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ABSTRACT. In this paper, we will use the Riccati transformation technique to establish some

new oscillation criteria for the second-order perturbed nonlinear difference equation of the general

form

∆(an−1(∆xn−1)
γ) + F (n, xn) = G(n, xn, ∆xn−1), n ≥ 1.

Our results complement and improve some well known results in the literature. Some examples are

given to illustrate our main results.
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1. INTRODUCTION

In recent years, the oscillation theory and asymptotic behavior of difference equa-

tions and their applications have been and still are receiving intensive attention. In

fact, in the last few years several monographs and hundreds of research papers have

been written, see for example the monographs [1, 2] and the papers [3-5, 7-31] and

the references therein.

Recently, Saker [17] considered the second-order perturbed nonlinear difference

equation

(1.1) ∆(an−1(∆xn−1)
γ) + F (n, xn) = G(n, xn, ∆xn−1), n ≥ 1,

where ∆ denotes the forward difference operator ∆xn = xn+1 − xn for any sequence

{xn} of real numbers, γ > 0 is a quotient of odd positive integers, {an}∞n=1 is a

sequence of real numbers such that an > 0 and

(1.2)

∞
∑

n=n0

(

1

an

)1/γ

= ∞,

or

(1.3)

∞
∑

n=n0

(

1

an

)1/γ

< ∞,
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for some positive integer n0 ≥ 1. Using the Riccati transformation technique, the

author presented some new oscillation criteria for Eq.(1.1) under the condition (1.2)

or (1.3) which improved many known criteria discussed in [1, 3, 5, 8, 14, 15, 26, 27,

28, 30, 31]. Like [17], throughout this paper we will assume that there exist two real

sequences {qn}∞n=1 and {pn}∞n=1 such that qn − pn ≥ 0, and

(1.4)















lim
n→∞

inf
n
∑

i=n0

(qi − pi) > 0 for all large n0,

F (n, u)

uβ
≥ qn,

G(n, u, v)

uβ
≤ pn for u 6= 0,

where β is a quotient of odd positive integers.

It is easy to see that the solution of Eq.(1.1) satisfying initial values x0 = a

and x1 = b is unique and is defined for n ≥ 1. By a solution of (1.1), we mean

a nontrivial sequence {xn}∞n=1 satisfying Eq.(1) for n ≥ 1. A solution xn of (1.1)

is said to be oscillatory if for every n1 ≥ n0 ≥ 1, there exists n ≥ n1 such that

xnxn+1 ≤ 0; otherwise, it is nonoscillatory. If every solution of Eq.(1.1) is oscillatory,

we say Eq.(1.1) is oscillatory.

In the recent paper of Saker [17], we note that the main results, Theorem 2.1

and Theorem 2.5, hold only for the case when γ ≥ β and for the case when γ > 1,

respectively. It is natural to ask whether Eq.(1.1) is oscillatory for the cases when

γ < β and 0 < γ < 1. In this paper, we will further study the oscillatory behavior

of Eq.(1.1) for γ < β and 0 < γ < 1, which answers this question. In Section

2, some new oscillation criteria for Eq.(1.1) are established, which complements the

main results established in [17]. In Section 3, two examples are given to illustrate our

main results.

2. MAIN RESULTS

In this section, we will use the Riccati transformation technique to establish some

sufficient conditions for oscillation of (1.1) when (1.2) holds, and when (1.3) holds

we establish some sufficient conditions which insure that every solution {xn} of (1.1)

oscillates or converges to zero. The section will be divided into four parts.

(I) The case when (1.2) holds and γ < β.

Theorem 2.1. Assume that (1.2) and (1.4) hold. Furthermore, assume that there

exists a positive sequence {ρn}∞n=1 such that for every positive constant M and for

some n0 ≥ 1;

(2.1) lim
n→∞

sup

n
∑

l=n0

[

ρl(ql − pl) −
Mal(∆+ρl)

2

ρl

]

= ∞ when γ ≥ 1,
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and

(2.2) lim
n→∞

sup

n
∑

l=n0

[

ρl(ql − pl) −
Mal(∆+ρl)

γ+1

ργ
l

]

= ∞ when β ≥ 1, 0 < γ < 1,

where ∆+ρn = max{0, ∆ρn}. Then every solution of Eq.(1.1) oscillates.

Proof. Suppose to the contrary that {xn} is an eventually positive solution of (1.1),

say xn > 0 for all n ≥ n0. Similar to the proof of Theorem 2.1 in [17], we have that

there exists n1 ≥ n0 such that

(2.3) xn > 0, ∆xn−1 > 0 and ∆(an−1(∆xn−1)
γ) ≤ 0 for n ≥ n1.

Firstly, we consider the case when γ ≥ 1. Define the sequence {wn} by

(2.4) wn = ρn
an−1(∆xn−1)

γ

xγ
n

;

then, wn > 0 for n ≥ n1 and

(2.5)
∆wn = an(∆xn)γ∆

(

ρn

xγ
n

)

+
ρn∆(an−1(∆xn−1)

γ)

xγ
n

≤ −ρn(qn − pn)xβ−γ
n +

∆ρn

ρn+1
wn+1 −

ρnan(∆xn)γ∆(xγ
n)

xγ
nxγ

n+1

.

From (2.3), we can assume, without loss of generality, that there exists a constant

c > 0 such that xβ−γ
n ≥ c for n ≥ n1. Using this, (2.3), (2.5), the assumption β > γ,

and the inequality (see [6])

xγ − yγ ≥ 21−γ(x − y)γ for all x ≥ y > 0 and γ ≥ 1,

we have

(2.6)

∆wn ≤ −cρn(qn − pn) +
∆+ρn

ρn+1

wn+1 − 21−γρnan
(∆xn)2γ

x2γ
n+1

= −cρn(qn − pn) +
∆+ρn

ρn+1

wn+1 −
21−γρn

anρ2
n+1

w2
n+1

= −cρn(qn − pn) +
an(∆+ρn)2

23−γρn
−
[

√

21−γρn

ρn+1
√

an
wn+1 −

√
an∆+ρn

2
√

21−γρn

]2

≤ −
[

cρn(qn − pn) − an(∆+ρn)2

23−γρn

]

for n ≥ n1. Summing (2.6) from n1 to n, we obtain

−wn1
≤ wn+1 − wn1

≤ −
n
∑

l=n1

[

cρl(ql − pl) −
al(∆+ρl)

2

23−γρl

]

,

which yields

n
∑

l=n1

[

ρl(ql − pl) −
Mal(∆+ρl)

2

ρl

]

≤ wn1

c
< ∞ for all n ≥ n1,

where M = 1/(c23−γ), which contradicts (2.1).
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Second, let us consider the case where 0 < γ < 1 and β ≥ 1. From (2.3), we see

that there exist two constants c1, c2 > 0 such that xβ−1
n ≥ c1 and x

(1/γ)−1
n ≥ c2 for

n ≥ n1. Define the sequence {wn} by

(2.7) wn = ρn
an−1(∆xn−1)

γ

xn

;

then wn > 0 for n ≥ n1 and

(2.8)

∆wn ≤ −ρn(qn − pn)xβ−1
n +

∆ρn

ρn+1
wn+1 −

ρnan(∆xn)γ+1

x2
n+1

= −ρn(qn − pn)xβ−1
n +

∆ρn

ρn+1
wn+1 −

[

ρn+1an(∆xn)γ

xn+1

](γ+1)/γ

· ρnx
(1/γ)−1
n+1

ρ
(γ+1)/γ
n+1 a

1/γ
n

≤ −c1ρn(qn − pn) +
∆+ρn

ρn+1
wn+1 −

c2ρn

ρλ
n+1a

λ−1
n

wλ
n+1,

where λ = (γ + 1)/γ. Setting

A =

(

c2ρn

ρλ
n+1a

λ−1
n

)1/λ

wn+1 and B =

[

1

λ

∆+ρn

ρn+1

(

c2ρn

ρλ
n+1a

λ−1
n

)

−1/λ
]1/(λ−1)

,

and using the inequality (see [6])

Aλ − λABλ−1 + (λ − 1)Bλ ≥ 0, A, B ≥ 0, λ > 1,

we have

(2.9)

∆+ρn

ρn+1
wn+1 −

c2ρn

ρλ
n+1a

λ−1
n

wλ
n+1 ≤ (λ − 1)λ

λ
1−λ

(

∆+ρn

ρn+1

)
λ

λ−1
(

c2ρn

ρλ
n+1a

λ−1
n

)
1

1−λ

=
Can(∆+ρn)λ/(λ−1)

ρ
1/(λ−1)
n

=
Can(∆+ρn)γ+1

ργ
n

,

where C = (λ − 1)λλ/(1−λ)(c2)
1/(1−λ) = γγ

(γ+1)γ+1(c2)γ . Thus, from (2.8) and (2.9) we

obtain

∆wn ≤ −c1ρn(qn − pn) +
Can(∆+ρn)γ+1

ργ
n

.

Summing the above inequality, we have

n
∑

l=n1

[

ρl(ql − pl) −
Mal(∆+ρl)

γ+1

ργ
l

]

≤ wn1

c1
for all n ≥ n1,

where M = C/c1, which contradicts the assumption (2.2). This completes the proof

of Theorem 2.1.

Theorem 2.2. Assume that (1.2) and (1.4) hold. Let {ρn}∞n=1 be a positive sequence.

Furthermore, we assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0} such

that (i) Hm,m = 0 for m ≥ 0, (ii) Hm,n > 0 for m > n ≥ 0, (iii) ∆2Hm,n =
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Hm,n+1 − Hm,n ≤ 0 for m ≥ n ≥ 0 and ∆2Hm,n = hm,n

√

Hm,n. If for every positive

number M and for some n0 ≥ 1,

(2.10)

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

Hm,n

[

ρn(qn − pn) −
Man(∆+ρn

√

Hm,n + ρn+1hm,n)2

ρn

]

= ∞,

for the case when γ > 1, and

(2.11) lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

Hm,n

[

ρn(qn − pn) − Man(∆+ρn)γ+1

ργ
n

]

= ∞,

for the case when 0 < γ < 1 and β ≥ 1, where ∆+ρn is the same as in Theorem 2.1.

Then every solution of Eq.(1.1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.1, we assume that Eq.(1.1) has a

nonoscillatory solution, say xn > 0 for all n ≥ n0. Then, we have (2.3) holds. For the

case γ > 1, again define wn by (2.4); then, wn > 0 for n ≥ n1. Similar to the proof of

Theorem 2.1, we have that (2.6) holds, i.e., there exists a constant c > 0 such that

cρn(qn − pn) ≤ −∆wn +
∆ρn

ρn+1

wn+1 −
21−γρn

anρ2
n+1

w2
n+1.

Therefore, we have

c

m−1
∑

n=n1

Hm,nρn(qn − pn) ≤ −
m−1
∑

n=n1

Hm,n∆wn +

m−1
∑

n=n1

Hm,n
∆ρn

ρn+1
wn+1

−
m−1
∑

n=n1

Hm,n
21−γρn

anρ2
n+1

w2
n+1,

which, after summing by parts, yields

(2.12)

c
m−1
∑

n=n1

Hm,nρn(qn − pn) ≤ Hm,n1
wn1

+
m−1
∑

n=n1

hm,n

√

Hm,nwn+1

+
m−1
∑

n=n1

Hm,n
∆ρn

ρn+1

wn+1 −
m−1
∑

n=n1

Hm,n
21−γρn

anρ2
n+1

w2
n+1

≤ Hm,n1
wn1

+
m−1
∑

n=n1

(

Hm,n
∆+ρn

ρn+1

+ hm,n

√

Hm,n

)

wn+1

−
m−1
∑

n=n1

Hm,n
21−γρn

anρ2
n+1

w2
n+1.

Completing the square in (2.12), we obtain that

1

Hm,n1

m−1
∑

n=n1

Hm,n

[

ρn(qn − pn) − Man(∆+ρn

√

Hm,n + ρn+1hm,n)2

ρn

]

≤ wn1

c
,

for all m > n1, where M = 1/(c23−γ), which contradicts the assumption (2.10).
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For the case when 0 < γ < 1 and β ≥ 1, define wn by (2.7). Similar to the proof

of Theorem 2.1, we have that there exist two positive constants c1 and c2 such that

c1ρn(qn − pn) ≤ −∆wn +
∆ρn

ρn+1

wn+1 −
c2ρn

ρλ
n+1a

λ−1
n

wλ
n+1.

Noting that ∆2Hm,m ≤ 0, we have

c1

m−1
∑

n=n1

Hm,nρn(qn − pn) ≤ Hm,n1
wn1

+

m−1
∑

n=n1

Hm,n

[

∆+ρn

ρn+1
wn+1 −

c2ρn

ρλ
n+1a

λ−1
n

wλ
n+1

]

.

Let

A =

(

c2ρn

ρλ
n+1a

λ−1
n

)1/λ

wn+1 and B =

[

1

λ

∆+ρn

ρn+1

(

c2ρn

ρλ
n+1a

λ−1
n

)

−1/λ
]1/(λ−1)

.

Similar to the proof of (2.9), we have

c1

m−1
∑

n=n1

Hm,nρn(qn − pn) ≤ Hm,n1
wn1

+
m−1
∑

n=n1

Hm,n
Man(∆+ρn)γ+1

ργ
n

,

where λ = (γ +1)/γ and C = (λ− 1)λλ/(1−λ)(c2)
1/(1−λ) = γγ

(γ+1)γ+1(c2)γ . It follows that

1

Hm,n1

m−1
∑

n=n1

Hm,n

[

ρn(qn − pn) − Man(∆+ρn)γ+1

ργ
n

]

≤ wn1

c1

,

for all m > n1, where M = C/c1, which contradicts the assumption (2.11). This

completes the proof of Theorem 2.2.

(II) The case when (1.3) holds and γ < β.

Theorem 2.3. Assume that (1.3) and (1.4) hold. Furthermore, we assume that there

exist positive sequences {ρn} and {δn} such that (2.1) and (2.2) hold for every positive

constant M , and

(2.13) ∆δn ≥ 0,
∞
∑

n=n0

δn(qn − pn) = ∞,
∞
∑

n=n0

(

1

anδn

n+1
∑

i=n0

δi(qi − pi)

)1/γ

= ∞,

for some n0 ≥ 1. Then every solution {xn} of (1.1) oscillates or limn→∞
xn = 0.

Proof. Suppose, to the contrary, that {xn} is an eventually positive solution of (1)

such that xn > 0 for all n ≥ n0. By (1.4) and Theorem 2.2 (a) in [26] (case 2), we see

that {∆xn} does not oscillate and there exist two possible cases for the sign of ∆xn.

Case (a): Suppose that {∆xn} is eventually positive. We are then back to the

case where (2.3) holds. Thus, the proof of Theorem 2.1 goes through, and we may

conclude that {xn} cannot be eventually positive, which is not possible.

Case (b): Suppose that ∆xn < 0 for n ≥ n1 ≥ n0. It follows that limt→∞
xn =

b ≥ 0. Now, we claim that b = 0. Otherwise, there exists a constant M > 0 such that
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xβ
n ≥ M . Therefore, from (1.1) and (1.4) we have ∆(an−1(∆xn−1)

γ) ≤ −M(qn − pn).

Define the sequence un = δn−1(an−1(∆xn−1)
γ) for n ≥ n1. Then, we have

∆un ≤ −Mδn(qn − pn) + ∆δn(an−1(∆xn−1)
γ) ≤ −Mδn(qn − pn).

Summing it from n1 to n, we obtain un+1 ≤ un1
− M

∑n+1
l=n1

δl(ql − pl). In view of

(2.13), it is possible to choose an integer n2 sufficiently large such that for all n ≥ n2,

un+1 ≤ −M

2

n+1
∑

l=n1

δl(ql − pl).

Summing the above inequality from n2 to n, we obtain

xn+1 ≤ xn2
−
(

M

2

)1/γ n
∑

s=n2

(

1

asδs

s+1
∑

l=n1

δl(ql − pl)

)1/γ

.

This implies that xn is eventually negative, which is a contradiction, and completes

the proof of Theorem 2.3.

Similar to the proof of Theorem 2.3, we have the following theorem.

Theorem 2.4. Assume that (1.3) and (1.4) hold. Let {δn} be a positive sequence

such that (2.13) holds. Furthermore, we assume that there exist a positive sequence

{ρn} and a double sequence {Hm,n} as defined in Theorem 2.2 such that (2.10) and

(2.11) hold for every positive constant M . Then every solution {xn} of (1.1) oscillates

or limn→∞
xn = 0.

(III) The case when (1.2) holds and 0 < β, γ < 1.

Theorem 2.5. Assume that (1.2) and (1.4) hold. Furthermore, assume that there

exist a positive sequence {ρn} and a double sequence {Hm,n} such that for every

positive constant M and for some n0 ≥ 1,

(2.14) lim
n→∞

sup
n
∑

l=n0

[

ρl(ql − pl)A
β−1
l − Mal(∆+ρl)

γ+1

ργ
l

]

= ∞,

or

(2.15) lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

Hm,n

[

ρn(qn − pn)Aβ−1
n − Man(∆+ρn)γ+1

ργ
n

]

= ∞,

where An =
∑n−1

s=0

(

1
as

)1/γ

and ∆+ρn is defined as in Theorem 2.1. Then every

solution of (1.1) oscillates.

Proof. Assume that Eq. (1.1) has a nonoscillatory solution, say xn > 0 for all n ≥ n0.

Thus, we have that (2.3) holds and

an(∆xn)γ ≤ an1
(∆xn1

)γ = m,
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which means

∆xn ≤
(

m

an

)1/γ

.

Summing from n1 to n − 1, we get

xn ≤ xn1
+ m1/γ

n−1
∑

s=n1

(

1

as

)1/γ

.

Noting that (1.2) holds, we have that there exists b1 > 0 such that xn ≤ b1An where

An =
∑n−1

s=0

(

1
as

)1/γ

. On the other hand, from (2.3), there exists b2 > 0 such that

x
(1/γ)−1
n ≥ b2 for n ≥ n1. Define again wn by (2.7); then we obtain

∆wn ≤ −ρn(qn − pn)xβ−1
n +

∆ρn

ρn+1

wn+1 −
[

ρn+1an(∆xn)γ

xn+1

](γ+1)/γ

· ρnx
(1/γ)−1
n

ρ
(γ+1)/γ
n+1 a

1/γ
n

≤ −ρn(qn − pn)(b1An)β−1 +
∆+ρn

ρn+1
wn+1 −

b2ρn

ρλ
n+1a

λ−1
n

wλ
n+1,

where λ = (γ + 1)/γ. The remainder of the proof is similar to that of Theorems 2.1

and 2.2, and hence is omitted. This completes the proof of Theorem 2.5.

(V) The case when (1.3) holds and 0 < β, γ < 1.

Theorem 2.6. Assume that (1.3) and (1.4) hold, and let {δn} be a positive sequence

such that (2.13) holds. Furthermore, we assume that there exist a positive sequence

{ρn} and a double sequence {Hm,n} as defined in Theorem 2.1 such that (2.14) or

(2.15) holds for every positive constant M . Then every solution {xn} of (1.1) oscil-

lates or limn→∞
xn = 0.

Proof. The proof of Theorem 2.6 is similar to that of Theorem 2.3, and hence is

omitted.

Remark 2.7. By choosing {ρn} and {Hm,n} in appropriate manners, we can derive

many oscillation criteria for Eq.(1.1) from Theorems 2.1-2.6, and due to the limited

space, we left the details to the reader.

3. EXAMPLES

In this section, we will present two examples to illustrate our results. However,

none of the results in [17] can be applied to these two examples.

Example 3.1. Consider the following perturbed difference equation

(3.1) ∆(na(∆xn−1)
γ) + nb(1 + x2

n)xβ
n = nc (∆xn−1)

2xβ
n

1 + (∆xn−1)2
, n ≥ 1,

where a, b, c, γ, β are constants, b > c, γ > 0, β > 0 are quotients of odd positive

integers, and a ≤ γ which guarantees (1.2) holds. It is easy to see that (1.4) holds
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with qn = nb and pn = nc. Now let us consider Eq.(3.1) in the following cases where

we choose ρn = n:

Case 1: γ < β and γ ≥ 1. Then we have

lim
n→∞

sup
n
∑

l=1

[

ρl(ql − pl) −
Mal(∆+ρl)

2

ρl

]

= lim
n→∞

sup
n
∑

l=1

(lb+1 − lc+1 − Mla−1).

Noting that b > c, we have that (2.1) holds when b + 1 > −1 and b + 1 > a − 1. By

Theorem 2.1 we have Eq.(3.1) is oscillatory when b > max{a − 2,−2}.
Case 2: γ < β, β ≥ 1 and 0 < γ < 1. Then we have

lim
n→∞

sup

n
∑

l=1

[

ρl(ql − pl) −
Mal(∆+ρl)

γ+1

ργ
l

]

= lim
n→∞

sup

n
∑

l=1

(lb+1 − lc+1 − Mla−γ).

Similar to the analysis of Case 1, we have that (2.2) holds when b > max{a−γ−1,−2}.
Therefore, Eq.(3.1) is oscillatory when b > max{a − γ − 1,−2} by Theorem 2.1.

Case 3: 0 < β, γ < 1. It is easy to see that An =
∑n−1

s=1

(

1
as

)1/γ

≤ n for 0 ≤ a ≤ γ,

and

lim
n→∞

sup
n
∑

l=1

[

ρl(ql − pl)A
β−1
l − Mal(∆+ρl)

γ+1

ργ
l

]

≥ lim
n→∞

sup
n
∑

l=1

(lb+β − lc+β − Mla−γ).

Thus, we have that (2.14) holds for b > max{−β − 1, a − γ − β} = a − γ − β since

0 ≤ a ≤ γ and 0 < γ < 1. By theorem 2.5, we have that Eq.(3.1) is oscillatory when

b > a − γ − β.

Example 3.2. Consider the following perturbed difference equation

(3.2) ∆(nα(∆xn−1)
γ) + n(2)(1 + sin2 xn)xβ

n = nλ (∆xn−1)
2xβ

n

1 + (∆xn−1)2
, n ≥ 1,

where α, λ < 2, γ, β are constants, γ > 0 and β > 0 are quotients of odd positive

integers, a > γ which means that (1.3) holds, n(2) = n(n − 1). It is easy to see that

(1.4) holds with qn = n(2) and pn = nλ. Choose ρn = n and δn = 1, then we can

easily obtain that (2.13) holds for α ≤ 3 + γ. Now, let us consider Eq.(3.2) in the

following cases:

Case 1: γ < β and γ ≥ 1. Then we have

lim
n→∞

sup

n
∑

l=1

[

ρl(ql − pl) −
Mal(∆+ρl)

2

ρl

]

= lim
n→∞

sup

n
∑

l=1

(l3 − l2 − lλ+1 − Mlα−1).

In order to guarantee (2.1) holds we need 3 > α−1, i.e., α < 4. Thus, by Theorem 2.3,

every solution {xn} of Eq.(3.2) is oscillatory or limn→∞
xn = 0 when α < min{4, 3 +

γ} = 4.

Case 2: γ < β, β ≥ 1 and 0 < γ < 1. Then we have

lim
n→∞

sup

n
∑

l=1

[

ρl(ql − pl) −
Mal(∆+ρl)

γ+1

ργ
l

]

= lim
n→∞

sup

n
∑

l=1

(l3 − l2 − lλ+1 − Mlα−γ).



546 Y. G. SUN AND S. H. SAKER

It is easy to see that (2.2) holds when α < 3+ γ. Therefore, by Theorem 2.3 we have

every solution {xn} of Eq.(3.2) is oscillatory or limn→∞
xn = 0 when α < 3 + γ.

Case 3: 0 < β, γ < 1. Since (1.3) holds, we have that An ≤ N where N > 0 is a

constant, and

lim
n→∞

sup
n
∑

l=1

[

ρl(ql − pl)A
β−1
l − Mal(∆+ρl)

γ+1

ργ
l

]

≥ lim
n→∞

sup
n
∑

l=1

[Nβ−1(l3 − l2 − lλ+1) − Mlα−γ ].

It is easy to show that (2.14) holds for α < 3 + γ. Thus, by theorem 2.6, we have

that every solution {xn} of Eq.(3.2) is oscillatory or limn→∞
xn = 0 when α < 3 + γ.
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