all t ∈ [0, τ ] and

dist(H(f), {(v(t), v′(t)) : t ∈ [T, T + l]}) ≤ ε

for each T ∈ [l0, τ − l0].
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In (Marcus & Zaslavski, 1999b; Zaslavski, 1996) we considered certain important

subspaces of the space M(α, β, γ, a) equipped with natural uniformities and showed

that each of them contains an everywhere dense Gδ subset such that each its element

f has the following two properties:

there exists a unique up to translation periodic (f)-good function w;

let Tw > 0 be a period of w. For any ε > 0 there exists a constant L > 0 which

depends only on |x|, |y| and ε such that for each optimal solution v of problem (P)

and each τ ∈ [L, T − L− Tw] there exists s ∈ [0, Tw) such that

|(v(τ + t), v′(τ + t)) − (w(s+ t), w′(s+ t))| ≤ ε for each t ∈ [0, Tw].

Clearly, this turnpike property established for the subspaces of M(α, β, γ, a) is

essentially stronger than the turnpike property established in (Zaslavski, 1996) for the

space M̄(α, β, γ, a). In this paper we strengthen the main result of (Zaslavski, 1996)

by showing that the turnpike property established in (Marcus & Zaslavski, 1999b;

Zaslavski, 1996) for most integrands of the subspaces of M(α, β, γ, a) also holds for

a generic integrand f ∈ M̄(α, β, γ, a).

First of all note that by Theorems 1.1 and Theorem 2.1 for each f ∈ F0

H(f) = {(w(t), w′(t)) : t ∈ [0,∞)}

where w is a periodic (f)-good function.

In this paper we establish the existence of a set F ⊂ M̄(α, β, γ, a) which is

a countable intersection of open everywhere dense subsets of M̄(α, β, γ, a) and for

which the following theorems are valid.

Theorem 2.3. Let f ∈ F . Then there exist a function wf ∈ W 2,1
loc ([0,∞)) and a

number Tf > 0 such that the following assertions hold:

1. wf is a periodic (f)-good function and wf(t + Tf) = wf(t) for all t ∈ [0,∞).

2. If µ(f) < inf{f(z, 0, 0) : z ∈ R1}, then

(wf(t1), w
′

f(t1)) 6= (wf(t2), w
′

f(t2))

for each t1, t2 satisfying 0 ≤ t1 < t2 < Tf and there is Tf,0 ∈ (0, Tf) such that

wf is strictly increasing in [0, Tf,0] and strictly decreasing in [Tf,0, Tf ]. Otherwise

wf(t) = wf (0) for all t ∈ [0,∞).

3. For any w ∈ P(f) there exists a number τ such that w(t) = wf(t + τ) for all

t ≥ 0.

4. For every ε > 0 and every natural number n there exists a neighborhood U

of f in M̄(α, β, γ, a) such that for every g ∈ U , every (g)-good function v and every

large enough τ there is h ≥ 0 for which

(2.6) sup{|(v(t), v′(t)) − (wf(t+ h), w′

f(t+ h))| : t ∈ [τ, τ + Tfn]} ≤ ε.
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Theorem 2.4. Let f ∈ F , ε,K be positive numbers and let n be a natural number.

Then there exist a neighborhood U of f in M̄(α, β, γ, a) and numbers l > Tf , K∗ > K,

δ > 0 such that the following assertion holds:

For each g ∈ U , each T ≥ 2l and each w ∈ W 2,1([0, T ]) which satisfies

|(w(0), w′(0))|, |(w(T ), w′(T ))| ≤ K,

Ig(0, T, w) ≤ U g
T ((w(0), w′(0)), (w(T ), w′(T ))) + δ

the inequialty |(w(t), w′(t))| ≤ K∗ holds for all t ∈ [0, T ] and there exist τ1 ∈ [0, l],

τ2 ∈ [T−l, T ] such that τ2−τ1 ≥ nTf and that for each τ ∈ [τ1, τ2−nTf ] the inequality

(2.6) holds with some h ≥ 0. Moreover, if d((w(0), w′(0)),Ω(wf)) ≤ δ, then τ1 = 0

and if d((w(T ), w′(T )),Ω(wf)) ≤ δ, then τ2 = T .

We set for simplicity

M = M(α, β, γ, a), M̄ = M̄(α, β, γ, a).

3. PERIODIC GOOD FUNCTIONS

In the sequel we use the following result established in (Zaslavski, 1996).

Proposition 3.1. Assume that f ∈ M̄, {fk}
∞

k=1 ⊂ M̄, {Tk}
∞

k=1 ⊂ (0,∞), T ≥

0, {wk}
∞

k=1 ⊂ W 2,1
loc ([0,∞)), fk → f in M̄, Tk → T as k → ∞, wk(t + Tk) =

wk(t) for all t ∈ [0,∞), k = 1, 2, . . . and that

Ifk(0, Tk, wk) = µ(fk)Tk, k = 1, 2, . . .

Then there exist τ > 0 and w ∈ W 2,1
loc ([0,∞)) such that:

w(t+ τ) = w(t) for all t ∈ [0,∞), If(0, τ, w) = τµ(f);

if T > 0, then τ = T and if T = 0, then w(t) = w(0) for all t ∈ [0,∞).

Proposition 3.2. Assume that f ∈ M̄ satisfies

(3.1) µ(f) < inf{f(z, 0, 0) : z ∈ R}.

Then there exist Tf > 0 and v ∈ P(f) such that Tf is a period of v and if w ∈ P(f)

and T > 0 is a period of w, then T ≥ Tf .

Proof. By Theorem 1.1, P(f) 6= ∅. Set

(3.2) Tf = inf{T ∈ (0,∞) : there is w ∈ P(f) such that T is a period of w}.

Clearly Tf is well defined. By the definition of Tf there exist sequences

{Tk}
∞

k=1 ⊂ (0,∞) and {wk}
∞

k=1 ⊂ P(f)
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such that limk→∞ Tk = T and the number Tk is a period of wk for each integer k ≥ 1.

In view of Proposition 3.1 there exist v ∈ P(f) and τ > 0 such that τ is a period of

v and

if Tf > 0, then τ = Tf and if Tf = 0, then v(t) = v(0) for all t ≥ 0.

The inequality (3.1) implies that Tf > 0 and τ = Tf . This completes the proof of

Proposition 3.2.

Corollary 3.1. Assume that f ∈ M̄ satisfies (3.1) and let Tf and v be as guaranteed

by Proposition 3.2. Then for each t1, t2 satisfying 0 ≤ t1 < t2 < Tf the relation

Xv(t1) 6= Xv(t2) holds.

Proof. Let us assume the converse. Then there exist t1, t2 such that

(3.3) 0 ≤ t1 < t2 < Tf , Xv(t1) = Xv(t2).

Since v ∈ P(f) it follows from the representation formula (2.4) and (2.5) that

If(s1, s2, v) − (s2 − s1)µ(f) − πf(Xv(s1)) + πf(Xv(s2)) = 0

for each s1 ≥ 0, s2 > s1. In particular

(3.4) If (t1, t2, v) = (t2 − t1)µ(f) + πf(Xv(t1)) − πf(Xv(t2)).

In view of (3.3) there exists w ∈ W 2,1
loc ([0,∞)) such that

(3.5) w(t+ (t2 − t1)) = w(t) for all t ≥ 0 and w(t) = v(t), t ∈ [t1, t2].

By (3.4) and (3.5), w ∈ P(f) and t2 − t2 is a period of w. The inequality 0 <

t2 − t1 < Tf contradicts the defnition of Tf . The contradiction we have reached

proves Corollary 3.1.

Proposition 3.3. Assume that f ∈ M̄ satisfies (3.1), let Tf and v be as guaranteed

by Proposition 3.2 and let ε ∈ (0, Tf). Then there exists a neighborhood U of f in M̄

such that if g ∈ U and w ∈ P(g) with a period T > 0, then T ≥ Tf − ε.

Proof. Let us assume the converse. Then there exist a sequence {fk}
∞

k=1 ⊂ M̄ satisfy-

ing fk → f as k → ∞ in M̄ , a sequence {wk}
∞

k=1 ⊂ W 2,1
loc ([0,∞)) such that wk ∈ P(fk)

for all integers k ≥ 1 and a sequence {Tk}
∞

k=1 ⊂ (0, Tf − ε) such that Tk is a period

of wk for all integers k. Extracting a subsequence and re-indexing, if necessary, we

may assume without loss of generality that there exists T = limk→∞ Tk. Clearly,

0 ≤ T ≤ Tf − ε. Applying Proposition 3.1 we obtain that there exists w ∈ P(f) with

a period T ≤ Tf − ε. This contradicts the definition of Tf . The contradiction we have

reached proves Proposition 3.3.

In the sequel we will also use the following result established in (Zaslavski, 1996).

Proposition 3.4. The function f → µ(f), f ∈ M̄ is continuous.
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4. TURNPIKE PROPERTIES

Let f ∈ M̄. We say that f has the asymptotic turnpike property if there exists

a compact set H(f) ⊂ R2 such that Ω(w) = H(f) for every (f)-good function w.

The following result was established in (Marcus & Zaslavski, 1999b). It shows

that if an integrand g ∈ M has the asymptotic turnpike property, then it also possess

the turnpike property.

Theorem 4.1. Assume that g ∈ M has the asymptotic turnpike property. Let w be

a periodic (g)-good function and let Tw > 0 be a period of w. The for each ε,M > 0

there exist a neighborhood U of g in M̄ and positive numbers δ, l such that the following

assertion holds:

If f ∈ U , T ≥ Tw + 2l and if v ∈ W 2,1([0, T ]) satisfies

|Xv(0)| ≤M, |Xv(T )| ≤M, If(0, T, v) ≤ U f
T (Xv(0), Xv(T )) + δ,

then there exist τ1 ∈ [0, l] and τ2 ∈ [T − l, T ] such that for every s ∈ [τ1, τ2 −Tw] there

exists ξ ∈ [0, Tw] such that

|Xv(s+ t) −Xw(ξ + t)| ≤ ε for all t ∈ [0, Tw].

Furthermore, if d(Xv(0),Ω(w)) ≤ δ, (respectively, d(Xv(T ),Ω(w)) ≤ δ), then τ1 = 0

(respectively, τ2 = T ).

The next result was also established in (Marcus & Zaslavski, 1999b).

Theorem 4.2. Let f ∈ M. Then there exists a nonnegative function φ ∈ C∞(R1)

such that φ(t) > 0 for all large |t|, φ(m) is bounded for any m > 0 and for each

r ∈ (0, 1) the function

fr(x1, x2, x3) = f(x1, x2, x3) + rφ(x1), (x1, x2, x3) ∈ R3

belongs to M and posesses the asymptotic turnpike property.

5. PROOFS OF THE MAIN RESULTS

Denote by E the set of all f ∈ M which have the asymptotic turnpike property.

By Theorem 4.2 E is an everywhere dense subset of M̄.

The next result was established in (Marcus & Zaslavski, 1999b).

Proposition 5.1. Assume that g ∈ E and w is a periodic (g)-good function with a

period Tw > 0. Then for every ε > 0 there exists a neighborhood U of g in M̄ such

that for each f ∈ U , each (f)-good function v and each large enough positive number

s there is ξ ∈ [0, Tw) such that

|Xv(s+ t) −Xw(ξ + t)| ≤ ε, t ∈ [0, Tw].
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Another useful ingredient in our proof is the following result for which we refer the

reader to the proof of Proposition 4.4 of (Leizarowitz & Mizel, 1989) and (Zaslavski,

1995b).

Proposition 5.2. Let g ∈ M̄ and let M1,M2, c > 0. Then there exist a neighborhood

U of g in M̄ and M3 > 0 such that for each T ≥ 0, each f ∈ U and each v ∈

W 2,1([0, T ]) which satisfies

|Xv(0)| ≤M1, |Xv(T )| ≤M1,

If(0, Tf , v) ≤ U f
T (Xv(0), Xv(T2)) +M2

the following inequality holds:

|Xv(t)| ≤M3, t ∈ [0, T ].

Let f ∈ E. By Proposition 5.1 there exists a unique (up to translations) periodic

(f)-good function which will be denoted by wf .

If

µ(f) = inf{f(t, 0, 0) : t ∈ R},

then set Tf = 1. If

µ(f) < inf{f(t, 0, 0) : t ∈ R},

then we may assume without loss of generality that

wf(0) = inf{w(t) : t ∈ R1}.

Then by Proposition 1.1 there exist Tf > Tf,0 > 0 such that Tf is a period of wf and

wf is strictly increasing in [0, Tf,0] and strictly decreasing in [Tf,0, Tf ].

By Proposition 5.1, Proposition 5.2, Theorem 4.1 and Proposition 3.3 for each

f ∈ E and each integer p ≥ 1 there exist an open neighborhood U(f, p) of f in M̄ and

numbers M(f, p) > p, l(f, p) > 0, δ(f, p) ∈ (0, p−1) such that the following properties

hold:

(Pi) For each g ∈ U(f, p) and each (g)-good function v if a number s is large

enough, then there is ξ ∈ [0, Tf) such that

|Xv(s+ t) −Xwf
(ξ + t)| ≤ 4−1δ(f, p), t ∈ [0, 2pTf ].

(Pii) For each g ∈ U(f, p), each T ≥ pTf +2l(f, p) and each v ∈ W 2,1[0, T ]) which

satisfies

|Xv(0)| ≤ p, |Xv(T )| ≤ p, Ig(0, T, v) ≤ U g
T (Xv(0), Xv(T )) + δ(f, p)

the inequality |Xv(t)| ≤M(f, p) holds for all t ∈ [0, T ] and there exist τ1 ∈ [0, l(f, p)],

τ2 ∈ [T − l(f, p), T ] such that:
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if s ∈ [τ1, τ2 − pTf ], then there is ξ ∈ [0, Tf ] such that

|Xv(s+ t) −Xwf
(ξ + t)| ≤ p−1 for all t ∈ [0, pTf ];

if d(Xv(0),Ω(wf)) ≤ δ(f, p), then τ1 = 0 and if d(Xv(T ),Ω(wf)) ≤ δ(f, p), then

τ2 = T .

(Piii) If µ(f) < inf{f(t, 0, 0) : t ∈ R}, then for each g ∈ U(f, p) and each

v ∈ P(g) with a period T > 0 the inequality T ≥ Tf − p−1 min{1, Tf} holds.

(Piv)

U(f, p) ⊂ {g ∈ M̄ : ρ(f, g) < p−1}.

Define

(5.1) F = ∩∞

p=1 ∪ {U(f, p) : f ∈ E}.

It is clear that F is a countable intersection of open everywhere dense subests of M̄.

Let f ∈ F . First we show that f has the asymptotic turnpike property. Let v1, v2

be (f)-good functions and let p ≥ 1 be an integer. By (5.1) there exists h ∈ E such

that f ∈ U(h, p). By this inclusion and property (Pi) for any large enough s > 0

there are ξ1, ξ2 ∈ [0, Th) such that

|Xvi
(s+ t) −Xwh

(ξi + t)| ≤ 4−1δ(h, p) ≤ 4−1p−1, t ∈ [0, Th].

This inequality implies that

dist(Ω(vi),Ω(wh)) ≤ (4p)−1, i = 1, 2

and

dist(Ω(v1),Ω(v2)) ≤ (2p)−1.

Since p is any natural number we conclulde that Ω(v1) = Ω(v2) and f has the as-

ymptotic turnpike property. By Theorem 1.1 f has a periodic (f)-good function. We

show that this function is unique up to translations.

If µ(f) = inf{f(t, 0, 0) : t ∈ R}, then the uniqueness of a periodic (f)-good

function follows from the asymptotic turnpike property.

Assume now that

(5.2) µ(f) < inf{f(t, 0, 0) : t ∈ R}.

In view of (5.2) and Propositions 3.3 and 3.4 there exist r0 ∈ (0, 1), ∆ > 0 such that

the following property holds:

(Pv) if g ∈ M̄, ρ(f, g) ≤ r0 and v ∈ P(g) with a period T > 0, then T ≥ ∆ and

µ(g) < inf{g(t, 0, 0) : t ∈ R}.

Assume that

(5.3) v1, v2 ∈ P(f), Ti is a period of vi, i = 1, 2.
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The property (Pv) and (5.3) imply that

(5.4) T1, T2 ≥ ∆.

Assume that an integer

(5.5) p > 4r−1
0 .

The relation (5.1) implies that there exists h ∈ E such that

(5.6) f ∈ U(h, p).

It follows from the property (Piv), (5.6) and (5.5) that

(5.7) ρ(f, h) < p−1 < r0/4.

Combined with the property (Pv) this inequality implies that

(5.8) µ(h) < inf{h(t, 0, 0) : t ∈ R},

(5.9) Th ≥ ∆.

By (5.6), (5.8), (5.3), (5.5) and the property (Piii)

(5.10) T1, T2 ≥ Th/2.

In view of (5.6), the property (Pi) and (5.3) the following property holds:

For i ∈ {1, 2} and each s ≥ 0 there is ξ ∈ [0, Th) such that

|Xvi
(s+ t) −Xwh

(ξ + t)| ≤ 4−1δ(f, p) < 4−1p−1, t ∈ [0, 2pTh].

This property implies that there are ξ1, ξ2 ∈ [0, Th) such that for i=1,2

(5.11) |Xvi
(t) −Xwh

(ξi + t)| ≤ 4−1p−1, t ∈ [0, 2pTh].

The inequality (5.11) implies that for each t ∈ [0, (p− 1)Th]

|Xv1
(t+ Th − ξ1) −Xv2

(t+ Th − ξ2)|

≤ |Xv1
(t+ Th − ξ1) −Xwh

(t+ Th)| + |Xwh
(t + Th) −Xv2

(t + Th − ξ2)|

(5.12) ≤ (4p)−1 + (4p)−1 = (2p)−1.

Set η1 = Th − ξ1, η2 = Th − ξ2. Since ξ1, ξ2 ∈ [0, Th) it follows from (5.10) that

0 ≤ η1, η2 ≤ Th ≤ 2 min{T1, T2}.

By (5.12), the definition of η1, η2 and (5.9)

|Xv1
(t+ η1) −Xv2

(t + η2)| ≤ (2p)−1 for all t ∈ [0, (p− 1)∆].

Thus we have shown that for each integer p satisfying (5.5) there exist

η
(p)
1 , η

(p)
2 ∈ [0, 2 min{T1, T2}]
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such that

(5.13) |Xv1
(t+ η

(p)
1 ) −Xv2

(t+ η
(p)
2 )| ≤ 2−1p−1 for all t ∈ [0, (p− 1)∆].

Extracting a subsequence and re-indexing, if necessary, we may assume that there

exist

(5.14) η̄i = lim
p→∞

η
(p)
i , i = 1, 2.

Combined with (5.13) this relation implies that for all t ∈ [0,∞)

|Xv1
(t+ η̄1) −Xv2

(t+ η̄2)| = lim
p→∞

|Xv1
(t + η

(p)
1 ) −Xv2

(t+ η
(p)
2 )|

≤ lim
p→∞

(2p)−1 = 0

and v1(t+ η̄1) = v2(t+ η̄2) for all t ≥ 0. This equality implies that v2 is a translation

of v1. Thus there exists a unique (up to translations) periodic (f)-good function.

Let wf be a periodic (f)-good function such that

(5.15) wf(0) = inf{w(t) : t ∈ R}.

If µ(f) = inf{f(t, 0, 0) : t ∈ R}, then set Tf = 1. If µ(f) < inf{f(t, 0, 0) : t ∈ R},

then by Theorem 1.1 there are numbers Tf > Tf,0 > 0 such that

(5.16) wf is strictly increasing in [0, Tf,0] and strictly decreasing in [Tf,0, Tf ]

and

(5.17) wf (t+ Tf) = wf(t) for all t ∈ [0, Tf ].

Now we can complete the proof of Theorem 2.3. Assertions 1 and 3 have already been

proved. Let us prove Assertion 2. Assume that

µ(f) < inf{f(t, 0, 0) : t ∈ R}.

In order to prove Assertion 2 we need to show that Xwf
(t1) 6= Xwf

(t2) for each t1, t2

satisfying 0 ≤ t1 < t2 < Tf .

Let us assume the converse. Then there exist numbers t1, t2 such that

0 ≤ t1 < t2 < Tf , Xwf
(t1) = Xwf

(t2).

Then it is not difficult to see that there exists u ∈ P(f) such that u(t) = wf(t) for

all t ∈ [t1, t2] and t2 − t1 is a period of u. Clearly u is not a translation of wf . This

contradicts Assertion 3. The contradiction we have reached proves Assertion 2.

Let us prove Assertion 4. There are two cases:

(5.18) µ(f) = inf{f(t, 0, 0) : t ∈ R}

and

(5.19) µ(f) < inf{f(t, 0, 0) : t ∈ R}.
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Assume that (5.18) holds. Then wf is a constant and Tf = 1. Choose a natural

number

(5.20) p > 8ε−1.

Since f ∈ F it follows from (5.1) that there exists h ∈ E such that

(5.21) f ∈ U(h, p).

In view of (5.21) and the property (Pi)

(5.22) |Xwf
(0) −Xwh

(t)| ≤ 4−1δ(h, p) ≤ (4p)−1 for all t ∈ [0, Th].

Assume that

(5.23) g ∈ U(h, p),

v is a (g)-good function and that a positive number s is large enough. By (5.23) and

the property (Pi) there is ξ ∈ [0, Th) such that

|Xv(s) −Xwh
(ξ)| ≤ 4−1δ(h, p) ≤ (4p)−1.

Together with (5.22) and (5.20) this inequality implies that

|Xv(s) −Xwf
(0)| ≤ |Xv(s) −Xwh

(ξ)| + |Xwh
(ξ) −Xwf

(0)| ≤ (2p)−1 < ε.

Since this inequality holds for all sufficiently large s Assertion 4 holds when (5.18) is

true.

Assume that (5.19) holds. In view of (5.19), Propositions 3.3 and 3.4, the defi-

nition of Tf (see (5.16), (5.17)) and Assertion 3 there exists r0 ∈ (0, 1) such that for

each g ∈ M̄ satisfying ρ(f, g) ≤ r0

(5.24) µ(g) < inf{g(t, 0, 0) : t ∈ R},

(5.25) if v ∈ P(g) and if T > 0 is a period of v, then T ≥ Tf/2.

Choose a natutal number

(5.26) p > 4r−1
0 + 4/ε + 4n.

Since f ∈ F it follows from (5.1) that there exists h ∈ E such that

(5.27) f ∈ U(h, p).

Inclusion (5.27), the property (Piv) and (5.26) imply that

(5.28) ρ(f, h) < 1/p < r0/4.

Together with (5.24), (5.25) and the definition of wh, Th this inequality implies that

(5.29) µ(h) < inf{h(t, 0, 0) : t ∈ R},

(5.30) Th ≥ Tf/2.
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By (5.27), (5.26), the property (Piii), (5.29) and the definition of wf , Tf (see (5.15)-

(5.17))

(5.31) Tf ≥ 2−1Th.

Assume that

(5.32) g ∈ U(h, p)

and v is a (g)-good function. It follows from (Pi) and (5.32) that there is s0 > 0 such

that the following property holds:

(Pvi) For each s ≥ s0 there is ξ ∈ [0, Th) such that

(5.33) |Xv(s+ t) −Xwh
(ξ + t)| ≤ 4−1δ(h, p), t ∈ [0, 2pTh].

In view of (Pi), (5.27) and the definition of wf (see (5.15)-(5.17)) there is ξ0 ∈ [0, Th)

such that

(5.34) |Xwf
(t) −Xwh

(ξ0 + t)| ≤ 4−1δ(h, p), t ∈ [0, 2pTh].

Let s ≥ s0. By the property (Pvi) there exists ξ ∈ [0, Th) such that (5.33) is

true. Since Th is a period of wh it follows from (5.26), (5.33) and (5.34) that for each

t ∈ [0, (p− 2)Th]

|Xv(s+ t) −Xwf
(t+ ξ + Th − ξ0)| ≤ |Xv(s+ t) −Xwh

(ξ + Th + t)|

+|Xwh
(ξ + Th + t) −Xwf

(ξ + Th − ξ0 + t)| ≤ 4−1δ(h, p) + 4−1δ(h, p) ≤ (2p)−1.

Together wih (5.26) and (5.30) this inequality implies that

|Xv(s+ t) −Xwf
(t + ξ − ξ0 + Th)| ≤ (2p)−1 for all t ∈ [0, 4−1pTf ].

By this inequality and (5.26)

|Xv(s+ t) −Xwf
(t + ξ − ξ0 + Th)| ≤ ε for all t ∈ [0, nTf ].

This completes the proof of Assertion 4 and the proof of Theorem 2.3.

Now we are ready to complete the proof of Theorem 2.4. There are two cases:

(5.35) µ(f) = inf{f(t, 0, 0) : t ∈ R}

and

(5.36) µ(f) < inf{f(t, 0, 0) : t ∈ R}.

Assume that (5.35) holds. Then wf is constant and Tf = 1. Choose a natural number

(5.37) p > 8ε−1 +K.

Since f ∈ F it follows from (5.1) that there exists h ∈ E such that

(5.38) f ∈ U(h, p).
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In view of (5.38) and the property (Pi)

(5.39) |Xwf
(0) −Xwh

(t)| ≤ 4−1δ(h, p) for all t ∈ [0, Th].

Choose positive numbers

(5.40) δ < δ(h, p)/4, l > pTh + 2l(h, p) + 2n.

Assume that

(5.41) g ∈ U(h, p), T ≥ 2l

and w ∈ W 2,1([0, T ]) satisfies

(5.42) |Xw(0)| ≤ K, |Xw(T )| ≤ K, Ig(0, T, v) ≤ U g
T (Xw(0), Xw(T )) + δ.

It follows from (5.41), the property (Pii), (5.40), (5.37) and (5.42) that

(5.43) |Xw(t)| ≤M(h, p) for all t ∈ [0, T ].

By the property (Pii), (5.41), (5.40), (5.42) and (5.37) there exist

(5.44) τ1 ∈ [0, l(h, p)] ⊂ [0, l], τ2 ∈ [T − l(h, p), T ] ⊂ [T − l, T ]

such that the following property holds:

(Pvii) For every s ∈ [τ1, τ2 − pTh] there is ξ ∈ [0, Th) such that

(5.45) |Xw(s + t) −Xwh
(ξ + t)| ≤ p−1 for all t ∈ [0, pTh],

(5.46) if d(Xw(0),Ω(wh)) ≤ δ(h, p), then τ1 = 0,

(5.47) if d(Xw(T ),Ω(wh)) ≤ δ(h, p), then τ2 = T.

Let s ∈ [τ1, τ2 − pTh]. By the property (Pvii) there is ξ ∈ [0, Th) such that (5.45)

holds. It follows from (5.45) and (5.39) that for all t ∈ [0, pTh]

|Xw(s + t) −Xwf
(0)| ≤ |Xw(s+ t) −Xwh

(ξ + t)|

+|Xwh
(ξ + t) −Xwf

(0)| ≤ 1/p+ δ(h, p)/4 ≤ 1/p+ 1/(4p) ≤ (2p)−1.

Hence

|Xw(t) −Xwf
(0)| ≤ (2p)−1 for all t ∈ [τ1, τ2].

Together with (5.37) this inequality implies that

(5.48) |Xw(t) −Xwf
(0)| ≤ ε for all t ∈ [τ1, τ2].

Relations (5.44), (5.40) and (5.41) imply that

(5.49) τ2 − τ1 ≥ T − 2l(h, p) > 2l − 2l(h, p) > 2n = 2nTf .

Assume that

(5.50) d(Xw(0),Ω(wf)) = |Xw(0) −Xwf
(0)| ≤ δ.
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Then it follows from (5.50), (5.39) and (5.40) that

d(Xw(0),Ω(wh)) ≤ |Xw(0) −Xwf
(0)| + d(Xwf

(0),Ω(wh)) ≤ δ + 4−1δ(h, p) ≤ δ(h, p).

Together with (5.46) this inequality implies that τ1 = 0. Thus we have shown that

(5.51) if |Xw(0) −Xwf
(0)| ≤ δ, then τ1 = 0.

Assume that

(5.52) d(Xw(T ),Ω(wf)) = |Xw(T ) −Xwf
(0)| ≤ δ.

Then it follows from (5.52), (5.39) and (5.40) that

d(Xw(T ),Ω(wh)) ≤ |Xw(T ) −Xwf
(0)| + d(Xwf

(0),Ω(wh))

≤ δ + 4−1δ(h, p) < δ(h, p).

Together with (5.47) this inequality implies that τ2 = T . Thus we have shown that

(5.53) if |Xw(T ) −Xwf
(0)| ≤ δ, then τ2 = T.

It follows from (5.53), (5.52), (5.49) and (5.48) that the assertion of Theorem 2.4

holds if (5.35) is valid.

Assume now that (5.36) holds. In view of (5.36), Proposition 3.4, the definition

of Tf (see (5.16), (5.17)), Assertion 3 of Theorem 2.3 and Proposition 3.3 there exists

r0 ∈ (0, 1) such that the following properties hold:

(5.54) µ(g) < inf{g(t, 0, 0) : t ∈ R} for each g ∈ M̄ satisfying ρ(f, g) ≤ r0;

for each g ∈ M̄ satisfying ρ(f, g) ≤ r0 and each v ∈ P(g)

(5.55) with a period T > 0 we have T ≥ Tf/2.

Choose a natural number

(5.56) p > 8ε−1 +K + 8r−1
0 + 8n.

Since f ∈ F it follows from (5.1) that there exists h ∈ E such that

(5.57) f ∈ U(h, p).

Relations (5.57), (5.56) and the property (Piv) imply that

(5.58) ρ(f, h) < p−1 < r0/8.

Together with (5.54), (5.55) and the definition of wh, Th this inequality implies that

(5.59) µ(h) < inf{h(t, 0, 0) : t ∈ R},

(5.60) Th ≥ Tf/2.
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In view of (Pi), (5.57) and the definition of wf (see (5.15)-(5.17)) there is ξ0 ∈ [0, Th)

such that

(5.61) |Xwf
(t) −Xwh

(ξ0 + t)| ≤ 4−1δ(h, p), t ∈ [0, 2pTh].

By (5.57), (5.56), (Piii), (5.59) and the definition of wf , Tf (see (5.15)-(5.17))

(5.62) Tf ≥ 2−1Th.

Choose positive numbers

(5.63) δ < δ(h, p)/4,

(5.64) l > pTh + 2l(h, p) + 2n+ 2nTf .

Assume that

(5.65) g ∈ U(h, p), T ≥ 2l

and w ∈ W 2,1([0, T ]) satisfies

(5.66) |Xw(0)|, |Xw(T )| ≤ K, Ig(0, T, w) ≤ U g
T (Xw(0), Xw(T )) + δ.

It follows from (5.65), (5.66), (5.63) and the property (Pii) that

(5.67) |Xw(t)| ≤M(h, p), t ∈ [0, T ].

By the property (Pii), (5.65), (5.63), (5.64) and (5.56) there exist

(5.68) τ1 ∈ [0, l(h, p)] ⊂ [0, l], τ2 ∈ [T − l(h, p), T ] ⊂ [T − l, T ]

such that the following property holds:

(Pviii) For every s ∈ [τ1, τ2 − pTh] there is ξ ∈ [0, Th] such that

(5.69) |Xw(s+ t) −Xwh
(ξ + t)| ≤ 1/p for all t ∈ [0, pTh];

(5.70) if d(Xw(0),Ω(wh)) ≤ δ(h, p), then τ1 = 0;

(5.71) if d(Xw(T ),Ω(wh)) ≤ δ(h, p), then τ2 = T.

In view of (5.68), (5.65) and (5.64)

(5.72) τ2 − τ1 ≥ T − 2l(h, p) ≥ l − 2l(h, p) > nTf , pTh.

Assume that

(5.73) s ∈ [τ1, τ2 − nTf ].

Clearly

(5.74) [s, s+ nTf ] ⊂ [τ1, τ2].
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It follows from (5.60), (5.56), (5.74) and (5.72) that there exists a number s0 such

that

(5.75) [s, s+ nTf ] ⊂ [s0, s0 + pTh] ⊂ [τ1, τ2].

By (5.75) and the property (Pviii) there exists ξ ∈ [0, Th] such that

(5.76) |Xw(s0 + t) −Xwh
(ξ + t)| ≤ 1/p for all t ∈ [0, pTh].

Since Th is a period of wh it follows from (5.61) and (5.56) that for all t ∈ [0, pTh]

|Xwh
(ξ + t) −Xwf

(t+ ξ − ξ0 + Th)| = |Xwh
(ξ + Th + t) −Xwf

(t + Th − ξ0 + ξ)|

= |Xwh
(ξ0 + Th − ξ0 + ξ + t) −Xwf

(Th − ξ0 + ξ + t)| ≤ 4−1δ(h, p).

Hence

|Xwh
(ξ + t) −Xwf

(t + ξ − ξ0 + Th)| ≤ 4−1δ(h, p), t ∈ [0, Thp].

Combined with (5.76) this inequality implies that for t ∈ [0, pTh]

|Xw(s0 + t) −Xwf
(t + ξ − ξ0 + Th)| ≤ 1/p+ 4−1δ(h, p) ≤ 2p−1.

Together with (5.75) this inequality implies that

|Xw(s+ t) −Xwf
(t+ s− s0 + ξ − ξ0 + Th)| ≤ 2/p < ε, t ∈ [0, nTf ].

Thus we have shown that for each number s satisfying (5.73) there is ξ1 ∈ [0, Tf) such

that

(5.77) |Xw(s+ t) −Xwf
(t+ ξ1)| ≤ ε, t ∈ [0, nTf ].

Assume that

(5.78) d(Xw(0),Ω(wf)) ≤ δ.

It follows from (5.61), (5.62) and (5.60) that

dist(Ω(wf),Ω(wh)) ≤ 4−1δ(h, p).

Together with (5.78) and (5.63) this inequality implies that

d(Xw(0),Ω(wh)) ≤ δ + 4−1δ(h, p) ≤ δ(h, p).

Combined with (5.70) this inequality implies that τ1 = 0. Thus we have shown that

(5.79) if d(Xw(0),Ω(wf)) ≤ δ, then τ1 = 0.

Analogously we can show that

(5.80) if d(Xw(T ),Ω(wf)) ≤ δ, then τ2 = T.

Relations (5.67), (5.72), (5.77), (5.79) and (5.80) imply the validity of the assertion

of Theorem 2.4 if (5.36) holds. Theorem 2.4 is proved.
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