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ABSTRACT. Let a, σ and q be constants with a > 0, 0 < σ ≤ ∞, and q ≥ 0. This article studies

the following degenerate semilinear parabolic initial-boundary value problem,

ξquτ − uξξ = f (u) for 0 < ξ < a, 0 < τ < σ,

u(ξ, 0) = u0(ξ) ≥ 0 for 0 ≤ ξ ≤ a,

u(0, τ) = 0 = uξ(a, τ) for τ > 0.

We assume that f ∈ C2 ([0,∞)), f(0) ≥ 0, f ′(u) > 0 for u > 0, f ′′ (u) ≥ 0, (s/f (s))
′ ≤ 0, and

∫

∞

k1

f−1 (s) ds < ∞, where k1 is any positive constant. The function u0(ξ) ∈ C2+α([0, a]) for some

constant α ∈ (0, 1) is positive for ξ > 0 such that u0 (0) = 0 and u′

0 (a) = 0. Existence of a unique

classical solution u is shown. A criterion for u to blow up in a finite time τb, and an upper bound

for τb are given. Using a lower solution and an upper solution, we investigate conditions on u0(ξ),

q and f (u) such that either u blows up completely or the blow-up occurs only at the point x = a.

AMS (MOS) Subject Classification. 35K57, 35K60, 35K65.

1. INTRODUCTION

Let a, σ and q be constants with a > 0, 0 < σ ≤ ∞, and q ≥ 0. We consider the

following degenerate semilinear parabolic initial-boundary value problem,

ξquτ − uξξ = f (u) for 0 < ξ < a, 0 < τ < σ,

u(ξ, 0) = u0(ξ) ≥ 0 for 0 ≤ ξ ≤ a,

u(0, τ) = 0 = uξ(a, τ) for τ > 0.

Let ξ = ax, τ = aq+2t, D = (0, 1), Ω = D× (0, T ), D̄ and Ω̄ be the closures of D and

Ω respectively, and Lu = xqut − uxx. In the sequel, let ki (i = 1, 2, 3, . . . , 9) denote
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positive constants. The above problem is transformed into

(1.1)











Lu = a2f (u) in Ω,

u(x, 0) = u0(x) on D̄,

u(0, t) = 0 = ux(1, t), 0 < t < T ,

where T = σ/aq+2 ≤ ∞. We assume that f ∈ C2 ([0,∞)), f(0) ≥ 0, f ′ (u) > 0 for

u > 0, f ′′(u) ≥ 0,
∫∞

k1
f−1 (s) ds < ∞, (s/f (s))′ ≤ 0, u0(x) ∈ C2+α(D̄) for some

constant α ∈ (0, 1), u0(0) = 0, u′0 (1) = 0, and u0 (x) > 0 for x > 0.

A solution u of the problem (1.1) is said to blow-up at the point (x̄, tb) if there

exists a sequence {(xn, tn)} such that u (xn, tn) → ∞ as (xn, tn) → (x̄, tb). The blow-

up of u is complete at tb if at tb, u blows up at every point x ∈ D̄. If at tb, u blows

up at only one point x ∈ D̄, then the blow-up is a single-point blow-up.

The blow-up of the solution for the degenerate semilinear parabolic equation

Lu = up subject to homogeneous first boundary conditions was studied by Floater [5]

for the case 1 < p ≤ q+ 1, and by Chan and Liu [2] for the case p > q+ 1. Chan and

Yang [3] investigated the complete blow-up of u for the problem (1.1) with ux(1, t)

and f (u) replaced by u(1, t) and f (u (x0, t)) for some fixed x0 ∈ D respectively.

In Section 2, we show existence of a unique classical solution u of the problem

(1.1). We investigate the conditions on u0(x) for u to blow up in a finite time tb, and

give an upper bound for tb. In Section 3, we establish a criterion for the complete

blow-up to occur when 1 < p ≤ q + 1. For the case p − 1 > q ≥ 0, we give, in

Section 4, a criterion for the single-point blow-up at x = 1.

2. EXISTENCE AND UNIQUENESS

Let ρ(x) in C1[0, 1] be an increasing function such that ρ(x) is 0 for x ≤ 0 and

1 for x ≥ 1. Also, let δ and t0 be positive constants with δ < 1/2, Dδ = (δ, 1),

ωδ = Dδ × (0, t0), D̄δ and ω̄δ be, respectively, the closures of Dδ and ωδ,

ρδ =











0, x ≤ δ

ρ(x
δ
− 1), δ < x < 2δ

1, x ≥ 2δ,

u0δ
(x) = ρδ(x)u0(x).

We note that

∂u0δ
(x)

∂δ
=











0, x ≤ δ

− x
δ2 ρ

′(x
δ
− 1)u0(x), δ < x < 2δ

0, x ≥ 2δ.

Since ρ is increasing, we have ∂u0δ
(x)/∂δ ≤ 0. It follows from 0 ≤ ρδ ≤ 1 that

u0δ
(x) ≤ u0(x).
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A proof analogous to that of Lemma 1 by Chan and Yuen [4] gives the following

comparison result.

Lemma 2.1. For any fixed t̄ ∈ (0, T ), and any bounded and nontrivial function

b(x, t) on D̄ × [0, t̄], if

(L− b) u ≥ (L− b) v in D × (0, t̄],

u0(x) ≥ v0(x), x ∈ D̄,

u(0, t) ≥ v(0, t), ux(1, t) ≥ vx(1, t), t ∈ (0, t̄],

then u ≥ v on D̄ × [0, t̄].

Let ω = D× (0, t0) for some positive number t0, and ω̄ be its closure. We modify

the proof of Lemma 2 of Chan and Liu [2] to prove the following existence result.

Lemma 2.2. There exists some positive constant t0 (< T ) such that the problem

(1.1) has a unique solution u ∈ C(ω̄) ∩ C2,1((0, 1] × [0, t0]).

Proof. We consider the problem,

(2.1)











Luδ = a2f(uδ) in Dδ × (0, t0] ,

uδ(x, 0) = u0δ
(x) on D̄δ,

uδ(δ, t) = 0 = uδx
(1, t) for 0 < t ≤ t0.

Let us construct an upper solution µ(x, t) for all uδ with µ(x, t) ∈ C2,1(ω̄) as follows:

let

θ1(x) =
x (2k2 + 1 − x)

2
,

where k2 is chosen such that k2 > 1/2, and u0(x) ≤ a2 (1 + f (0)) θ1(x). We note that

θ′1(x) = k2 + 1/2− x ≥ k2 − 1/2 > 0. Let ε be some positive constant in (0, 1/2) such

that f(θ1(ε) [a2 (1 + f (0))]) < 1 + f (0). Since f is continuous, there exists some t1

such that the initial-value problem,

(2.2) τ ′ (t) =
a2f (k2τ)

εqθ1 (ε)
, τ(0) = a2 (1 + f (0)) ,

has a unique solution for 0 ≤ t ≤ t1. Let us choose some constant t0 in (0, t1] such

that f (θ1 (ε) τ1 (t0)) ≤ 1 + f (0). Let µ(x, t) = θ1(x)τ1(t). Since xqθ1τ
′
1 ≥ 0, and

θ′′1(x) = −1, we obtain for any x ∈ [0, ε] and t ∈ (0, t0],

Lµ− a2f(µ) ≥ τ1 − a2f(θ1τ1) ≥ a2 (1 + f (0) − f(θ1 (ε) τ1 (t0))) ≥ 0.

For 0 ≤ x ≤ 1, θ1 (x) ≤ k2. Since θ1 and f are increasing functions, we have for

x ∈ (ε, 1],

Lµ− a2f(µ) ≥ εqθ1τ
′
1 (t) − a2f(θ1τ1) ≥ εqθ1

(

τ ′1 (t) − a2f (k2τ1)

εqθ1 (ε)

)

= 0

by (2.2). From construction, µ(x, 0) = a2 (1 + f (0)) θ1(x) ≥ u0(x), µ(0, t) = 0, and

µx(1, t) > 0. By Lemma 2.1, µ(x, t) ∈ C2,1(ω̄) is an upper solution.
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We note that x−q ∈ Cα,α/2 (ω̄δ), |a2x−qf(uδ)| ≤ a2δ−qf(uδ) for (x, t, uδ) ∈ ω̄δ ×R,

and u0δ
(x) ∈ C2+α

(

D̄δ

)

. Our boundary conditions are homogeneous, and 0 and µ

are lower and upper solutions. By Lemma 2.1, 0 ≤ uδ ≤ µ. Thus, a proof analogous

to that of Theorem 4.2.2 of Ladde, Lakshmikantham and Vatsala [6, p. 143] shows

that the problem (2.1) has a solution uδ ∈ C2+α,1+α/2(ω̄δ). Since ∂u0δ
(x)/∂δ ≤ 0, we

have uδ1 ≥ uδ2 in Ω̄δ2 if δ1 ≤ δ2. Therefore, limδ→0 uδ exists for all (x, t) ∈ ω̄. Let

u(x, t) = limδ→0 uδ(x, t). Using the singular index 3 (cf. Ladyženskaja, Solonnikov

and Ural’ceva [7, p. 351]), a proof similar to that in the proof of Lemma 2 of Chan

and Liu [2] shows that u(x, t) ∈ C(ω̄)∩C2,1((0, 1]× [0, t0]) is a solution of the problem

(1.1).

By Lemma 2.1, u(x, t) is unique. �

Let T be the supremum over t0 for which the problem (1.1) has a unique solution

u(x, t) ∈ C(ω̄) ∩ C2,1((0, 1] × [0, t0]). Then, the problem (1.1) has a unique solution

u(x, t) ∈ C(D̄ × [0, T )) ∩ C2,1((0, 1] × [0, T )). The proof of the following result is a

modification of that of Theorem 2.5 by Floater [5].

Theorem 2.3. If T <∞, then u is unbounded in Ω.

Proof. Let us suppose that u is bounded above by some positive constant M in Ω.

We would like to show that u can be continued into a time interval [0, T + t̃0] for some

positive t̃0. Let

K = max
{

a2f (M) , 1 + f (0) , a2 (1 + f (0))
}

,

θ̃1(x) =
K

2
x (2k2 + 1 − x) .

Then in Ω,

L
(

θ̃1 − u
)

= K − a2f (u) ≥ 0.

Also, θ̃1 (x) ≥ u0 (x), θ̃1 (0) = u (0, t), θ̃′1 > 0 for x ∈ D̄, and θ̃′1 (1) = K (k2 − 1/2) >

0 = ux (1, t) for t > 0. By Lemma 2.1, θ̃1 (x) ≥ u (x, t) for any t ≤ T . With θ̃1(x) as

the initial function at T , we are to construct an upper solution µ̃ (x, t) of u (x, t) on

D̄ × [T, T + t̃0] for some positive t̃0. Let ε̂ ∈ (0, 1/2) be some fixed positive constant

such that f(a2θ̃1(ε̂)) < 1+f (0) ≤ K. There exists some t2 such that the initial-value

problem,

τ ′ =
a2f(Kk2τ (t− T ))

ε̂qθ̃1(ε̂)
, τ(T − T ) = a2,

has a unique positive solution τ̃1(t−T ) for T ≤ t ≤ T+t2. Let µ̃(x, t) = θ̃1(x)τ̃1(t−T ),

and t̃0 be chosen such that 0 < t̃0 ≤ t2 and

f
(

θ̃1 (ε̂) τ̃1
(

t̃0
)

)

≤ 1 + f (0) ≤ K.

Since xq θ̃1τ̃
′
1 (t) ≥ 0, and θ̃′′1 (x) = −K, we obtain for any x ∈ (0, ε̂] and t ∈

[

T, T + t̃0
]

,

Lµ̃− a2f (µ̃) ≥ Kτ̃1 − a2f(θ̃1τ̃1) ≥ a2
(

K − f(θ̃1 (ε̂) τ̃1
(

t̃0
)

)
)

≥ 0.
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It follows from θ̃′′1 (x) = −K, τ̃1 (t− T ) ≥ a2 for t ∈
[

T, T + t̃0
]

, and θ̃1(x) ≤ Kk2

that for x ∈ (ε̂, 1] and t ∈
[

T, T + t̃0
]

,

Lµ̃− a2f (µ̃) ≥ ε̂q θ̃1τ̃
′
1 (t− T ) − a2f(θ̃1τ̃1 (t− T ))

≥ ε̂q θ̃1

(

τ̃ ′1 (t− T ) − a2f (Kk2τ̃1 (t− T ))

ε̂qθ̃1(ε̂)

)

= 0.

By Lemma 2.1, µ̃(x, t) is an upper solution of u on D̄ ×
[

T, T + t̃0
]

. As in Lemma

2.2, we can show that the problem (1.1) has a unique solution u(x, t) ∈ C(D̄ ×
[

0, T + t̃0
]

)∩C2,1((0, 1]×
[

0, T + t̃0
]

). This contradicts the definition of T , and hence

the theorem is proved. �

From Chan and Liu [2], the general solution of the Sturm-Liouville problem,

(2.3) ϕ′′ + λxqϕ = 0, ϕ(0) = 0, ϕ′(1) = 0,

is given by

ϕ(x) = A
√
xJ 1

q+2

(

2
√
λ

q + 2
x

q+2

2

)

+B
√
xJ− 1

q+2

(

2
√
λ

q + 2
x

q+2

2

)

,

where A and B are arbitrary constants, and J1/(q+2) and J−1/(q+2) denote Bessel

functions of the first kind of order 1/ (q + 2) and −1/ (q + 2) respectively. From

McLachlan [8, p. 197],

Jν (z) =

∞
∑

r=0

(−1)r zν+2r

2ν+2rr!Γ (ν + r + 1)
,

where Γ (s) =
∫∞
0
e−tts−1dt. From ϕ(0) = 0, we obtain B = 0, which gives

ϕ(x) = A
√
xJ 1

q+2

(

2
√
λ

q + 2
x

q+2

2

)

.

We have

ϕ′(x) = A
√
λx

q+1

2 J−1+ 1

q+2

(

2
√
λ

q + 2
x

q+2

2

)

.

From Watson [9, p. 479], the zeros 2
√
λi/ (q + 2) (i = 1, 2, 3, · · · ) of

J−1+ 1

q+2

(

2
√
λ

q + 2

)

are positive. Let

ϕi(x) =
(q + 2)1/2 x1/2J 1

q+2

(

2
√

λi

q+2
x

q+2

2

)

∣

∣

∣
J1+ 1

q+2

(

2
√

λi

q+2

)
∣

∣

∣

.

Then, {ϕi(x)} forms an orthonormal set with the weight function xq (cf. Chan and

Chan [1]).
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Let

E (t) =

∫

D

xqϕ1(x)u (x, t) dx,

where ϕ1 (x) denotes the eigenfunction corresponding to the fundamental eigenvalue

λ1.

Theorem 2.4. If

(2.4) λ1E (0) < a2f (E (0)) ,

then there exists some tb <∞ such that

lim
t→t−

b

max
x∈D̄

u(x, t) = ∞.

Furthermore,

(2.5) tb ≤
f(E (0))

a2f(E (0)) − λ1E (0)

∫ ∞

E(0)

dη

f(η)
<∞.

Proof. Multiplying the differential equation Lu = a2f(u) by ϕ1 and integrating over

x from 0 to 1, we obtain

E ′ (t) =

∫

D

uxxϕ1dx+

∫

D

a2f(u)ϕ1dx.

Using (2.3), integration by parts, and Jensen’s inequality for convex functions, we

have

E ′ (t) = −λ1E (t) + a2

∫

D

f(u)ϕ1dx

≥ −λ1E (t) + a2

∫

D

xqf(u)ϕ1dx

≥ f(E (t))

(

a2 − λ1E (t)

f(E (t))

)

.

From (s/f (s))′ ≤ 0 and (2.4), we have

(2.6) E ′ ≥ f(E)

(

a2 − λ1E (0)

f(E (0))

)

> 0.

It follows from E(0) > 0 that the function E(t) cannot be bounded for all t. Therefore,

there exists some tb (<∞) such that E(t) → ∞ as t → t−b . Using the Schwarz

inequality, we have

E(t) ≤
(

max
x∈D̄

u (x, t)

)(
∫

D

xqϕ2
1(x)dx

)1/2 (∫

D

xqdx

)1/2

≤
(

max
x∈D̄

u (x, t)

)

.

Hence, u blows up.

Integrating (2.6), we obtain (2.5). �
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3. COMPLETE BLOW-UP

It follows from Theorem 2.4 that if the initial data are sufficiently large, then the

solution u of the problem (1.1) blows up in a finite time tb. In the sequel, we assume

that the blow-up time tb is a fixed given number corresponding to a given initial

function u0 (x). We would like to construct a lower solution ψ(x, t) ∈ C2,1(D̄× [0, tb))

in the form θ2(x)τ2(t)η (t) that blows up completely over (0, 1] at tb.

Theorem 3.1. Let 1 < p ≤ q + 1, and

(3.1) f (u) = upf̃ (u) ,

where a2 min
0≤u<∞

f̃ (u) = k3 > 0. If u blows up, then u blows up completely, provided

(3.2) u0 (x) ≥ e(3q+5)(q+2)tb+
1

p−1

[

2

k3tb (p− 1)

]
1

p−1

xexq+1(1−x).

Proof. Let γ(x, t) = θ2(x)τ2(t), where θ2(x) = xexq+1(1−x), and

(3.3) τ ′2 (t) = −[(3q + 5) (q + 2) + k4]τ2, τ2(0) = e[(3q+5)(q+2)+k4]tb > 0

with k4 to be chosen later appropriately. We note that

τ2(t) = e[(3q+5)(q+2)+k4](tb−t)

is a positive decreasing function for any t ≥ 0. For any x ∈ D̄ and t ∈ [0, tb],

Lγ + k4x
qγ

= xq+1exq+1(1−x)τ ′2 − exq+1(1−x){(q + 1)xq + (q + 1)2 x2q+1

− 2 (q + 1) (q + 2)x2q+2 − (q + 2)xq+1 + (q + 2)2 x2q+3

+ (q + 1)2 xq − (q + 2)2 xq+1}τ2 + k4x
q+1exq+1(1−x)τ2

≤ xq+1exq+1(1−x) {τ ′2 + [(q + 2) (3q + 5) + k4] τ2}
= 0.

We note that γ(0, t) = θ2(0)τ2(t) = 0, and γx (1, t) = θ′2(1)τ2 (t) = 0. Let γ (x, 0) be

denoted by γ0 (x). From

γ(x, t) = xexq+1(1−x)e[(3q+5)(q+2)+k4](tb−t) > 0 for any x ∈ (0, 1],

we have γ0(0) = 0, and γ′0(1) = 0.

Let us construct a positive increasing function η(t) ∈ C1 ([0, tb)):

η (t) =

{

η1 (t) for t ∈
[

0, tb
2

]

,

η2 (t) for t ∈
[

tb
2
, tb
)

,

where

(3.4) η′1 = k4η1 for 0 < t ≤ tb
2

, η1(0) = η10
,
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(3.5) η′2 = k3η
p
2 for

tb
2
< t < tb, η2

(

tb
2

)

= η20
.

Here, the constants k4 and η10
are to be chosen such that η (t) is continuously differ-

entiable at t = tb/2 while the constant η20
is to be chosen such that η2 blows up at

t = tb.

For t ∈ (0, tb/2],

(3.6) xqη′ − k3γ
p−1ηp − k4x

qη ≤ xq (η′ − k4η) = 0.

Since q ≥ p− 1 > 0, it follows that for t ∈ (tb/2, tb),

(3.7) xqη′ − k3γ
p−1ηp − k4x

qη ≤ xqη′ − k3x
p−1ηp ≤ xq (η′ − k3η

p) = 0.

From (3.4) and (3.5),

η1 (t) = η
10
ek4t for 0 ≤ t ≤ tb

2
,

η2 (t) =

[

1

η1−p
20

− k3 (p− 1)
(

t− tb
2

)

]
1

p−1

for
tb
2
≤ t < tb.

To ensure that η2 (t) blows up at t = tb, we choose η1−p
20

= k3 (p− 1) tb/2. Therefore,

η2 (t) =

[

1

k3 (p− 1) (tb − t)

]
1

p−1

for
tb
2
≤ t < tb.

To ensure that η (t) ∈ C1 [0, tb), we need to choose η10
and k4 such that

η10
e

k4tb
2 =

[

2

k3 (p− 1) tb

]
1

p−1

,

k4η10
e

k4tb
2 = k3

[

2

k3 (p− 1) tb

]
p

p−1

.

Dividing the second equation by the first, we obtain

k4 =
2

(p− 1) tb
.

Thus,

η10
= e−

k4tb
2

[

2

k3 (p− 1) tb

]
1

p−1

= e−
1

p−1

[

2

k3 (p− 1) tb

]
1

p−1

.

Hence, η (t) ∈ C1 [0, tb).

Let ψ(x, t) = γ(x, t)η(t). Using (3.6), (3.7) and (3.1), we have

Lψ − a2f (ψ)

= xqγη′ + xqγtη − γxxη − a2γpηpf̃ (γη)

≤ xqγη′ + xqγtη − γxxη − k3γ
pηp

≤ γ
(

xqη′ − k3γ
p−1ηp − k4x

qη
)

+ η (xqγt − γxx + k4x
qγ)

≤ 0.
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Also, ψ(0, t) = γ(0, t)η(t) = 0, and ψx(1, t) = γx(1, t)η(t) = 0. Finally, we would like

to show that

ψ (x, 0) ≤ u0(x) for all x ∈ D̄.

From (3.2) and (3.3),

u0 (x) ≥ e(3q+5)(q+2)tb+
1

p−1

[

2

k3tb (p− 1)

]
1

p−1

xexq+1(1−x) = γ (x, 0) η10
= ψ (x, 0) .

By Lemma 2.1, ψ(x, t) is a lower solution of the problem (1.1). Since ψ(x, t) blows

up at tb at all points of (0, 1], it follows that u(x, t) blows up at t = tb at all points

of (0, 1]. For x = 0, we can find a sequence {(xn, tn)} such that (xn, tn) → (0, tb) and

limn→∞ u (xn, tn) → ∞. Thus, the blow-up set is D̄. �

4. SINGLE-POINT BLOW-UP

Let k5 be the smallest positive constant such that

(4.1) u0 (x) ≤ k5xe
xq+2(1−x).

Lemma 4.1. Let p− 1 > q ≥ 0. If

f (u) = upf̄ (u) ,

where

(4.2) a2 max
0≤u<∞

f̄ (u) = k6 ≤
2

ep+4(q+3)2tb(p−1) (p− 1) tbk
p−1
5

,

then there exists some positive constant k7 such that

(4.3) u (x, t) <
k7x

(tb − t)
1

p−1

for x ∈ D̄ and t ∈
[

tb
2
, tb

)

.

Proof. We would like to construct an upper solution Ψ(x, t) of u in the form θ3(x)τ3(t)η̄(t).

Let γ̄(x, t) = θ3(x)τ3(t), where θ3(x) = xexq+2(1−x), and

τ ′3 = 4 (q + 3)2 τ3, τ3(0) = e−4(q+3)2tb .

We have

τ3(t) = e−4(q+3)2(tb−t) ≤ 1.

For any x ∈ D̄ and any t ∈ [0, tb),

Lγ̄ = xq+1exq+2(1−x)τ ′3 − exq+2(1−x){(q + 2) xq+1(4.4)

+ (q + 2)2 x2q+3 − 2 (q + 2) (q + 3)x2q+4 − (q + 3)xq+2

+ (q + 3)2 x2q+5 + (q + 2)2 xq+1 − (q + 3)2 xq+2}τ3
≥ exq+2(1−x){xq+1τ ′3 − [(q + 2)xq+1 + (q + 2)2 x2q+3

+ (q + 3)2 x2q+5 + (q + 2)2 xq+1]τ3}

≥ xq+1exq+2(1−x){τ ′3 − [(q + 2) + (q + 2)2 + (q + 3)2
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+ (q + 2)2]τ3}

≥ xq+1exq+2(1−x)
[

τ ′3 − 4 (q + 3)2 τ3
]

= 0.

We note that γ̄(x, t) is positive for any fixed x ∈ (0, 1], γ̄(0, t) = θ3(0)τ3(t) = 0, and

γ̄x (1, t) = θ′3(1)τ3 (t) = 0. Since γ̄(x, 0) = e−4(q+3)2tbxexq+2(1−x), it is 0 at x = 0, and

its derivative with respect to x at x = 1 is 0.

Let η̄(t) ∈ C1 ([0, tb)) be a positive increasing function given by

η̄ (t) =

{

η̄1 (t) for t ∈
[

0, tb
2

]

,

η̄2 (t) for t ∈
[

tb
2
, tb
)

,

where

(4.5) η̄′1 = k8η̄1 for 0 < t ≤ tb
2

, η̄1(0) = η̄10
,

(4.6) η̄′2 (t) = k6e
p−1η̄p

2 for
tb
2
< t < tb, η̄2

(

tb
2

)

= η̄20
.

The constants k8 and η̄10
are to be chosen such that η̄(t) is continuously differentiable

at t = tb/2 while the constant η̄20
is to be chosen in such a way that η̄2 (t) blows up

at t = tb. From (4.5) and (4.6),

η̄1 (t) = η̄
10
ek8t for t ∈

[

0,
tb
2

]

,

η̄2 (t) =

[

1

η̄1−p
20

− k6ep−1 (p− 1)
(

t− tb
2

)

]
1

p−1

for t ∈
[

tb
2
, tb

)

.

To ensure that η̄2 (t) blows up at t = tb, we choose

η̄1−p
20

=
k6e

p−1 (p− 1) tb
2

.

Therefore,

η̄2 (t) =

[

1

k6ep−1 (p− 1) (tb − t)

]
1

p−1

for t ∈
[

tb
2
, tb

)

.

In order to ensure that η̄ (t) ∈ C1 [0, tb), we set η̄1 (tb/2) = η̄2 (tb/2), and η̄′1 (tb/2) =

η̄′2 (tb/2). We have

(4.7) η̄10
e

k8tb
2 =

[

2

k6ep−1 (p− 1) tb

]
1

p−1

,

k8η̄10
e

k8tb
2 = k6e

p−1

[

2

k6ep−1 (p− 1) tb

]
p

p−1

.

Dividing the second equation by the first, we obtain

k8 = k6e
p−1

[

2

k6ep−1 (p− 1) tb

]

=
2

(p− 1) tb
.
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This and (4.7) give

η̄10
= e−

1

p−1

[

2

k6ep−1 (p− 1) tb

]
1

p−1

.

Thus, η̄ (t) ∈ C1 [0, tb).

Since q < p− 1 and

max
t∈[0,tb/2]

η̄ (t) =

[

2

k6ep−1 (p− 1) tb

]
1

p−1

,

it follows that for any t ∈ (0, tb/2],

xqη̄′ − k6γ̄
p−1η̄p(4.8)

≥ xqη̄′ − k6x
p−1exq+2(1−x)(p−1)e−4(p−1)(q+3)2(tb−t)η̄p

≥ xqη̄′ − k6e
p−1xp−1η̄p

≥ xqη̄′ − k6e
p−1xqη̄p−1η̄

≥ xqη̄′ − 2

(p− 1) tb
xqη̄

= xq (η̄′ − k8η̄)

= 0,

and for any t ∈ [tb/2, tb),

xqη̄′ − k6γ̄
p−1η̄p(4.9)

≥ xqη̄′ − k6x
p−1exq+2(1−x)(p−1)e−(p−1)4(q+3)2(tb−t)η̄p

≥ xqη̄′ − k6e
p−1xp−1η̄p

≥ xq
(

η̄′ − k6e
p−1η̄p

)

= 0.

For Ψ(x, t) = γ̄(x, t)η̄(t), we have

LΨ − a2f (Ψ)

= xqγ̄η̄′ + xqγ̄tη̄ − γ̄xxη̄ − a2f (γ̄η̄)

≥ xqγ̄η̄′ + xqγ̄tη̄ − γ̄xxη̄ − k6γ̄
pη̄p

= γ̄
(

xqη̄′ − k6γ̄
p−1η̄p

)

+ (Lγ̄) η̄.

From (4.4), (4.8) and (4.9),

LΨ − a2f (Ψ) ≥ 0.
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We note that Ψ(0, t) = γ̄(0, t)η̄(t) = 0, and Ψx(1, t) = γ̄x(1, t)η̄(t) = 0. It follows

from (4.1) and (4.2) that for x ∈ D̄,

Ψ(x, 0) = xexq+2(1−x)e−4(q+3)2tbe−
1

p−1

[

2

k6ep−1 (p− 1) tb

]
1

p−1

≥ k5xe
xq+2(1−x)

≥ u0(x).

Therefore, Ψ (x, t) is an upper solution of the problem (1.1). Thus for t ∈ [tb/2, tb),

u (x, t) ≤ xexq+2(1−x)e−4(q+3)2(tb−t)

[

1

k6ep−1 (p− 1) (tb − t)

]
1

p−1

(4.10)

≤ xe

(

1

k6ep−1 (p− 1) (tb − t)

)
1

p−1

= x

[

1

k6 (p− 1) (tb − t)

]
1

p−1

<
k7x

(tb − t)
1

p−1

for some positive constant k7 > 1/ [k6 (p− 1)]1/(p−1). Hence, (4.3) holds. �

Let k9 be an arbitrary constant such that 0 < k9 < 1. Also, let us choose the

constant β sufficiently large to satisfy the following conditions:

(4.11)











β > max
{

q+2
2
, p− q − 1

}

,

1 − kp−q−1
9 − 4p2k2β−q−2

9

p−1
− 2kβ+p−q−1

9

βtb
≥ 0.

Let us choose

k7 =

[

1

k6 (p− 1)
+

2kβ
9

βk6 (p− 1) tb

]
1

p−1

.

Lemma 4.2. Under the hypotheses of Lemma 4.1,

u (x, tb) ≤
k7x

[

1
β

(

kβ
9 − xβ

)]
2

p−1

<∞ for any x ∈ [0, k9).

Proof. Let

Φ (x, t) =
k7x

D1/(p−1)
,

where

D (x, t) =

[

1

β

(

kβ
9 − xβ

)

]2

+ tb − t.
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Using (4.11), we obtain for any x ∈ (0, k9) and tb/2 < t ≤ tb,

LΦ − a2Φpf̄ (Φ)

≥ k7

(p− 1)D
p

p−1

[

xq+1 − 2

β

(

kβ
9 − xβ

)

xβ−1

− 4p

β2 (p− 1)D

(

kβ
9 − xβ

)2

x2β−1 − 2
(

kβ
9 − xβ

)

xβ−1 − k6k
p−1
7 (p− 1) xp

]

≥ k7x
q+1

(p− 1)D
p

p−1

×
[

1 − 2kβ
9x

β−q−2 − 4px2β−q−2

p− 1
− 2kβ

9x
β−q−2 − kp−1

7 k6 (p− 1)xp−q−1

]

≥ k7x
q+1

(p− 1)D
p

p−1

×
[

1 − 2pk2β−q−2
9 − 4pk2β−q−2

9

p− 1
− 2pk2β−q−2

9 − kp−1
7 k6 (p− 1) kp−q−1

9

]

≥ k7x
q+1

(p− 1)D
p

p−1

×
{

1 − 4p2k2β−q−2
9

p− 1
−
[

1

k6 (p− 1)
+

2kβ
9

βk6 (p− 1) tb

]

k6 (p− 1) kp−q−1
9

}

=
k7x

q+1

(p− 1)D
p

p−1

(

1 − kp−q−1
9 − 4p2k2β−q−2

9

p− 1
− 2kβ+p−q−1

9

βtb

)

≥ 0.

It follows from (4.10), β ≥ 1 and 0 < k9 < 1 that

Φ

(

x,
tb
2

)

=
k7x

{

tb
2

+
[

1
β

(

kβ
9 − xβ

)]2
}

1

p−1

≥ k7x
(

tb
2

+
k2β
9

β2

)
1

p−1

≥ k7x
(

tb
2

+
kβ
9

β

)
1

p−1

=

[

1
k6(p−1)

+
2kβ

9

βk6(p−1)tb

]
1

p−1

x

(

tb
2

+
kβ
9

β

)
1

p−1

=

[

βtb+2kβ
9

βk6(p−1)tb

]
1

p−1

x

(

βtb+2kβ
9

2β

)
1

p−1

=

[

2

k6 (p− 1) tb

]
1

p−1

x

≥ u

(

x,
tb
2

)

on [0, k9] .

Since

Φ(0, t) = 0, Φ(k9, t) =
k7k9

(tb − t)
1

p−1

,

it follows from Lemma 1 of Chan and Yuen [4] that Φ (x, t) is an upper solution of

the problem (1.1) for 0 ≤ x ≤ k9. The lemma is then proved. �

Since k9 ∈ (0, 1), we have the following result.
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Theorem 4.3. Under the hypotheses of Lemma 4.1, if u blows up, then the blow-up

set is x = 1.
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