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ABSTRACT. The authors consider the nonlinear second order differential equation

(E)
(

a(t)|y′|p−1y′
)

′

+ r(t)|y|λ sgn y = 0,

where p > 0, λ > 0, a(t) > 0, r(t) > 0, and λ ≤ p (the sub-half-linear case). They give necessary

and sufficient conditions for equation (E) to be of the strong nonlinear limit-circle type and for (E)

to be of the strong nonlinear limit-point type. Examples illustrating the results are also included.
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1. INTRODUCTION

The study of the limit–point/limit–circle problem has its origins in the work of

Hermann Weyl [11] who considered the second order linear eigenvalue problem

(C) y′′ + r(t)y = θy, θ ∈ C,

and classified this equation to be of the limit–circle type if every solution belongs to

L2, i.e.,
∫ ∞

0

y2(σ) dσ < ∞,

and to be of the limit–point type if at least one solution y(t) does not belong to L2,

i.e.,
∫ ∞

0

y2(σ) dσ = ∞.

The limit–point/limit–circle problem then becomes that of determining conditions on

the coefficient function r that allows us to distinguish between these two cases. Weyl

showed that the linear equation (C) always has at least one square integrable solution

provided Im θ 6= 0. Thus, the problem reduces to whether the equation (C) has one
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(limit–point case) or two (limit–circle case) square integrable solutions; this is known

as the Weyl Alternative.

Weyl was also able to prove that if (C) is limit–circle for some θ0 ∈ C, then it is

limit–circle for all θ ∈ C. In particular, this is true for θ = 0, so that if we can show

that the equation

(L) y′′ + r(t)y = 0

is limit–circle, then equation (C) is limit–circle for all values of θ, and if (L) is not

limit–circle, then equation (C) is not limit–circle for any value of θ. However, for

this equation (L) we are not guaranteed that there is at least one square integrable

solution. Over the ensuing years there has been considerable interest in this problem

due to its relationship to the solution of certain boundary value problems. The

analogous problem for nonlinear equations is relatively new by comparison and is not

as extensively studied as the linear case.

In this paper, we consider the second order nonlinear differential equation

(1.1)
(

a(t)|y′|p−1y′
)′

+ r(t)|y|λ sgn y = 0,

where p > 0, λ > 0, a ∈ C1(R+), a1/pr ∈ AC ′
loc(R+), a(t) > 0, and r(t) > 0. Observe

that if λ = p, then equation (1.1) is the well-known half-linear equation. Where

convenient, we will refer to equation (1.1) as being of the super-half-linear type if

λ > p and of the sub-half-linear type if λ < p. Throughout this paper we will assume

that λ ≤ p.

We should immediately point out that the functions a and r as given here are

smooth enough to ensure that all nontrivial solutions are defined on R+ and are

different from zero in any neighborhood of ∞ (see, for example, Theorem 1 in [1] or

Lemma 1 in [4]). We will let

y[1](t) = a(t)|y′(t)|p−1y′(t),

and define the function R : R+ → R by

R(t) = a1/p(t)r(t).

For the nonlinear equation (1.1), the limit–point and limit–circle properties take the

following form (see [3, 4, 5, 6, 7]).

Definition 1.1. A solution y of equation (1.1) defined on R+ is said to be of the

nonlinear limit–circle type if

(NLC)

∫ ∞

0

|y(σ)|λ+1dσ < ∞,

and it is said to be of the nonlinear limit–point type otherwise, i.e., if

(NLP)

∫ ∞

0

|y(σ)|λ+1dσ = ∞.
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Equation (1.1) will be said to be of the nonlinear limit–circle type if every solution y

of (1.1) defined on R+ satisfies (NLC) and to be of the nonlinear limit–point type if

there is at least one solution y defined on R+ for which (NLP) holds.

A survey of known results on the linear and nonlinear problems as well as their

relationships to other properties of solutions such as boundedness, oscillation, and

convergence to zero, can be found in the recent monograph by Bartušek, Došlá, and

Graef [3]. Additional results can be found in the papers of Bartušek and Graef

[4, 5, 6, 7].

Our focus in this paper is on what we call strong nonlinear limit-point and strong

nonlinear limit-circle solutions of (1.1). The notion of a strong nonlinear limit-point

solution was first introduced in [5]. We let δ denote the constant

δ =
p + 1

p
.

Definition 1.2. A solution y of (1.1) is said to be of the strong nonlinear limit-point

type if
∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ = ∞

and
∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ .

Equation (1.1) is said to be of the strong nonlinear limit-point type if every nontrivial

solution is of the strong nonlinear limit-point type.

Analogously, we have the following definition.

Definition 1.3. A solution y of (1.1) is said to be of the strong nonlinear limit-circle

type if
∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ < ∞

and
∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ < ∞ .

Equation (1.1) is said to be of the strong nonlinear limit-circle type if every solution

is of the strong nonlinear limit-circle type.
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It will be convenient to define the following constants:

α =
p + 1

(λ + 2)p + 1
, β =

(λ + 1)p

(λ + 2)p + 1
, γ =

p + 1

p(λ + 1)
,

β1 =
(λ + 2)p + 1

(λ + 1)(p + 1)
, ω =

(λ + 1)(p + 1)

λ − p
for λ 6= p, and

ω1 =
λ − p

(λ + 1)(p + 1)
.

Notice that α = 1 − β. We define the function g : R+ → R by

g(t) = −
a1/p(t)R′(t)

Rα+1(t)
.

For any continuous function h : R+ → R, we let h+(t) = max{h(t), 0} and h−(t) =

max{−h(t), 0} so that h(t) = h+(t) − h−(t). For any solution y : R+ → R of (1.1),

we let

F (t) = Rβ(t)

[

a(t)

r(t)
|y′(t)|p+1 + γ|y(t)|λ+1

]

= Rβ(t)

(

|y[1](t)|δ

R(t)
+ γ|y(t)|λ+1

)

.(1.2)

Note that F > 0 on R+ for every nontrivial solution of (1.1) (see Theorem 1 in [1]).

Throughout the remainder of this paper, we will assume that

(1.3) lim
t→∞

g(t) = 0,

∫ ∞

0

|g′(σ)| dσ < ∞,

and

(1.4)

∫ ∞

0

(

a− 1
p (σ) + r(σ)

)

dσ = ∞ .

A solution y of (1.1) is said to be oscillatory if there exists a sequence of its zeros

tending to ∞; otherwise, it is nonoscillatory.

The next section contains some lemmas that are used to prove the main results

in this paper. The main results, their proofs, and some examples to illustrate our

results appear in Section 3.

2. PRELIMINARY LEMMAS

In this section, we will present some lemmas that will give some insight into the

behavior of solutions of equation (1.1) as well as facilitate the proofs of our main

results. Our first lemma is for both the half-linear and sub-half-linear cases.

Lemma 2.1. (i) If λ = p, then for every nontrivial solution y of (1.1), we have

(2.1) lim
t→∞

F (t) = C ∈ (0,∞) .
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(ii) If λ < p, then for every nontrivial solution y of (1.1), either (2.1) holds, or

(2.2) F (t) ≥ M
(

∫ ∞

t

|g′(σ)| dσ
)ω

,

where M is a positive constant depending on λ and p.

Proof. Parts (i) and (ii) follow from Theorems 17.6 and 17.5 in Mirzov [10], respec-

tively. Notice that apart from the values of λ, the behaviors of F in (2.1) and (2.2)

are mutually exclusive.

The following lemma is a consequence of Lemma 2.5 of Bartušek and Graef [6].

Lemma 2.2. If λ < p and

(2.3) lim inf
t→∞

Rβ(t)
(

∫ ∞

t

|g′(σ)| ds
)−ω

exp
{

∫ t

0

(

R−1(σ)
)′

+
R(σ) dσ

}

= 0,

then (2.1) holds for every nontrivial solution y of (1.1).

In addition to yielding useful expressions for y and y[1], the following lemma gives

a characterization of the oscillatory solutions of (1.1).

Lemma 2.3. For every nontrivial solution y of equation (1.1), there exists a positive

function ϕ ∈ C1(R+) such that

(2.4)
y(t) = R− β

λ+1 (t)F
1

λ+1 (t)w
(

ϕ(t)
)

,

y[1](t) = R
β

λ+1 (t)F
p

p+1 (t)w[1]
(

ϕ(t)
)

,

where w[1](s) = |w′(s)|p−1w′(s) and w is a periodic solution of the problem
(

|w′|p−1w′
)′

+ |w|λ+1w = 0 , w(0) = γ
−1

λ+1 , w′(0) = 0 .

Moreover,

(2.5) ϕ′(t) = a− 1
p (t)Rα(t)

[

F ω1(t) −
1

λ + 1
g(t)w

(

ϕ(t)
)

w[1]
(

ϕ(t)
)

]

,

and y is oscillatory if and only if limt→∞ ϕ(t) = ∞.

This result follows from Lemma 2 and Theorem 1 in [2]. Moreover, it follows

from (14) in [2] that

(2.6) max
t∈R+

|w(t)| = γ− 1
λ+1

and

(2.7) |w[1](t)| = 1 at all relative extrema of w[1].

Our next lemma shows that equation (1.1) always has an oscillatory solution and

provides additional information about the behavior of the function F for nonoscilla-

tory solutions.
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Lemma 2.4. (i) Equation (1.1) has an oscillatory solution.

(ii) For every nonoscillatory solution y of (1.1),

lim
t→∞

F (t) = ∞.

Proof. Part (i) follows from Theorem 2 in [2]. To prove (ii), notice that Lemma 2.1

(ii) implies lim
t→∞

F (t) ∈ (0,∞]. Let y be a nonoscillatory solution and suppose, to the

contrary, that

lim
t→∞

F (t) = C ∈ (0,∞) .

In view of the first part of (1.3), we then see that ϕ′(t) is eventually positive, and

since y is nonoscillatory, by Lemma 2.3 we have that ϕ(t) is bounded. Since (1.4)

holds, Lemma 6 in [2] implies
∫ ∞

0

a− 1
p (σ)Rα(σ) dσ = ∞ .

Thus, by L’Hôpital’s Rule, we have

0 = lim
t→∞

ϕ(t)
∫ t

0
a−1/p(σ)Rα(σ) dσ

= lim
t→∞

ϕ′(t)

a−1/p(t)Rα(t)

= lim
t→∞

[

F ω1(t) −
1

λ + 1
g(t)w

(

ϕ(t)
)

w[1]
(

ϕ(t)
)

]

= Cω1 6= 0 ,

and this contradiction completes the proof of the lemma.

Lemma 2.5. Assume that

(2.8) lim
t→∞

a′(t)

a1−β

p (t)rα(t)
= 0 ,

(2.9)

∫ ∞

0

R−β(σ) dσ = ∞,

and let y be a nontrivial solution of (1.1) such that lim
t→∞

F (t) = C ∈ (0,∞). Then

(2.10)

∫ ∞

0

|y(σ)|λ+1 dσ =

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ .

Proof. Let y be a nontrivial solution of (1.1) such that lim
t→∞

F (t) = C ∈ (0,∞). By

Lemma 2.4(ii), y is oscillatory. Moreover, there exists t0 ∈ R+ such that

(2.11)
C

2
≤ F (t) ≤ 2C for t ≥ t0 .
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From this and (1.2), we have
∫ t

t0

|y[1](σ)|δ

R(σ)
dσ + γ

∫ t

t0

|y(σ)|λ+1 dσ =

∫ t

t0

F (σ)R−β(σ) dσ

≥
C

2

∫ t

t0

R−β(σ) dσ(2.12)

for t ≥ t0. Now, (2.9) and (2.12) imply that either

(2.13)

∫ ∞

0

|y(σ)|λ+1 dσ = ∞ or

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞.

Furthermore,
∫ t

t0

|y(σ)|λ+1 dσ = −

∫ t

t0

y(σ)(y[1](σ))′

r(σ)
dσ = −

y(t)y[1](t)

r(t)
+

y(t0)y
[1](t0)

r(t0)

+

∫ t

t0

|y[1](σ)|δ

R(σ)
dσ +

∫ t

t0

( 1

r(σ)

)′

y(σ)y[1](σ) dσ.(2.14)

In view of (2.4), (2.6), and (2.7), we have

(2.15)
∣

∣y(t)y[1](t)
∣

∣ ≤ γ− 1
λ+1 F β1(t) ≤ γ− 1

λ+1 (2C)β1 := C1 , t ≥ t0 .

Moreover,

(2.16)

∫ t

t0

∣

∣

∣

( 1

r(σ)

)′∣
∣

∣
dσ =

∫ t

t0

∣

∣

∣

(a
1
p (σ)

R(σ)

)′∣
∣

∣
dσ

≤

∫ t

t0

|a′(σ)|

p a(σ)r(σ)
dσ +

∫ t

t0

|g(σ)|R−β(σ) dσ,

and using L’Hôpital Rule, (2.8), and (2.9), we obtain

(2.17)

lim
t→∞

∫ t

t0

|a′(σ)|

a(σ)r(σ)
dσ
(

∫ t

t0

R−β(σ) dσ
)−1

= lim
t→∞

|a′(t)|

a(t)r(t)
Rβ(t)

= lim
t→∞

|a′(t)|

a1−β

p (t)rα(t)
= 0 .

We will now prove that the first integral in (2.10) is divergent, so suppose

(2.18)

∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ < ∞ .

Then (2.13) implies

(2.19)

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ .
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From the fact that lim
t→∞

g(t) = 0 and that (2.12), (2.17), (2.18), and (2.19) hold, we

can choose T ≥ t0 such that

∣

∣g(t)
∣

∣ ≤
C

4C1
,

∫ t

t0

|y[1](σ)|δ

R(σ)
dσ ≥

C

3

∫ t

t0

R−β(σ) dσ,

and
C1

p

∫ t

t0

|a′(σ)|

a(σ)r(σ)
dσ ≤

C

24

∫ t

t0

R−β(σ) dσ

for t ≥ T . Hence, (2.14), (2.15) and (2.16) yield
∫ t

t0

∣

∣y(σ)
∣

∣

λ+1
dσ ≥ C2 −

y(t)y[1](t)

r(t)
+

∫ t

t0

|y[1](σ)|δ

R(σ)
dσ

−
C1

p

∫ t

t0

|a′(σ)|

a(σ)r(σ)
dσ −

C

4

∫ t

t0

R−β(σ) dσ

≥ C2 −
y(t)y[1](t)

r(t)
+

C

24

∫ t

t0

R−β(σ) dσ(2.20)

for t ≥ T and some constant C2. Since y is oscillatory, if we take an increasing

sequence {tn}
∞
1 of zeros of y with t1 ≥ T , then (2.20) contradicts (2.9). Thus,

∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dt = ∞ .

We next prove the second integral in (2.10) is divergent. To the contrary, suppose

that

(2.21)

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ < ∞ ;

then, the first integral in (2.10) diverges. Similar to what we did above, in view of

(2.10), (2.11), (2.17), (2.21), and the equality in (2.12), we can choose T1 ≥ t0 so that

(2.22)

∣

∣g(t)
∣

∣ ≤
C

12C1

,

∫ t

t0

∣

∣y(σ)
∣

∣

λ+1
dσ ≥

C

3

∫ t

t0

R−β(σ) dσ, and

C1

p

∫ t

t0

|a′(σ)|

a(σ)r(σ)
dσ ≤

C

12

∫ t

t0

R−β(σ) dσ

for t ≥ T1. Then (2.14), (2.15), (2.16), and (2.22) yield

(2.23)

C

3

∫ t

t0

R−β(σ) dσ ≤

∫ t

t0

|y(σ)|λ+1 dσ

≤ C3 −
y(t)y[1](t)

r(t)
+

C1

p

∫ t

t0

|a′(σ)|

a(σ)r(σ)
dσ +

C

12

∫ t

t0

R−β(σ) dσ

≤ C3 −
y(t)y[1](t)

r(t)
+

C

6

∫ t

t0

R−β(σ) dσ

for t ≥ T1 and some constant C3. Again taking an increasing sequence of zeros of y

tending to ∞, (2.23) contradicts (2.9).
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Remark 2.6. We wish to point out that, except for part (ii) of Lemma 2.4, Lemmas

2.3–2.5 hold without requiring λ ≤ p. A version of part (ii) of Lemma 2.4 can be

proved for λ > p, but in that case, limt→∞ F (t) = 0.

Remark 2.7. From the proof of Lemma 2.5, we see that we could replace condition

(2.8) by asking instead that

(2.24) lim
t→∞

∫ t

t0

|a′(σ)|

a(σ)r(σ)
dσ
(

∫ t

t0

R−β(σ) dσ
)−1

= 0.

An easy modification of the proof of Lemma 2.5 also shows that (2.8) can be replaced

by the the condition

(2.25)

∫ ∞

0

∣

∣

∣

∣

(

1

r(σ)

)′∣
∣

∣

∣

dσ < ∞.

The following lemma gives some properties of the nonoscillatory solutions of

equation (1.1).

Lemma 2.8. (i) If

(2.26)

∫ ∞

0

a− 1
p (σ) dσ = ∞,

then any nonoscillatory solution y of (1.1) satisfies y(t)y ′(t) > 0 for all large t.

(ii) If

(2.27)

∫ ∞

0

a− 1
p (σ) dσ < ∞,

then there exists R0 > 0 such that R0 ≤ R(t) for t ∈ R+.

(iii) If λ < p, (2.2) and (2.27) hold, and

(2.28) lim
t→∞

Rβ(t)

(
∫ ∞

t

|g′(σ)| dσ

)−ω

= 0,

then no nonoscillatory solution y of (1.1) satisfies lim
t→∞

y(t) = C ∈ (−∞,∞).

Proof. Part (i) is straight forward. To prove (ii), first note that lim
t→∞

g(t) = 0 implies

there exists t0 ∈ R+ such that

−1 ≤ −g(t) =
a1/p(t)R′(t)

R1+α(t)
,

for t ≥ t0. Thus,

−a−1/p(t) ≤
R′(t)

R1+α(t)

for t ≥ t0, and so

(2.29) −∞ < −

∫ ∞

0

a−1/p(σ) dσ ≤
1

α

(

R−α(t0) − R−α(t)
)

for t ≥ t0. If lim inf
t→∞

R(t) = 0, then (2.29) gives us a contradiction. Hence, there exists

R0 > 0 such that R0 ≤ R(t) for t ∈ R+.
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Finally, to prove (iii), suppose that y satisfies

(2.30) lim
t→∞

∣

∣y(t)
∣

∣ = C ∈ [0,∞) .

By Lemma 2.3 and inequality (2.2),

∣

∣y(t)
∣

∣

λ+1
= R−β(t)F (t)

∣

∣wλ+1 (ϕ(t))
∣

∣ ≥ MR−β(t)
(

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ
)ω∣
∣wλ+1

(

ϕ(t)
)
∣

∣ .

Hence, (2.30) and the assumptions in this part of the lemma imply lim
t→∞

wλ+1
(

ϕ(t)
)

=

0.

From Lemma 2.4, we have that

lim
t→∞

F (t) = ∞.

In view of (1.3), (2.6), and (2.7), we see from (2.5) that ϕ(t) is increasing. Since y is

nonoscillatory, ϕ(t) is bounded. It then follows from the differential equation for w

that w
(

ϕ(t)
)

→ 0 implies w[1]
(

ϕ(t)
)

approaches a relative extrema, so (2.7) implies

(2.31) lim
t→∞

∣

∣w′
(

ϕ(t)
)
∣

∣ = 1.

By part (ii) of this lemma, R(t) ≥ R0 > 0 for t ∈ R+, so (2.31), the second equality

in (2.4), and (2.2) imply
∣

∣y′(t)
∣

∣

p+1
= a− p+1

p (t)Rα(t)F (t) | w′
(

ϕ(t)
)
∣

∣

p+1

≥ a− p+1
p (t)R−β(t)

(

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ
)ω∣
∣w′
(

ϕ(t)
)
∣

∣

p+1
R0M.

Let t0 ∈ R+ be such that y 6= 0 and
∣

∣w′
(

ϕ(t)
)
∣

∣ ≥ 1
2

on [t0,∞). Then,

∣

∣y(t) − y(t0)
∣

∣ ≥

(

R0M

2

)
1

p+1

× min
t0≤t≤∞

[(

R−β(t)
(

∫ ∞

t

|g′(σ)| dσ
)ω) 1

p+1
]

∫ t

t0

a−1/p(σ) dσ → ∞

as t → ∞. This contradiction to (2.30) completes the proof of the lemma.

Example 2.9. Consider equation (1.1) with a ≡ 1, p = 1, λ < 1, r(t) = tδ, δ ∈ R,

and t ≥ 1, that is, the equation

(2.32) y′′ + tb|y|λ sgn y = 0 , t ≥ 1 .

Then (1.3) holds if b > −(λ + 3)/2 and (2.3) holds if b > −(λ + 1). (Since λ < 1,

these reduce to b > −(λ+1).) Condition (2.9) holds if b ≤ (λ+3)/(λ+1) while (1.4)

and (2.8) are automatic. Part (i) of Lemma 2.8 also applies to equation (2.32).

Our next two lemmas require that R be small in some sense.
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Lemma 2.10. Assume that λ < p and that (2.2) and (2.28) hold. Then any oscilla-

tory solution y of equation (1.1) is unbounded. Moreover, if

(2.33) a−1/p(t)R
1

p+1 (t) ≤ B1 < ∞

for t ∈ R+, then
∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ = ∞ .

Proof. Let y be an oscillatory solution of (1.1). Then from (2.2) and Lemma 2.3, a

function ϕ exists such that, if {tk}
∞
1 is an increasing sequence of relative extrema of

y, then

(2.34)

∣

∣yλ+1(tk)
∣

∣ = R−β(tk)F (tk)
∣

∣wλ+1
(

ϕ(tk)
)
∣

∣

≥ MR−β(tk)
(

∫ ∞

tk

∣

∣g′(σ)
∣

∣ dσ
)ω
∣

∣wλ+1
(

ϕ(tk)
)
∣

∣.

At the same time, (2.4) implies that y has a local extrema if and only if w has a local

extrema, and by (2.6), we have wλ+1
(

ϕ(tk)
)

= γ−1. From this and (2.28), we obtain

that lim
k→∞

∣

∣y(tk)
∣

∣ = ∞, and so y is unbounded.

Now let {τk}
∞
1 be a sequence such that τk < tk < τk+1, y(τk) = 0, and y(t) > 0

on (τk, tk); note that y′(tk) = 0, k = 1, 2, . . . . From (2.2), we have

F ω1(t) ≤ Mω1

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ,

so from (2.5), we obtain

ϕ′(t) ≤ a− 1
p (t)Rα(t)

[

C1

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ −
1

λ + 1
g(t)w

(

ϕ(t)
)

w[1]
(

ϕ(t)
)

]

,

where C1 = Mω1 . Now (1.3) implies that g is of bounded variation on R+, and since

lim
t→∞

g(t) = 0, we see that
∣

∣g(t)
∣

∣ ≤
∫∞

t

∣

∣g′(σ)
∣

∣ dσ for t ∈ R+. From this, (2.6), and

(2.7), we have

(2.35) ϕ′(t) ≤ C2a
−1/p(t)Rα(t)

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ , C2 = C1 + γ− 1
λ+1

/

(λ + 1) .

Then, from (2.28), (2.33), (2.34) with tk replaced by t, and (2.35), we have
∫ tk

τk

∣

∣y(σ)
∣

∣

λ+1
dσ

≥ M max
τk≤t≤tk

[

R−β(t)
(

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ
)ω

a
1
p (t)R−α(t)

(

∫ ∞

t

∣

∣g′(σ) dσ
)−1]

×

∫ tk

τk

a− 1
p (s)Rα(s)

∫ ∞

s

∣

∣g′(σ)
∣

∣ dσwλ+1
(

ϕ(s)
)

ds

≥
M

C2
max

τk≤t≤tk

{[

R−β(t)
(

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ
)ω]1− 1

ω

a
1
p (t)R− 1

p+1

}

×

∫ tk

τk

wλ+1
(

ϕ(σ)
)

ϕ′(σ) dσ → ∞
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as k → ∞ since
ϕ(tk)
∫

ϕ(τk)

wλ+1(z) dz = const. > 0 for any k ∈ {1, 2, . . . } due to the

periodicity of w. This completes the proof of the lemma.

Lemma 2.11. Let y be an unbounded solution of (1.1) and assume that there is a

positive constant B2 such that

(2.36) R′
−(t)/R(t) < B2

for t ∈ R+. Then
∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞.

Proof. Let Z(t) = F (t)R−β(t). Then (1.2) and the fact that y is unbounded imply Z

is unbounded as well. On the other hand, suppose that
∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = C < ∞.

Then, it is easy to see that Z ′(t) = − R′(t)
R2(t)

∣

∣y[1](t)
∣

∣

δ
and

Z(t) = Z(0) +

∫ ∞

0

Z ′(s) ds = Z(0) −

∫ t

0

R′(σ)

R2(σ)

∣

∣y[1](σ)
∣

∣

δ
dσ

≤ Z(0) +

∫ t

0

R′
−(σ)

R2(σ)

∣

∣y[1](σ)
∣

∣

δ
dσ ≤ Z(0) + B2C < ∞ .

This contradiction proves the lemma.

Our next and final lemma gives a useful representation for the function F .

Lemma 2.12. Let y be a nontrivial solution of (1.1). Then

F (t) = R−α(t)
[

K1 + K2

∫ t

0

R′(σ)
∣

∣y(σ)
∣

∣

λ+1
dσ
]

with K1 = Rα(0)F (0) > 0 and K2 = α(1 + γ) > 0.

Proof. Let C1 = 1 + γ; then (1.2) yields

F ′(t) = βR−α(t)R′(t)
( |y[1](t)|δ

R(t)
+ γ|y(t)|λ+1

)

+ Rβ(t)
(

R−1(t)
)′∣
∣y[1](t)

∣

∣

δ

= −α
R′(t)

Rα(t)

( |y[1](t)|δ

R(t)
−
∣

∣y(t)
∣

∣

λ+1
)

= −α
R′(t)

Rα(t)

( F (t)

Rβ(t)
− C1

∣

∣y(t)
∣

∣

λ+1
)

= −α
R′(t)

R(t)
F (t) + αC1

R′(t)

Rα(t)

∣

∣y(t)
∣

∣

λ+1
.
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Integrating, we obtain

F (t) = exp

{

−α

∫ t

0

R′(σ)

R(σ)
dσ

}[
∫ t

0

αC1
R′(σ)

Rα(σ)

∣

∣y(σ)
∣

∣

λ+1

× exp

{

α

∫ σ

0

R′(s)

R(s)
ds

}

dσ + F (0)

]

,

or

F (t) = R−α(t)

[

K1 + K2

∫ t

0

R′(σ)
∣

∣y(t)
∣

∣

λ+1
dσ

]

for t ∈ R+.

3. MAIN RESULTS

Theorem 3.1. Suppose that (2.8) holds and that either λ = p, or λ < p and (2.3)

holds.

(a) The following statements are equivalent:

(i) Equation (1.1) is of the nonlinear limit-circle type;

(ii)

(3.1)

∫ ∞

0

R−β(σ) dσ < ∞ ;

(iii)
∫∞

0
|y[1](σ)|δ

R(σ)
dσ < ∞ for all solutions of (1.1).

That is, equation (1.1) is of the strong nonlinear limit-circle type if and only if (3.1)

holds.

(b) The following statements are equivalent:

(iv) Every nontrivial solution of (1.1) is of the nonlinear limit-point type;

(v)

(3.2)

∫ ∞

0

R−β(σ) dσ = ∞;

(vi)
∫∞

0
|y[1](σ)|δ

R(σ)
dσ = ∞ for every nontrivial solutions of (1.1).

That is, equation (1.1) is of the strong nonlinear limit-point type if and only if (3.2)

holds.

Proof. (a) Lemmas 2.1 and 2.2 imply (2.1) holds for every nontrivial solution of (1.1).

Therefore, F is bounded, say

(3.3) C1 < F (t) < C2
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for some constants C1, C2 > 0 and all t ∈ R+. From (1.2) and (3.3), we have

∞ > C2

∫ ∞

0

R−β(σ) dσ ≥

∫ ∞

0

F (σ)R−β(σ) dσ

=

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ + γ

∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ ≥ C1

∫ ∞

0

R−β(σ) dσ.

From this and Lemma 2.5 we see that the three conclusions in part (a) are equivalent.

(b) If (3.2) holds, then Lemma 2.5 implies that every nontrivial solution y of

(1.1) satisfies
∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ = ∞ and

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ .

Hence, (v) implies both (iv) and (vi).

Suppose that either (iv) or (vi) holds. Then there exists a nontrivial solution y

of (1.1) such that either
∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ = ∞ or

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ .

But from part (a), this implies (3.1) fails. This completes the proof of the theorem.

Remark 3.2. Theorem 3.1 includes as special cases the linear and sublinear parts

of Theorems 3.1 and 3.2 in [5]. If we use condition (2.25) in place of (2.8) in Lemma

2.5, then Theorem 3.1 (b) includes a part of Theorem 3.4 (i) in [6] as a special case.

Theorem 3.3. Assume that (2.8), (2.26), (2.33), and (2.36) hold and there is a

positive constant R1 such that

(3.4) R(t) ≤ R1

for t ∈ R+. Then every nontrivial solution of (1.1) satisfies

(3.5)

∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ = ∞ and

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ ,

that is, equation (1.1) is of the strong nonlinear limit-point type.

Proof. First note that the hypotheses of the theorem imply that conditions (2.9) and

(2.28) hold. Let y be a nontrivial solution of (1.1). Then, by Lemma 2.1, either (2.1)

or (2.2) holds. If (2.1) holds, the conclusion follows from Lemma 2.5.

Suppose (2.2) holds. In view of Lemma 2.1, we have λ < p. If y is an oscillatory

solution, then the conclusion follows from Lemmas 2.10 and 2.11. If y is nonoscillatory,

then Lemma 2.8(i) implies |y| is increasing for large t. If lim
t→∞

∣

∣y(t)
∣

∣ = ∞, then clearly

the first integral in (3.5) diverges, and the rest of the statement follows from Lemma
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2.11. If lim
t→∞

∣

∣y(t)
∣

∣ = C ∈ (0,∞), then again the first integral in (3.5) diverges, and

(1.2) and (2.2) imply

γCλ+1 +
|y[1](t)|δ

R(t)
= F (t)R−β(t) ≥ R−β

1 M
(

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ
)ω

→ ∞

as t → ∞. Hence, limt→∞ |y[1](t)|δ/R(t) = ∞ and so the second integral in (3.5)

diverges. This completes the proof of the theorem.

Remark 3.4. It should be clear from the proof of Theorem 3.3 that condition (3.4)

can be removed if we instead require that conditions (2.9) and (2.28) hold.

Remark 3.5. Theorem 3.3 includes Theorem 3.6 (i) in [5] as a special case.

Our final theorem is also a strong nonlinear limit–point result.

Theorem 3.6. Assume that λ < p, (2.8), (2.27), and (2.36) hold, and there is a

positive constant B3 such that

(3.6) R′(t) ≤ B3

for t ∈ R+. If (2.28) holds, then any nontrivial solution y of (1.1) satisfies

(3.7)

∫ ∞

0

∣

∣y(σ)
∣

∣

λ+1
dσ = ∞ and

∫ ∞

0

|y[1](σ)|δ

R(σ)
dσ = ∞ ,

that is, equation (1.1) is of the strong nonlinear limit-point type.

Proof. First observe that (3.6) implies that (2.9) holds. Let y be a nontrivial solution

of (1.1); then, by Lemma 2.1, either (2.1) or (2.2) holds.

If (2.1) holds, then the statement follows from Lemma 2.5, so assume (2.2) holds.

If y is oscillatory, then Lemmas 2.10 and 2.11 imply the second integral in (3.7)

diverges. To prove that the first integral in (3.7) diverges, first observe that Lemma

2.8 (ii) implies R(t) ≥ R0 for t ∈ R+ and some R0 > 0. Then, from Lemma 2.12 and

inequality (2.2), we have

R−β(t)
(

∫ ∞

t

∣

∣g′(σ)
∣

∣ dσ
)ω

≤ R−β(t)F (t)/M

= R−1(t)
[

K1 + K2

∫ t

0

R′(σ)
∣

∣y(σ)
∣

∣

λ+1
dσ
]/

M

≤ R−1
0

[

K1 + K2B3

∫ t

0

∣

∣y(σ)
∣

∣

λ+1
dσ
]/

M,

and the desired conclusion follows from (2.28). Finally, if y is nonoscillatory, Lemma

2.8 (iii) implies lim
t→∞

∣

∣y(t)
∣

∣ = ∞, and the divergence of the first integral in (3.7) is

immediate. The divergence of the second integral follows from Lemma 2.11. This

completes the proof of the theorem.
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Remark 3.7. Alternate versions of Theorems 1, 2, and 3 hold if we replace condition

(2.8) with either (2.24) or (2.25).

We conclude this paper with some examples.

Example 3.8. Consider the equation

(3.8)
(

|y′|3y′
)′

+ tby3 = 0, t ≥ 1,

that is, in equation (1.1) we have a(t) ≡ 1, r(t) = tb, p = 4, and λ = 3. Condition

(1.3) holds if bα > −1, that is, if b > −21/5, and condition (2.3) holds if b > −4. By

Theorem 3.1, we then have that equation (3.8) is of the strong nonlinear limit–circle

(limit–point) type if and only b > 21/16 (−4 < b ≤ 21/16).

Example 3.9. Consider the equation

(3.9)
(

eat|y′|p−1y′
)′

+ ebt|y|λ sgn y = 0, t ≥ 0,

with λ ≤ p. Assume that

a

p
+ b > 0, b

(

p + 1

λ + 1

)

> a,

and either a ≤ 0 or b ≥ 0. If either (i) λ = p, or (ii) λ < p and a < b, then Theorem

3.1 (a) implies that equation (3.9) is of the strong nonlinear limit–circle type.

Example 3.10. Consider the equation

(3.10)
(

|y′|p−1y′
)′

+ tb|y|λ sgn y = 0, t ≥ 1.

If p ≥ λ > 0 and 0 ≥ b > −[(λ+2)p+1]/(p+1), then all the hypotheses of Theorem

3.3 are satisfied, so equation (3.10) is of the strong nonlinear limit–point type.

Example 3.11. Consider the equation

(3.11)
(

|y′|λ−1y′
)′

+ tb|y|λ sgn y = 0, t ≥ 1.

By Theorem 3.1, (3.11) is of the strong nonlinear limit-circle type if and only if

b > (λ+1)/λ, and it is of the strong nonlinear limit-point type if and only if (λ+1)/λ ≥

b > −(λ + 1).

A concluding note about the covering hypothesis (1.3) seems appropriate. It

should not be a surprise that an integral condition like this one must hold when

discussing the limit-point/limit-circle behavior of solutions. In fact, if we let p = 1,

λ = 1, and a(t) ≡ 1, then
∫ ∞

0

|g′(σ)| dσ =

∫ ∞

0

∣

∣

∣

∣

r′′(σ)

r3/2(σ)
−

3

2

(r′(σ))2

r5/2(σ)

∣

∣

∣

∣

dσ < ∞,
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which is essentially the well-known condition of Dunford and Schwartz [9, p. 1414]
∫ ∞

0

∣

∣

∣

∣

r′′(σ)

r3/2(σ)
−

5

4

(r′(σ))2

r5/2(σ)

∣

∣

∣

∣

dσ < ∞

for second order linear equations. For a discussion of the relationship between the

linear and nonlinear limit-point/limit-circle properties, we refer the reader to the

monograph of Bartušek, Došlá, and Graef [3].
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[2] M. Bartušek, M. Cecchi, Z. Došlá, M. Marini, On oscillatory solutions of quasilinear differential

equations, J. Math. Anal. Appl. 320 (2006), 108–120.
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