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ABSTRACT. By means of the Riccati transformation techniques, we will establish some new

oscillation criteria for certain class of third order nonlinear neutral delay difference equations. Our

results extend as well as improve the well known oscillation results in the literature. Comparison

between our theorems and those previously known results are indicated throughout the paper. Some

examples are given to illustrate the main results.
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1. INTRODUCTION

In recent years, the oscillation theory and asymptotic behavior of difference equa-

tions and their applications have been and still are receiving intensive attention. In

fact, in the last few years several monographs and hundreds of research papers have

been written, see for example the monographs [1, 2].

Determining oscillation criteria for third order nonlinear difference equations has

not received a great deal of attention in the literature even though such equations

arise in the study of economics, mathematical Biology, and other areas of mathematics

which discrete models are used (see for example [3]). Some recent results on third

order difference equations can be found in [4, 7-13]. In this paper, we consider the

third-order nonlinear neutral delay difference equation

(1.1) ∆(cn∆ (dn∆(xn + pnxn−τ ))
γ) + qnf(xn−σ) = 0, n ≥ n0,

where ∆ denotes the forward difference operator defined by ∆xn = xn+1 − xn for any

sequence {xn} of real numbers, γ > 1 is quotient of odd positive integers, τ and σ

are nonnegative integers such that τ ≤ σ and the real sequences {cn}∞n=n0
, {dn}∞n=n0

,

{pn}∞n=n0
, {qn}∞n=n0

and the function f satisfies the following conditions:
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(h1) {cn}∞n=n0
, {dn}∞n=n0

are positive sequences of real numbers such

∞
∑

n=n0

(

1

cn

)

=
∞
∑

n=n0

(

1

dn

)

= ∞;

(h2) 0 ≤ pn < 1, qn > 0 and {qn}∞n=n0
has a positive subsequence;

(h3) f : R → R is a continuous function such that uf(u) > 0 for u 6= 0 and

f(u)/uγ > K > 0.

By a solution of (1.1) we mean a nontrivial real sequence {xn} that is defined for

n > n0−σ and satisfies equation (1.1) for n ≥ n0. Clearly if xn = An for n = n0−σ,

n0 − σ + 1, . . . , n0 − 1 are given, then Eq. (1.1) has a unique solution satisfying the

above initial conditions.

A solution {xn} of (1.1) is said to be oscillatory if for every n1 ≥ n0 there exists

n ≥ n1 such that xnxn+1 ≤ 0, otherwise it is nonoscillatory. Equation (1.1) is said to

be oscillatory if all its solutions are oscillatory.

A number of dynamical behavior of solutions of third-order difference equations

are possible; here we will only be concerned with conditions which are sufficient for

all solutions of (1.1) to be oscillatory or tends to zero as n→ ∞.

Our concern is motivated by recent results by Graef and Thandapani [4] and

Thandapani and Mahalingam [13].

In [4], the authors considered the equation

(1.1) ∆(cn∆(dn∆(xn))) + qnf(xn−σ+1) = 0, n ≥ n0,

and supposed that:

(i) {cn}∞n=n0
, {dn}∞n=n0

are positive sequences of real numbers such

∞
∑

n=n0

(

1

cn

)

=

∞
∑

n=n0

(

1

dn

)

= ∞, and ∆cn > 0;

(ii) qn > 0 and {qn}∞n=n0
has a positive subsequence;

(iii) f : R → R is a continuous function such that uf(u) > 0 for u 6= 0 and

(1.2) f(u) − f(v) = g(u, v)(u− v), for u, v 6= 0 and g(u, v) > µ > 0.

In the linear case when f(u) = u, the authors assumed that (i) and (ii) hold and

used the Riccati transformation techniques and established oscillation criterion for

Eq. (1.1) which is the discrete analogy of Philos’s type oscillation criterion for second-

order differential equations (see [6]). In the nonlinear case, the authors assumed that

(i)− (iii) hold and established some new oscillation criteria for Eq. (1.2) by reducing

it to Riccati difference inequality.

In [13], the authors considered Eq. (1.1) when γ = 1 and established some suf-

ficient conditions for oscillation. They, used the generalized Riccati technique and
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given oscillation criterion of the linear case which improves the result of [4] when

pn = 0. Also, they assumed that (i) − (iii) hold and established another oscillation

criteria.

Our aim in this paper, by using the Riccati transformation techniques we present

some new oscillation criteria for Eq. (1.1) bypass the condition (1.5) and do not

require the condition ∆cn > 0. Our results improve the results in [4] as well as

extend and improve the results in [13]. Some comparison between our theorems and

those previously known results are indicated throughout the paper. The paper is

organized as follows: In section 2, we will state and prove some lemmas which are

useful in the proof of our main results. In Section 3, we will state and prove our main

oscillation results. In Section 4, we present some examples to illustrate our main

results.

2. SOME PRELIMINARY LEMMAS

In this section, we state and prove some basic lemmas, which we will use in the

proof of our main results. We begin with the following lemma.

Lemma 2.1. Suppose that {xn} is an eventually positive solution of (1.1). Set

(2.1) zn := xn + pnxn−τ .

Then there are only the following two cases for n > n0 sufficiently large:

(I) zn > 0, ∆zn > 0, ∆(dn∆zn)γ > 0.

(II) zn > 0, ∆zn < 0, ∆(dn∆zn)γ > 0.

Proof. Let {xn}be an eventually positive solution of (1.1) and there exists a

n1 > n0 such that xn−τ > 0 and xn−σ > 0 for n > n1. From (2.1) and (h2), it is clear

that zn > 0 for all n > n1 and from (1.1) ∆(cn∆(dn∆zn)γ) ≤ 0 for n > n1. Then

{zn}, {∆zn} and {∆(dn∆zn)γ} are monotone and eventually of one sign. We claim

that there is n2 > n1 such that for n > n2, ∆(dn∆zn)γ > 0. Suppose to the contrary

that ∆(dn∆zn)γ ≤ 0 for n > n2. Since cn > 0 and cn∆(dn∆zn)γ is nonincreasing there

exists a negative constant C and n3 > n2 such that cn∆(dn∆zn)γ ≤ C for n > n3.

Dividing by cn and summing from n3 to n− 1, we obtain

(dn∆zn)γ ≤ (dn3
∆zn3

)γ + C
n−1
∑

s=n3

(

1

cs

)

.

Letting n → ∞, then dn∆zn → −∞ by (h1). Thus, there is an integer n4 > n3 such

that for n > n4, dn∆zn ≤ dn4
∆zn4 < 0. Dividing by dn and summing from n4 to

n− 1 we obtain

zn − zn4
≤ dn4

∆zn4

n−1
∑

s=n3

(

1

ds

)

,
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which implies that zn → −∞ as n → ∞ by (h1), a contradiction with the fact that

zn > 0. Then ∆(dn∆zn)γ > 0. The proof is complete.

Lemma 2.2. Let {xn} be an eventually positive solution of (1.1) and suppose

Case (I) of Lemma 2.1 holds and set zn be as defined by (2.1). Then {zn} is a positive

solution of the inequality

(2.2) ∆(cn∆(dn∆zn)γ) +Kqn(1 − pn−σ)γzγ
n−σ ≤ 0, n ≥ n1,

for some n1 sufficiently large.

Proof. From (2.1) and (h2) it is clear that zn is positive and from Lemma (2.2),

the case (I) implies that yn > (1 − pn)zn for n > n1. Then there exists n2 > n1 + σ

such that yn−σ > (1− pn−σ)zn−σ. This and (h3) imply that (2.2) holds. The proof is

complete.

Lemma 2.3 [13]. Let {xn} be an eventually positive solution of (1.1) and suppose

Case (II) of Lemma 2.1 holds. Then there exists n1 > n0 such that

(2.2) xn−τ >
zn

1 + pn

for n > n1.

Lemma 2.4. Assume that (h1)−(h3) hold and suppose that Case (II) of Lemma

2.1 holds and the following conditions are satisfied:

(h4)
∑

∞

n=n0

qn

(1+pn−σ+τ )γ = ∞;

(h5)
∑

∞

n0

1
dn

[

∑n−1
n0

1
ct

∑t−1
n0

qs

(1+ps−σ+τ )γ

]
1

γ

= ∞.

Then every nonoscillatory solution {xn} of (1.1) satisfies

(2.3) lim
n→∞

(xn + pnxn−τ ) = 0,

and if limn→∞ pn = p∗ ∈ [0, 1) then limn→∞ xn = 0.

Proof : Let {xn} be a nonoscillatory solution of (1.1). Without loss of generality

we may assume that xn−σ > 0 for n > n1 where n1 is chosen so large that Lemma 2.1

holds. (The proof when {xn} is eventually negative is similar, since the substitution

yn = −xn transforms Eq. (1.1) into an equation of the same form.) From Lemma 2.3,

(2.3) implies that there exists an n2 > n1 such that

(2.4) xn−σ >
zn−(σ−τ)

1 + pn−σ+τ

for n > n2.

From Case (II) since σ > τ and zn is decreasing, (2.5) implies that

(2.5) xn−σ >
zn

1 + pn−σ+τ

for n > n2.

From (h3), (1.1) and (2.6) we obtain

(2.6) ∆(cn∆(dn∆zn)γ) +
Kqn

(1 + pn−σ+τ )γ
zγ

n ≤ 0, n ≥ n2,
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Since {zn} is positive and decreasing it follows that limn→∞ zn = b > 0. Now we

claim that b = 0. If not then zγ
n → bγ > 0 as n→ ∞, and hence there exists n2 ≥ n1

such that zγ
n ≥ bγ . Therefore from (2.7) we have

(2.7) ∆(cn∆(dn∆zn)γ) +
Kqn

(1 + pn−σ+τ )γ
bγ ≤ 0, n ≥ n2,

Define the sequence un = cn∆(dn∆zn)γ for n ≥ n2. Then we have

∆un ≤ − Kqn
(1 + pn−σ+τ )γ

bγ

Summing the last inequality from n2 to n− 1, we have

un ≤ un2
− bγK

n−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

,

In view of (h4), since
∞
∑

n=n0

qn

(1+pn−σ+τ )γ = ∞, it is possible to choose an integer n3

sufficiently large such that for all n ≥ n3

un ≤ −b
γK

2

n−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

,

and hence

∆(dn∆zn)γ ≤ −b
γK

2

1

cn

n−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

,

Summing the last inequality from n3 to n− 1 we obtain

(dn∆zn)γ ≤ (dn3
∆zn3

)γ − bγK

2

n−1
∑

t=n3

(

1

ct

t−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

)

.

Since ∆zn < 0 for n > n0, the last inequality implies that

(dn∆zn)γ ≤ −b
γK

2

n−1
∑

t=n3

1

ct

t−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

,

or

∆zn ≤ −b
γK

2

1

dn

[

n−1
∑

t=n3

1

ct

t−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

]
1

γ

.

Summing from n3 to n− 1 we have

zn ≤ zn3
− bγK

2

n−1
∑

l=n3

1

dl

[

l−1
∑

t=n3

1

ct

t−1
∑

s=n2

qs
(1 + ps−σ+τ )γ

]
1

γ

.

Condition (h5) implies that zn → −∞ as n → ∞ which is a contradiction with the

fact that zn is positive. Then b = 0 and this completes the proof.
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Lemma 2.5. Let {xn} be an eventually positive solution of (1.1) and suppose

Case (I) of Lemma 2.1 holds. Then there exists n1 > n0 such that

(2.9) (∆zn−σ)γ
>

δn−σcn
(dn−σ)

γ ∆(dn∆zn)γ for n > n1, ,

where δn :=
∑n−1

s=n0

1
cs

.

Proof : From Case (I) of Lemma 2.1 and Eq.(1.1) we have (dn∆zn)γ > 0,

cn∆(dn∆zn)γ > 0 and ∆(cn∆(dn∆zn)γ) ≤ 0 for n > n1. Hence

(2.10) (dn∆zn)γ = (dn1
∆zn1

)γ +

n−1
∑

s=n1

cs∆(ds∆zs)
γ

cs
> cnδn∆(dn∆zn)γ, n > n1.

Since ∆(cn∆(dn∆zn)γ) ≤ 0, we have cn−σ∆(dn−σ∆zn−σ)γ > cn∆(dn∆zn)γ. This and

(2.10) imply that

(dn−σ∆zn−σ)γ
> cn−σδn−σ∆(dn−σ∆zn−σ)γ

> cnδn−σ∆(dn∆zn)γ, n > n2 = n1 + σ,

and then we have

(dn−σ∆zn−σ)γ
> cnδn−σ∆(dn∆zn)γ , n > n2 = n1 + σ.

The proof is complete.

3. OSCILLATION CRITERIA

In this section we establish some sufficient conditions which guarantee that every

solution {xn} of (1.1) oscillates or satisfies (2.4).

First, we use the Riccati transformation technique.

Theorem 3.1: Assume that (h1) − (h5) hold. Furthermore, assume that there

exists a positive sequence {ρn}∞n=n0
such that,

(3.1) lim
n→∞

sup

n
∑

l=n0

[

Kρlql(1 − pl−σ)γ − (dl−σ)
γ (∆ρl)

2

23−γδl−σρl

]

= ∞.

Then every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Proof : Let {xn} be a nonoscillatory solution of (1.1). Without loss of generality

we may assume that xn−σ > 0 for n > n1 where n1 is chosen so large that Lemma

2.1 to Lemma 2.3 and Lemma 2.5 hold. We shall consider only this case, because the

proof when xn < 0 is similar. Define zn be as in (2.1), then zn > 0 and from Lemma

2.1 there are two possible cases. First we consider the Case (I): From Lemma 2.2,

we see that zn be a positive solution of the delay difference inequality (2.2). Define

the sequence {wn} by the Riccati substitution

(3.2) wn := ρn

cn∆ (dn∆zn)γ

zγ
n−σ

, n > n1.
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Then wn > 0, and

∆wn = cn+1∆ (dn+1∆zn+1)
γ ∆

[

ρn

zγ
n−σ

]

+
ρn∆(cn∆ (dn∆zn)γ)

zγ
n−σ

.

This and (2.2), imply that

(3.3) ∆wn ≤ −ρnQn +
∆ρn

ρn+1
wn+1 −

ρncn+1∆ (dn+1∆zn+1)
γ ∆(zγ

n−σ)

zγ
n−σz

γ
n−σ+1

,

where Qn := Kqn(1 − pn−σ)γ. From Lemma 2.1 Case (I), we have zn−σ+1 ≥ zn−σ.

Then from (3.3), we obtain

(3.4) ∆wn ≤ −ρnQn +
∆ρn

ρn+1
wn+1 −

ρncn+1∆ (dn+1∆zn+1)
γ ∆(zγ

n−σ)

z2γ
n−σ+1

.

Using the inequality

xβ − yβ
> 21−β(x− y)β for all x ≥ y > 0 and β > 1,

we have

∆(zγ
n−σ) = zγ

n−σ+1 − zγ
n−σ > 21−β(zn−σ+1 − zn−σ)γ(3.5)

= 21−β (∆zn−σ)γ , γ > 1.

Substituting from (3.5) in (3.4), we obtain

(3.6) ∆wn ≤ −ρnQn +
∆ρn

ρn+1

wn+1 − 21−γ ρncn+1∆ (dn+1∆zn+1)
γ (∆zn−σ)γ

z2γ
n−σ+1

.

From Lemma 2.5, we have

(3.7) ∆wn ≤ −ρnQn +
∆ρn

ρn+1
wn+1 − 21−γ ρncn+1∆ (dn+1∆zn+1)

γ δn−σcn∆(dn∆zn)γ

(dn−σ)
γ z2γ

n−σ+1

.

From (2.2) since ∆(cn∆(dn∆zn)γ) ≤ 0, then we have

(3.8) cn+1∆ (dn+1∆zn+1)
γ

> cn∆(dn∆zn)γ.

Then (3.7) and (3.8) imply that

(3.9) ∆wn ≤ −ρnQn +
∆ρn

ρn+1
wn+1 − 21−γ ρn (cn+1∆ (dn+1∆zn+1)

γ)
2
δn−σ

(dn−σ)
γ z2γ

n−σ+1

.

From (3.2) and (3.9) we obtain

(3.10) ∆wn ≤ −ρnQn +
∆ρn

ρn+1
wn+1 − 21−γ ρnδn−σ

(dn−σ)
γ ρ2

n+1

w2
n+1.
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By completing the square, we get

∆wn ≤ −ρnQn +
(dn−σ)

γ (∆ρn)2

23−γδn−σρn

−
[

√

21−γδn−σρn

ρn+1

√

(dn−σ)
γ
wn+1 −

√

(dn−σ)
γ∆ρn

2
√

21−γδn−σρn

]2

< −
[

ρnQn − (dn−σ)
γ (∆ρn)2

23−γδn−σρn

]

.

Then, we have

(3.11) ∆wn < −
[

ρnQn − (dn−σ)γ (∆ρn)2

23−γδn−σρn

]

.

Summing (3.11) from n1 to n, we obtain

−wn1
< wn+1 − wn1

< −
n
∑

l=n1

[

ρlQl −
(dl−σ)

γ (∆ρl)
2

23−γδl−σρl

]

.

which yields

(3.12)

n
∑

l=n1

[

ρlQl −
(dl−σ)

γ (∆ρl)
2

23−γδl−σρl

]

< c1,

for all large n, and this is contrary to (3.1). If the Case (II) holds, we are then back

to the proof of Lemma 2.4 to prove that (2.4) holds. The proof is complete.

Remark 3.1: From Theorem 3.1, we can obtain different conditions for oscilla-

tion of all solutions of (1.1) by different choices of {ρn}. Let ρn = nλ, n ≥ n0 and

λ > 1 is a constant. Hence we have the following result.

Corollary 3.1: Assume that all the assumptions of Theorem 3.1 hold, except

that the condition (3.1) is replaced by

lim
n→∞

sup
n
∑

s=n0

[

Ksλqs(1 − ps−σ)
γ − (ds−σ)

γ ((s+ 1)λ − sλ)2

23−γsλδs−σ

]

= ∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Remark 3.2: If pn = 0, then Eq.(1.1) reduces to the nonlinear difference equa-

tion

∆(cn∆(dn∆(xn))) + qnf(xn−σ) = 0, n ≥ n0,

and (3.1) reduces to

lim
n→∞

sup

n
∑

l=n0

[

Kρlql −
(dl−σ)

γ (∆ρl)
2

23−γδl−σρl

]

= ∞.

Then, Theorem 3.1 improves Theorem 2 of Graef and Thandapani [4] in the sense that

we do not need the condition (1.5) and also our results do not require that ∆cn > 0

for n > n0.
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Theorem 3.2: Assume that (h1) − (h5) hold. Furthermore, assume that there

exists a positive sequence {ρn}∞n=n0
such that for every positive number λ ≥ 1,

(3.13) lim
m→∞

sup
1

mλ

m−1
∑

n=1

(m− n)λ

[

Kρnqn(1 − pn−σ)
γ − (ρn+1)

2

4
−

ρn

Am,n

]

= ∞,

where
−

ρn := 21−γ ρnδn−σ

(dn−σ)γ , Am,n :=

(

∆ρn

ρn+1
− λ(m− n− 1)λ−1

(m− n)λ

)2

Then every solution {xn} of Eq (1.1) oscillates or satisfies (2.4).

Proof. Proceeding as in Theorem 3.1, we assume that Eq.(1.1) has a nonoscilla-

tory solution, say xn−σ > 0 for all n ≥ n0. Let zn be as defined by (2.1). Then zn is

positive and by Lemma 2.1 there are two possible cases. First, we consider the case

when Case (I) holds. From Lemma 2.2, we see that zn be a positive solution of the

delay difference inequality (2.2). Defining again {wn} by (3.1), then from Theorem

3.1, we have wn > 0 and (3.10) holds. From (3.10), we have for n ≥ n1

(3.14) ρnQn ≤ −∆wn +
∆ρn

ρn+1
wn+1 −

−

ρn

(ρn+1)
2w

2
n+1.

Therefore,

m−1
∑

n=n1

(m− n)λρnQn ≤ −
m−1
∑

n=n1

(m− n)λ∆wn +
m−1
∑

n=n1

(m− n)λ ∆ρn

ρn+1

wn+1

−
m−1
∑

n=n1

(m− n)λ

−

ρn

ρ2
n+1

w2
n+1.(3.15)

Now, after summing by parts, we have

m−1
∑

n=n1

(m− n)λ∆wn = −(m− n1)
λwn1

−
m−1
∑

n=n1

wn+1∆2(m− n)λ,

where, ∆2(m− n)λ = (m− n− 1)λ − (m− n)λ. Then

m−1
∑

n=n1

(m− n)λ∆wn = −(m− n1)
λwn1

+

m−1
∑

n=n1

wn+1((m− n)λ − (m− n− 1)λ).

Using the inequality, xβ − yβ ≥ βyβ−1(x− y) for all x ≥ y > 0 and β ≥ 1, we obtain

m−1
∑

n=n1

(m− n)λ∆wn ≥ −(m− n1)
λwn1

+
m−1
∑

n=n1

λwn+1(m− n− 1)λ−1.
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Substituting in (3.15), we have

m−1
∑

n=n1

(m− n)λρnQn

≤ (m− n1)
λwn1

−
m−1
∑

n=n1

λwn+1(m− n− 1)λ−1

+

m−1
∑

n=n1

(m− n)λ ∆ρn

ρn+1
wn+1 −

m−1
∑

n=n1

(m− n)λ

−

ρn

ρ2
n+1

w2
n+1.

Then,

1

mλ

m−1
∑

n=n1

(m− n)λρnQn ≤ (
m− n1

m
)λwn1

− 1

mλ

m−1
∑

n=n1

(m− n)λ

[

ρn

ρ2
n+1

w2
n+1 −

(

∆ρn

ρn+1

− λ(m− n− 1)λ−1

(m− n)λ

)

wn+1

]

= (
m− n1

m
)λwn1

− 1

mλ

m−1
∑

n=n1

(m− n)λ

×





√

−

ρn

ρn+1

wn+1 −
ρn+1

2

√

−

ρn

(

∆ρn

ρn+1

− λ(m− n− 1)λ−1

(m− n)λ

)





2

+
1

mλ

m−1
∑

n=n1

(m− n)λ (ρn+1)
2

4
−

ρn

(

∆ρn

ρn+1

− λ(m− n− 1)λ−1

(m− n)λ

)2

,

which implies that

1

mλ

m−1
∑

n=n1

κ(m− n)λρnQn < (
m− n1

m
)λwn1

+
1

mλ

m−1
∑

n=n1

(m− n)λ (ρn+1)
2

4ρ̄n

(

ψn

ρn+1
+
λ(m− n− 1)λ−1

(m− n)λ

)2

,

or

1

mλ

m−1
∑

n=n1

(m− n)λ

[

ρnQn − (ρn+1)
2

4
−

ρn

(

∆ρn

ρn+1

− λ(m− n− 1)λ−1

(m− n)λ

)2
]

< (
m− n1

m
)λwn1

,

which yields

lim
m→∞

1

mλ

m−1
∑

n=n1

(m− n)λ

[

Kρnqn(1 − pn−σ)
γ − (ρn+1)

2

4
−

ρn

Am,n

]

<∞,

which is contrary to (3.13). If the Case (II) holds, we are then back to the proof of

Lemma 2.4 to prove that (2.4) holds. The proof is complete.
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As a variant of the Riccati transformation technique used above, we will derive

new oscillation criteria which can be considered as a discrete analogy of Philos’s

condition for oscillation of second order differential equations [6].

Theorem 3.3: Assume that (h1)−(h5) hold. Let {ρn}∞n=n0
be a positive sequence.

Furthermore, we assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0} such

that (i) Hm,m = 0 for m ≥ 0, (ii) Hm,n > 0 for m > n ≥ 0, (iii) ∆2Hm,n =

Hm,n+1 −Hm,n ≤ 0 for m ≥ n ≥ 0. If

(3.16) lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

[

KHm,nρnqn(1 − pn−σ)γ − (ρn+1)
2

4
−

ρn

Bm,n

]

= ∞,

where

Bm,n =

(

hm,n − ∆ρn

ρn+1

√

Hm,n

)2

,
−

ρn = 21−γ ρnδn−σ

(dn−σ)
γ , hm,n = −∆2Hm,n

√

Hm,n

.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Proof : Proceeding as in Theorem 3.1, we assume that Eq.(1.1) has a nonoscil-

latory solution, say xn−σ > 0 for all n ≥ n0. Let zn be as defined by (2.1). Then zn is

positive and by Lemma 2.1 there are two possible cases. First, we consider the case

when Case (I) holds. From Lemma 2.2, we see that zn be a positive solution of the

delay difference inequality (2.2). Defining again {wn} by (3.1), then from Theorem

3.1, we have wn > 0 and (3.10) holds. From (3.10), we have for n ≥ n1

m−1
∑

n=n1

Hm,nρnQn ≤−
m−1
∑

n=n1

Hm,n∆wn +

m−1
∑

n=n1

Hm,n

∆ρn

ρn+1
wn+1(3.17)

−
m−1
∑

n=n1

Hm,n

−

ρn

(ρn+1)
2w

2
n+1.

which yields after summing by parts

m−1
∑

n=n1

Hm,nρnQn ≤ Hm,n1
wn1

+
m−1
∑

n=n1

wn+1∆2Hm,n +
m−1
∑

n=n1

Hm,n

∆ρn

ρn+1

wn+1

−
m−1
∑

n=n1

Hm,n

−

ρn

(ρn+1)
2w

2
n+1,

hence
m−1
∑

n=n1

Hm,nρnQn ≤ Hm,n1
wn1

−
m−1
∑

n=n1

hm,n

√

Hm,nwn+1

+
m−1
∑

n=n1

Hm,n

∆ρn

ρn+1

wn+1 −
m−1
∑

n=n1

Hm,n

−

ρn

(ρn+1)
2w

2
n+1
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= Hm,n1
wn1

−
m−1
∑

n=n1





√

Hm,n

−

ρn

ρn+1
wn+1 +

ρn+1

2

√

Hm,n

−

ρn

√

Bm,n





2

+
1

4

m−1
∑

n=n1

(ρn+1)
2

−

ρn

(

hm,n − ∆ρn

ρn+1

√

Hm,n

)2

.

Then,

m−1
∑

n=n1

[

Hm,nρnρnQn − (ρn+1)
2

4ρn

(

hm,n − ∆ρn

ρn+1

√

Hm,n

)2
]

< Hm,n2
wn2

≤ Hm,0wn2

which implies that

m−1
∑

n=n0

[

Hm,nρnQn − (ρn+1)
2

4
−

ρn

(

hm,n − ∆ρn

ρn+1

√

Hm,n

)2
]

< Hm,n0

(

wn1
+

n1−1
∑

n=n0

ρnρnQn

)

.

Hence

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

[

Hm,nρnQn − (ρn+1)
2

4
−

ρn

Bm,n

]

<

(

wn1
+

n1−1
∑

n=n0

ρnρnQn

)

<∞.

and this contradicts (3.13). If the Case (II) holds, we are then back to the proof of

Lemma 2.4 to prove that (2.4) holds. The proof is complete.

As an immediate consequence of Theorem 3.3, we get the following:

Corollary 3.2: Assume that all the assumptions of Theorem 3.3 hold, except

that the condition (3.16) is replaced by

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

Hm,nρnqn(1 − pn−σ)γ = ∞,

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

ρ2
n+1 (dn−σ)

1

γ

ρnδn−σ

(

hm,n − ∆ρn

ρn+1

√

Hm,n

)2

<∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Remark 3.3: By choosing the sequence {Hm,n} in appropriate manners, we can

derive several oscillation criteria for (1.1). For instance, let us consider the double

sequence {Hm,n} defined by

Hm,n := (m− n)λ, λ ≥ 1, m ≥ n ≥ 0,
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or

Hm,n :=

(

log
m + 1

n+ 1

)λ

, λ ≥ 1, m ≥ n ≥ 0,

or

Hm,n := (m− n)(λ) λ > 2, m ≥ n ≥ 0,

where (m− n)(λ) = (m− n)(m− n+ 1) · · · (m− n + λ− 1) and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1).

Then Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0. Hence we

have the following results.

Corollary 3.3: Assume that all the assumptions of Theorem 3.3 hold, except

that the condition (3.16) is replaced by

lim
m→∞

sup
1

mλ

m−1
∑

n=0

[

K(m− n)λρnqn(1 − pn−σ)γ − ρ2
n+1

4
−

ρn

Cm.n

]

= ∞,

where

Cm,n =

(

λ(m− n)
λ−2

2 − ∆ρn

ρn+1

√

(m− n)λ

)2

.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Corollary 3.4: Assume that all the assumptions of Theorem 3.3 hold, except

that the condition (3.16) is replaced by

lim
m→∞

sup
1

(log(m + 1))λ

m−1
∑

n=0

[

(

log
m+ 1

n+ 1

)λ

Kρnqn(1 − pn−σ)γ

−ρ
2
n+1

4
−

ρn





λ

n+ 1

(

log
m + 1

n+ 1

)
λ−2

2

− ∆ρn

ρn+1

√

(

log
m+ 1

n+ 1

)λ





2

 = ∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Corollary 3.5: Assume that all the assumptions of Theorem 3.3 hold, except

that the condition (3.16) is replaced by

lim
m→∞

sup
1

m(λ)

m−1
∑

n=0

(m− n)(λ)

[

Kρnqn(1 − pn−σ)
γ − ρ2

n+1

4
−

ρn

Fm,n

]

= ∞,

where

Fm,n :=

(

λ

m− n+ λ− 1
− ∆ρn

ρn+1

)2

.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

In the following we will use the generalized Riccati transformation techniques.

Theorem 3.4: Assume that (h1)−(h5) hold. Let {ρn}∞n=n0
be a positive sequence

Furthermore, we assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0} such
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that (i) Hm,m = 0 for m ≥ 0, (ii) Hm,n > 0 for m > n ≥ 0, (iii) ∆2Hm,n =

Hm,n+1 −Hm,n ≤ 0 for m ≥ n ≥ 0. If

(3.18) lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

[

Hm,nΨn − (dn−σ)γ (ρn+1)
2

23−γρnδn−σ

h2
m,n

]

= ∞,

where

Ψn = ρn

[

Kqn(1 − pn−σ)
γ +

21−γδn−σc
2
n+1−σα

2
n

(dn−σ)γ − ∆(cn−σαn−1)

]

,

αn = − ∆ρn (dn−σ)
γ

22−γρnδn−σcn+1−σ

, hm,n = −∆2Hm,n
√

Hm,n

, m > n ≥ 0.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Proof : Proceeding as in Theorem 3.1, we assume that Eq.(1.1) has a nonoscil-

latory solution, say xn−σ > 0 for all n ≥ n0. Let zn be as in (2.1), then zn is positive

and from Lemma 2.2 we see that (2.2) holds. From Lemma 2.1 there are two possible

cases. First, we consider the case when the Case (I) holds. Define the sequence {Wn}
by

Wn := ρn

[

cn∆ (dn∆zn)γ

zγ
n−σ

+ cn−σαn−1

]

.

Then follows the proof of Theorem 3.1, we obtain

∆Wn ≤ −ρnQn

+
∆ρn

ρn+1
Wn+1 −

21−γρnδn−σ

(dn−σ)γ

(

Wn+1

ρn+1
− cn+1−σαn

)2

+ρn∆(cn−σαn−1)

= −Ψn − 21−γρnδn−σ

(dn−σ)
γ ρ2

n+1

W 2
n+1.

Therefore, we have

(3.19)

m−1
∑

n=n1

Hm,nΨn ≤ −
m−1
∑

n=n1

Hm,n∆Wn +

m−1
∑

n=n1

Hm,n

21−γρnδn−σ

(dn−σ)
γ ρ2

n+1

W 2
n+1.

The remainder of the proof is similar to that of the proof of Theorem 3.2 and hence

is omitted. If Case (II) holds, we are back to the proof of Lemma 2.4 to prove that

(2.4) holds. The proof is complete.

Remark 3.4: Let f(u) = u, then K = 1 and γ = 1. Then From Theorem 3.2

the condition (3.16) reduces to the condition (7) of Theorem 3.1 in [13]. Also it is

clear that Theorem 3.2 is satisfied when f(u) > Ku and this implies that Theorem

3.2 extend and improve the results in [13] in the sense our results do no require the

condition (1.5) and also correct the misprint of definition of αn in [13].

As an immediate consequence of Theorem 3.4, we get the following:
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Corollary 3.6: Assume that all the assumptions of Theorem 3.4 hold, except

that the condition (3.18) is replaced by

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

Hm,nρn

×
[

Kqn(1 − pn−σ)
γ +

21−γδn−σc
2
n+1−σα

2
n

(dn−σ)γ − ∆(cn−σαn−1)

]

= ∞,

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

ρ2
n+1 (dn−σ)

γ

ρnδn−σ

h2
m,n <∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Remark 3.5: By choosing the sequence {Hm,n} in appropriate manners as be-

fore, we can derive other several oscillation criteria for Eq.(1.1). Then from Theorem

3.3 we have the following results.

Corollary 3.7: Assume that all the assumptions of Theorem 3.4 hold, except

that the condition (3.18) is replaced by

lim
m→∞

sup
1

mλ

m−1
∑

n=0

[

(m− n)λΨn − λ2ρ2
n+1 (dn−σ)

γ

23−γρnδn−σ

(m− n)λ−2

]

= ∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Corollary 3.8: Assume that all the assumptions of Theorem 3.4 hold, except

that the condition (3.18) is replaced by

lim
m→∞

sup
1

(log(m + 1))λ

×
m−1
∑

n=0

[

(

log
m+ 1

n+ 1

)λ

Ψn − λ2ρ2
n+1 (dn−σ)γ

23−γρnδn−σ

(

log
m + 1

n+ 1

)λ−2
]

= ∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Corollary 3.9: Assume that all the assumptions of Theorem 3.4 hold, except

that the condition (3.18) is replaced by

lim
m→∞

sup
1

m(λ)

m−1
∑

n=0

(m− n)(λ)

[

Ψn − ρ2
n+1 (dn−σ)

γ

23−γρnδn−σ

(

λ

m− n + λ− 1

)2
]

= ∞.

Then, every solution {xn} of Eq.(1.1) oscillates or satisfies (2.4).

Remark 3.6: If γ = 1 then Corollaries 3.7 and 3.8 reduce directly to Corollaries

3.2 and 3.3 in [13].
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4. APPLICATIONS

In this section we present some examples to illustrate our main results.

Example 4.1. Consider the following third order nonlinear neutral delay differ-

ence equation

(4.1) ∆2

(

n∆

(

xn +
n+ 1

n+ 2
xn−1

))γ

+ n2xn−2(1 + x2
n−2) = 0, n ≥ 2,

where τ = 1, σ = 2, cn = 1, dn = n, qn = n2, pn = n+1
n+2

and f(u) = u(1 + u2) ≥ u

with K = 1. From this we have δn =
∑n

n=0 cn = n(n+1)
2

. It is clear the conditions

(h1)−(h3) are satisfied. It remains to satisfy (h4), (h5) and the condition (3.1). From,

the definitions of cn, dn, pn and qn, we see that
∞
∑

n=n0

qn
(1 + pn−σ+τ )

γ =
∞
∑

n=2

n2

(1 + n
n+1

)
=

∞
∑

n=2

n2 (n+ 1)

(2n+ 1)

=

∞
∑

n=2

[

1

2
n2 +

1

4
n− 1

8
+

1

8 (2n+ 1)

]

= ∞.

Then (h4) holds. Also

∞
∑

n0

1

dn

[

n−1
∑

n0

1

ct

t−1
∑

n0

qs
(1 + ps−σ+τ )

γ

]
1

γ

=
1

2

∞
∑

n=2

1

n

[

n−1
∑

t=0

t−1
∑

s=0

s2(s+ 1)

s+ 1
2

]

≥ 1

2

∞
∑

n=2

1

n

[

n−1
∑

t=0

t−1
∑

s=0

s2

]

≥ 1

2

∞
∑

n=2

1

n

[

n−1
∑

t=0

t−1
∑

s=0

s

]

=
1

4

∞
∑

n=0

1

n

[

n−1
∑

t=0

t(t− 1)

]

≥ 1

12

∞
∑

n=0

1

n
n2(n− 3) = ∞.

Then (h5) holds. Now, by choosing ρn = n, we have

lim
n→∞

sup

n
∑

s=n0

[

Kρsqs(1 − ps−σ)
γ − (ds−σ)

γ (∆ρs)
2

23−γδs−σρs

]

= lim
n→∞

sup

n
∑

s=0

[

s2s(1 − s− 1

s
) − (s− 2)

2(s− 2)(s− 1)s

]

= lim
n→∞

sup
n
∑

s=0

[

s
2 − 1

2(s− 1)s

]

= ∞.

Consequently condition (3.1) is satisfied. Hence, by Theorem 3.1, every solution of

Eq.(4.1) oscillates or satisfies limn→∞(xn + n+1
n+2

xn−1) = 0.
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Example 4.2. Consider the following third order nonlinear neutral delay differ-

ence equation

∆

(

n∆

(

3
√
n∆

(

xn +
1

n+ 2
xn−1

))3
)

(4.2)

+
(n+ 2)3

(n+ 1)
x3

n−2(1 + x2
n−2) = 0, n ≥ 0,

where γ = 2, cn = n, dn = 3
√
n, qn = (n+2)3

(n+1)2
, pn = 1

n+2
and f(u) = u3(1 + u2) ≥ u3

with K = 1. From this we have δn =
∑n

n=0 cn = n(n+1)
2

and pn−σ+τ = 1
n+1

. It is

clear the conditions (h1) − (h3) are satisfied. It remains to satisfy (h4), (h5) and the

condition (3.13). From, the definitions of cn, dn, pn and qn, we see that
∞
∑

n=n0

qn
(1 + pn−σ+τ )

γ =

∞
∑

n=0

(n+ 2)3

(n+ 1)2

1

(1 + 1
n+1

)3
=

∞
∑

n=0

(n+ 1) = ∞.

Then (h4) holds. Also

∞
∑

n0

1

dn

[

n−1
∑

n0

1

ct

t−1
∑

n0

qs
(1 + ps−σ+τ )

γ

]
1

γ

=
∞
∑

n=0

1
3
√
n

[

n−1
∑

t=0

1

t

t−1
∑

s=0

(s+ 1)

]
1

3

=
∞
∑

n=0

1
3
√
n

[

1

2

n−1
∑

t=0

(t + 1)

]
1

3

=

∞
∑

n=0

1
3
√
n

[

1

4
n(n+ 1)

]
1

3

=
3

√

1

4

∞
∑

n=0

3
√
n + 1 = ∞.

and this proves (h5). Now, by choosing ρn = n and λ = 2, and Qn = Kqn(1− pn−σ)γ,

we have

lim
m→∞

sup
1

mλ

m−1
∑

n=0

(m− n)λ






ρnQn −

(ρn+1)
2
(

∆ρn

ρn+1
− λ(m−n−1)λ−1

(m−n)λ

)2

4
−

ρn







= lim
m→∞

sup
1

m2

m−1
∑

n=1

(m− n)2 ×






n

(n+ 2)3

(n+ 1)2

(

1 − 1

n

)2

−

(

1
n+1

− 2(m−n−1)
(m−n)2

)2

n(n− 1)







≥ lim
m→∞

sup
1

m2

m−1
∑

n=0

(m− n)2

×
[

1

n
(n+ 2)3 (n− 1)2

(n + 1)2 − (m2 − 4mn+ 3n2 − 2m+ 4n+ 2)
2

(n+ 1)2 (−m + n)4 n (n− 1)

]

≥ lim
m→∞

sup
1

m2

m−1
∑

n=0

(m− n)2

[

(n− 1)2 − (m2 − 4mn+ 3n2 − 2m+ 4n+ 2)
2

(n+ 1)2 (−m + n)4 n (n− 1)

]
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≥ lim
m→∞

sup
1

m2

m−1
∑

n=0

(m− n)2

[

(n− 1)2 − (m2 − 4mn+ 3n2 − 2m+ 4n+ 2)
2

(n+ 1)2 (−m + n)4 n (n− 1)

]

≥ lim
m→∞

sup
1

m2

m−1
∑

n=0

(m− n)2n−

− lim
m→∞

sup
1

m2

m−1
∑

n=0

(m2 − 4mn + 3n2 − 2m+ 4n+ 2)
2

(n + 1)2 (m− n)2 n (n− 1)

= lim
m→∞

sup
1

m2
(

1

12
m4 − 1

12
m2)

− lim
m→∞

sup
1

m2

m−1
∑

n=0

(m2 − 4mn + 3n2 − 2m+ 4n+ 2)
2

(n + 1)2 (m− n)2 n (n− 1)

= ∞.

Since

lim
m→∞

sup
1

m2

m−1
∑

n=0

(m2 − 4mn + 3n2 − 2m+ 4n+ 2)
2

(n+ 1)2 (m− n)2 n (n− 1)

≤ lim
m→∞

sup
1

m2

m−1
∑

n=0

(m− n)4 + 4(m− n)2 + 4(n+ 1)4

(n+ 1)2 (m− n)2 n (n− 1)

= lim
m→∞

sup
1

m2

m−1
∑

n=0

[

(m− n)2

(n + 1)2 n (n− 1)
+

4

(n+ 1)2 n (n− 1)

]

+ lim
m→∞

sup
1

m2

m−1
∑

n=0

[

4(n+ 1)4

(n + 1)2 (m− n)2 n (n− 1)

]

<∞.

Then (3.13) holds. It follows from Theorem 3.2 that every solution of Eq.(4.2) is

oscillatory or satisfies limn→∞(xn + 1
n+2

xn−1) = 0.

Open Problem.1: It would be interesting to study the oscillation behavior of

Eq.(1.1) when
∞
∑

n=n0

(

1

cn

)

<∞ and
∞
∑

n=n0

(

1

dn

)

<∞.

Open Problem 2: It would be interesting to study the oscillation behavior of

Eq.(1.1) when 0 < γ ≤ 1 and
∞
∑

n=n0

(

1

cn

)

=
∞
∑

n=n0

(

1

dn

)

= ∞,

or
∞
∑

n=n0

(

1

cn

)

<∞ and

∞
∑

n=n0

(

1

dn

)

<∞.
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