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ABSTRACT. Let a, 0 and ¢ be constants with a > 0, 0 < 0 < 0o, and ¢ > 0. This article studies

the following degenerate semilinear parabolic initial-boundary value problem,

Elur —uge = f(u) for 0 <€ <a,0<7 <o,
u(€,0) = ug(¢) = 0 for 0 < £ < a,
u(0,7) =0 = ue(a, 1) for 7 > 0.

We assume that f € C2(]0,00)), f(0) > 0, f'(u) > 0 for u > 0, f”(u) > 0, (s/f(s))" <0, and
S f71(s)ds < oo, where ky is any positive constant. The function ug(€) € C*T([0,a]) for some
constant « € (0, 1) is positive for & > 0 such that ug (0) = 0 and v (a) = 0. Existence of a unique
classical solution u is shown. A criterion for u to blow up in a finite time 75, and an upper bound
for 7, are given. Using a lower solution and an upper solution, we investigate conditions on ug(§),

g and f (u) such that either u blows up completely or the blow-up occurs only at the point x = a.

AMS (MOS) Subject Classification. 35K57, 35K60, 35K65.

1. INTRODUCTION

Let a, o and ¢ be constants with a > 0, 0 < ¢ < oo, and ¢ > 0. We consider the

following degenerate semilinear parabolic initial-boundary value problem,

Efur, —uge = f(u) for0 <€ <a, 0<7 <o,
u(€,0) =up(§) >0 for 0 <¢ <a,
w(0,7) = 0 = ug(a, ) for 7 > 0.

Let ¢ = azx, 7 = a?*?, D = (0,1), Q= D x (0,T), D and Q be the closures of D and
Q respectively, and Lu = x%u; — ug,. In the sequel, let k; (i = 1,2,3,...,9) denote
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positive constants. The above problem is transformed into

Lu=a?f(u) in Q,
(1.1) u(z,0) = up(z) on D,
w(0,t) =0=wu,(1,1),0 <t <T,

where T' = 0/a%? < co. We assume that f € C?([0,00)), f(0) >0, f'(u) > 0 for
w >0, f"(u) >0, [°f(s)ds < oo, (s/f(s)) <0, up(x) € C***(D) for some
constant « € (0, 1), uo(0) =0, ug (1) = 0, and wug (x) > 0 for z > 0.

A solution u of the problem (1.1) is said to blow-up at the point (z,t;) if there
exists a sequence {(z,,t,)} such that u (z,,t,) — 0o as (z,,t,) — (Z, ). The blow-
up of u is complete at t, if at t;,, u blows up at every point & € D. If at t,, u blows

up at only one point x € D, then the blow-up is a single-point blow-up.

The blow-up of the solution for the degenerate semilinear parabolic equation
Lu = u? subject to homogeneous first boundary conditions was studied by Floater [5]
for the case 1 < p < ¢+ 1, and by Chan and Liu [2] for the case p > ¢+ 1. Chan and
Yang [3] investigated the complete blow-up of u for the problem (1.1) with w,(1,t)
and f (u) replaced by u(1,t) and f (u (xg,t)) for some fixed xy € D respectively.

In Section 2, we show existence of a unique classical solution u of the problem
(1.1). We investigate the conditions on ug(x) for u to blow up in a finite time ¢,, and
give an upper bound for ¢,. In Section 3, we establish a criterion for the complete
blow-up to occur when 1 < p < ¢+ 1. For the case p — 1 > ¢ > 0, we give, in

Section 4, a criterion for the single-point blow-up at x = 1.

2. EXISTENCE AND UNIQUENESS

Let p(z) in C'0,1] be an increasing function such that p(x) is 0 for x < 0 and
1 for z > 1. Also, let 6 and ¢, be positive constants with § < 1/2, Ds = (4, 1),
ws = D5 x (0,t), Ds and @; be, respectively, the closures of Ds and ws,

0, z <4
ps=19 p(5—1), d<x<2)
1 x > 20,

uos () = ps(x)uo(x).

We note that

Do, () " '
% =0 =202 - Dug(x), §<z<26
0, x > 20.

Since p is increasing, we have Jug,(z)/0d < 0. It follows from 0 < p; < 1 that
uos () < up(x).
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A proof analogous to that of Lemma 1 by Chan and Yuen [4] gives the following

comparison result.

Lemma 2.1. For any fized t € (0,T), and any bounded and nontrivial function
b(x,t) on D x [0,1], if

(L—b)u> (L—bvinD x (0,4,
ug(x) > vo(x), z € D,
w(0,t) > v(0,t), u.(1,t) > v (1,¢), t € (0,1,

then u > v on D x [0,1].

Let w = D x (0, tg) for some positive number ¢y, and @ be its closure. We modify

the proof of Lemma 2 of Chan and Liu [2] to prove the following existence result.

Lemma 2.2. There exists some positive constant to (<T) such that the problem
(1.1) has a unique solution v € C(w) N C*((0,1] x [0, t]).
Proof. We consider the problem,

Lus = a®f(us) in Ds x (0,t0],
(2.1) us(,0) = ug,(z) on Dy,
us(6,t) =0 =wug, (1,¢) for 0 <t <.

Let us construct an upper solution p(xz,t) for all us with u(z,t) € C*1(0) as follows:

let
x 2k +1—x
91(1,) _ ( 2 5 >’
where k; is chosen such that ky > 1/2, and ug(x) < a? (1 + f(0)) 0;(z). We note that
0)(x) =ko+1/2—2 > ky—1/2 > 0. Let € be some positive constant in (0,1/2) such
that f(61(€) [a®> (14 £(0))]) < 1+ f(0). Since f is continuous, there exists some ¢,

such that the initial-value problem,

-2

7(0) = a® (1 + £ (0)),

has a unique solution for 0 < ¢ < ;. Let us choose some constant ¢y in (0,%;] such
that f (01 ()7 (to)) < 1+ f(0). Let p(x,t) = 01(x)m1(t). Since x0;7{ > 0, and
07 (x) = —1, we obtain for any = € [0, €] and ¢ € (0, to],

Lp—a®f(p) = 7 = a®f(01m1) = a® (1 + £ (0) = (01 () 7a (t0))) = 0.

For 0 < 2 <1, 6y (x) < kg. Since #; and f are increasing functions, we have for
x € (e,1],

Ly —af(p) > €90y (t) — a® f(61m1) > €76, (7{ (t) — @/ {kom) (kzﬁ)) =0

€10, (€)

by (2.2). From construction, u(z,0) = a® (1 + f(0))6(x) > ue(x), u(0,t) = 0, and
pz(1,t) > 0. By Lemma 2.1, u(z,t) € C*!(®) is an upper solution.



606 C. Y. CHAN AND N. E. DYAKEVICH

We note that 279 € C42 (05), |a2x~f (us)| < a®6~f (us) for (z,t,us) € 05 X R,
and ug,(z) € C**e (Dg). Our boundary conditions are homogeneous, and 0 and p
are lower and upper solutions. By Lemma 2.1, 0 < ug < u. Thus, a proof analogous
to that of Theorem 4.2.2 of Ladde, Lakshmikantham and Vatsala [6, p. 143] shows
that the problem (2.1) has a solution us € C?F*1+%/2(g5). Since Qug, (7)/d5 < 0, we
have ug, > ug, in Qs, if 0 < dy. Therefore, lims_ u; exists for all (x,t) € @. Let
u(z,t) = lims_ous(x,t). Using the singular index 3 (cf. Ladyzenskaja, Solonnikov
and Ural’ceva [7, p. 351]), a proof similar to that in the proof of Lemma 2 of Chan
and Liu [2] shows that u(z,t) € C(0)NC*1((0,1] x [0,t0]) is a solution of the problem
(1.1).

By Lemma 2.1, u(z,t) is unique. O

Let T be the supremum over ¢, for which the problem (1.1) has a unique solution
u(z,t) € C(@) N C%((0,1] x [0,t0]). Then, the problem (1.1) has a unique solution
u(z,t) € C(D x [0,T)) N C*L((0,1] x [0,T)). The proof of the following result is a
modification of that of Theorem 2.5 by Floater [5].

Theorem 2.3. If T < oo, then u is unbounded in ).

Proof. Let us suppose that u is bounded above by some positive constant M in €.
We would like to show that u can be continued into a time interval [0, T +#,] for some

positive t,. Let

K =max {a*f (M), 1+ f(0), a® (1 + f (0))},

01(z) = gx 2k +1—1x).
Then in 2,
L(él—u) =K —a*f (u) >0.

Also, 6, (x) > ug (z), 61 (0) = w (0,), 8, > 0 for z € D, and 8} (1) = K (ky — 1/2) >
0 = u, (1,¢) for t > 0. By Lemma 2.1, 6, (x) > u (x,t) for any t < T. With 6, (z) as
the initial function at 7', we are to construct an upper solution fi (x,t) of u (x,t) on
D x [T, T + to] for some positive ;. Let € € (0,1/2) be some fixed positive constant
such that f(a26,(€)) < 1+ f (0) < K. There exists some t, such that the initial-value

problem,

o a2f(Kk2~T (t—T))
€16, (€)
has a unique positive solution 7y (t—T) for T' < t < T+t,. Let fi(z,t) = 0, ()7 (t—=T),
and £y be chosen such that 0 < f, < £, and

(007 () <1470 < K.
Since 296, 7/ (t) > 0, and 0/ (z) = —K, we obtain for any = € (0, ¢ and t € [T, T + 1],

Li— a2f (i) > K7 — a2 f(,:71) > a? (K NG (Eo))) >0,

,7(T —T) = d?,
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It follows from 0/ () = —K, 7 (t —T) > a® for t € [T,T + 1], and 01(z) < Kky
that for x € (¢,1] and t € [T,T + fo},
Liv—a*f (i) > €07 (t = T) — a* f(0: 71 (t — T))

0,2f (Kk’gj‘l (t — T)))
¢af), (¢)

> ¢, (%{ (t—T)—
= 0.

By Lemma 2.1, fi(x,t) is an upper solution of u on D x [T, T+ fg]. As in Lemma
2.2, we can show that the problem (1.1) has a unique solution u(z,t) € C(D x
[0, T +])NC>1((0,1] x [0, T + ] ). This contradicts the definition of 7', and hence

the theorem is proved. 0]

From Chan and Liu [2], the general solution of the Sturm-Liouville problem,

(2.3) "+ Al =0, p(0) =0, ¢'(1) =0,
is given by
IV g2 VN
(p(x):A\/EJﬁ <q+2x P ) —G—B\/EJ_q_Jlrz <q+2x 2 >,

where A and B are arbitrary constants, and Ji/g42) and J_jj442) denote Bessel
functions of the first kind of order 1/ (¢ +2) and —1/(¢+ 2) respectively. From
McLachlan [8, p. 197],

v+42r

> z
= —1)"

where T (s) = [ e™"t*"dt. From ¢(0) = 0, we obtain B = 0, which gives

We have

q+1 2V a2
Y'(x) = A\/Xx%J_Hq%2 < \/_:c2> :

From Watson [9, p. 479], the zeros 2v/A\;/ (¢ +2) (i =1,2,3,---) of

are positive. Let

Then, {¢;(z)} forms an orthonormal set with the weight function 27 (cf. Chan and
Chan [1]).
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Let
E(t)= / o1 (x)u (x,t) d,
D

where 1 (z) denotes the eigenfunction corresponding to the fundamental eigenvalue
A1

Theorem 2.4. If
(2.4) ME(0) < a®f (E(0)),
then there exists some t, < oo such that

lim maxu(z,t) = co.

t—>tl: xeD
Furthermore,
f(E£(0)) > dn
(25) "= EFE () - ME () /E@ oy <

Proof. Multiplying the differential equation Lu = a?f(u) by ¢; and integrating over

x from 0 to 1, we obtain

E’ (t):/Dumgpld:p—l—/l)azf(u)goldx.

Using (2.3), integration by parts, and Jensen’s inequality for convex functions, we

have
E/ (t) = —>\1E (t) + (12 /; f(u)gold:c

> —-ME(t)+ aszxqf(u)goldx

160 (- i)
From (s/f (s)) <0 and (2.4), we have
(2.6) E' > f(E) (a2 — %&) > 0.

It follows from F(0) > 0 that the function E(t) cannot be bounded for all ¢. Therefore,
there exists some ¢, (< 0o) such that E(t) — oo as t — ¢, . Using the Schwarz

inequality, we have

b0 < (st [ snctont)” ([ s00)”" < (magu a0

Hence, u blows up.

Integrating (2.6), we obtain (2.5). O
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3. COMPLETE BLOW-UP

It follows from Theorem 2.4 that if the initial data are sufficiently large, then the
solution w of the problem (1.1) blows up in a finite time ¢,. In the sequel, we assume
that the blow-up time ¢, is a fixed given number corresponding to a given initial
function ug (). We would like to construct a lower solution ¢ (z,t) € C*1(D x [0, 1))
in the form 6y (x)72(t)n () that blows up completely over (0, 1] at t.

Theorem 3.1. Let 1 <p<qg+1, and

(3.1) fw) =uf (u),

where a20glLi<noof (u) = ks > 0. If u blows up, then u blows up completely, provided
1 2 Pl ek

(3.2) ug () > B @Dt {rb = 1)} g™ 1),

Proof. Let v(x,t) = 05(x)7a(t), where 6y(z) = ze* (=9 and

33 740 = —[Ba+5) (a+2)+ kilrs, m(0) = oIkl > g

with k4 to be chosen later appropriately. We note that

() = el a2kt

is a positive decreasing function for any ¢ > 0. For any € D and t € [0, ),
Ly + kyzy
= gtler -2 e””ﬁl(l_m){(q +1) 2% + (g +1)% 2%+
—2(g+1) (¢ +2) 2% — (¢ +2) 29T + (g +2)? 2273
+(g+1)%27 — (q+2)° 27y + kyztties” 1m0 gy
<2 I 4 [(q +2) (Bg+5) + ki) )
= 0.

We note that v(0,t) = 05(0)72(t) = 0, and ~, (1,t) = 05(1)72 (t) = 0. Let v (x,0) be
denoted by 7o (x). From

v(x,t) =z 1m0 [Gatd)at2)+halte=t) 0 for any z € (0, 1],
we have v(0) = 0, and (1) = 0.
Let us construct a positive increasing function n(t) € C* ([0,t3)):
t):{ m (t) fort € [0,%],
e (t) for t € [2,t,),

where

t
(3.4) 771 =kym for 0 <t < 56, m(0) = n,,
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t t
(3.5) ny = kanh for ab <t <ty M <§b) = 1),

Here, the constants k4 and r;, are to be chosen such that 7 (¢) is continuously differ-
entiable at t = t,/2 while the constant 7, is to be chosen such that 7, blows up at
t=1y.

For t € (0,t,/2],
(3.6) ahy — kPP — gzt < a2 (0 — kan) = 0.
Since ¢ > p — 1 > 0, it follows that for t € (t,/2, ),
(3.7) aly — kPP — kyatn < ay' — ksa? P < 2% (' — ksn?) = 0.

From (3.4) and (3.5),
m (t) = n, e for 0 <t < %”
1

1 Ty
)] for§b§t<tb.

[n%o_p—/f?»@—l) (t—2
To ensure that 7y (t) blows up at t = t;,, we choose 77%0_” = ks (p — 1)ty/2. Therefore,

n2 (t) =

(t) ! o <<y
= or — :
2 ks (p— 1) (fy — 1) g =t
To ensure that 1 (¢t) € C*[0,,), we need to choose 1y, and ky such that
e 2 "
e = |—m——
Mo k’g (p _ 1) tb )

P
kyqty

2 1
koge 2 =ky |—————| .
o ’ {k (p— 1>tb]

Dividing the second equation by the first, we obtain
2

ky= —--—.
! (p—1)t

Thus,

o ks(p— 1)ty ks(p—1)ty|
Hence, 1 (t) € C*[0,1;).
Let ¢(x,t) = v(z, t)n(t). Using (3.6), (3.7) and (3.1), we have

Ly — a*f ()
= 2%y + 2% — Yzan) — V0P f ()
< 2ty + 2ty = Yaan) — k3"
< (2% = ksy? P — kax™) 40 (2% — Yaw + kaz?y)
<0.
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Also, ¥(0,t) = v(0,t)n(t) = 0, and ¥, (1,t) = v,.(1,t)n(t) = 0. Finally, we would like
to show that
¥ (2,0) < up(z) for all z € D.
From (3.2) and (3.3),
p1

o (2) > B+t [W z 1)} 2600 _ oy (5, 0) o = 4 (2, 0)

By Lemma 2.1, 9(z, t) is a lower solution of the problem (1.1). Since ¥ (x,t) blows
up at t, at all points of (0, 1], it follows that w(z,t) blows up at ¢ = ¢, at all points
of (0,1]. For z = 0, we can find a sequence {(z,,t,)} such that (z,,t,) — (0,%,) and

lim,, o0 % (Zp, tn) — 0o. Thus, the blow-up set is D. O

4. SINGLE-POINT BLOW-UP
Let ks be the smallest positive constant such that
(4.1) ug () < ksze™ 072,
Lemma 4.1. Let p—1>¢9 > 0. If
fu)=u"f(u),
where

= 2
2
. m — <
(4 2) “ ogui}éof (U) kﬁ - €p+4(q+3)2tb(p—1) (p _ 1) tbké)—l’

then there exists some positive constant kr; such that

k _ t
;IlfoerDcmth [ab,tb).

4.3 u(x,t
(4.3 ) <

Proof. We would like to construct an upper solution W(z, t) of u in the form 03(x)73(t)7
Let y(z,t) = 05(x)73(t), where 63(x) = 2e® 7 0-2) and

Th=4(q+3) 7, 7(0) = et

We have
5(t) = o 4a+3)(ty—t) <1.

For any # € D and any t € [0,1),

(4.4) Ly = gt tem 00— 0 (g 4 2) 201!
+(q+2)° 2% —2(q+2) (¢ + 3) 2% — (¢ + 3) 27+2
+(g+3)" 2% 4 (¢ +2) 2" — (¢ +3)" 2P} my
> e“’cqm(l_x){xq“@’, — [(q+2)x7 4 (g +2)* 223
+(q+3)" 2% + (¢ +2)" 277}
> e 0N (0 +2) + (¢4 2)° + (¢ + 3)°
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+ (¢ +2)"]7s}

> xq+1€xq+2(1—1’) [Té —4 (q + 3)27_3}

= 0.
We note that 4(z,t) is positive for any fixed x € (0,1], 4(0,¢) = 03(0)73(t) = 0, and
Yo (1,8) = 04(1)73 (t) = 0. Since F(z,0) = 4@+ b ger*(1-2) it is 0 at 2 = 0, and
its derivative with respect to x at x =1 is 0.

Let 77(t) € C (]0,t3)) be a positive increasing function given by

0 :{ n (t) fort € [O, %},

7
i (t) fort € [2,1),
where
t
(45) 7, = ki for 0 <t < 22, 71 (0) = .
_/ p—1=D tb _ tb _
(4.6) My (t) = kee? 15 for 5 <t <ty T 5= 2 -

The constants ks and 7;, are to be chosen such that 7(¢) is continuously differentiable
at t = t,/2 while the constant 75, is to be chosen in such a way that 7, (¢) blows up
at t = t,. From (4.5) and (4.6),

t
M (t) =, kst for t € [0, 51)} ,

1

7 (1) 1 p_lforte{tbt)
n2 - 1 ol
Moy " — keer = (p—1) (t = %) 2

To ensure that 7, (¢) blows up at ¢t = t;,, we choose

1y kee? T (p— 1)ty
20 - 2 .

Therefore,

e (t) = 1 o for t € L t
P ks (= 1) (b — 1) 2"
In order to ensure that 7 (t) € C'[0,t,), we set 77y (t,/2) = 72 (t,/2), and 77} (t,/2) =

75 (tp/2). We have

1

kgty 2 p—1
4.7 M€ 2 =
0 e = |

_pb

kgt 2 p—1

ks e~z = kgeP™t .
Soc o {k‘e’ﬁ’p_l (p—1) tb}

Dividing the second equation by the first, we obtain

2 2
kg = keeP™! { } = )
8 6 keeP~1 (p — 1)ty (p—1)t
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This and (4.7) give

1
1

9 =
n = ¢ p—1 .
o =€ {kb‘@p_l (p—1) tb]

Thus, 7 (t) € C'[0,t).

Since ¢ < p — 1 and

1

2 =
5 () —
ter[gl,%,%]n (®) {k‘gep_l (p—1) tb} ’

it follows that for any ¢ € (0,t,/2],

(4.8)

2 — ke7"
> xqﬁ' _ k6xp—1€wq+2(1—r)(p—1)6—4(p—1)(q+3)2(tb—t)7—]p
> 297 — kgeP ™ aP P

> 27 — kee? ™ 2t

> pdp — a5
2 27 (p_l)tbifn

=27 (7 — ks
=0,

and for any ¢ € [t,/2, 1),

(4.9)

For W(z,t)

21 — k7"

> 297 — k6xp—1€wq+2(1—r)(p—1)e—(p—1)4(q+3)2(tb—t)7—]p
> 297 — kee? PP

> 27 (7 — kee? ')

=0.

¥(x, t)n(t), we have

LU —a*f (D)

= 2930 + 2997 — Vel — @ f (37)
> 2951 + 2] — Fuul] — ke VT
=7 (2% — ka7 7)) + (L) 7.

From (4.4), (4.8) and (4.9),

LU — a*f (U) > 0.

613
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We note that W(0,t) = 5(0,t)7(t) = 0, and V. (1,¢) = 3,.(1,t)n(t) = 0. It follows
from (4.1) and (4.2) that for z € D,

1
1

2 =
U(z,0) = ger"(1-2) o =4a+3)’ty o= 51
(z,0) = ze e e r T —

> ]{75(1}'€wq+2(1_z)

> ug(x).

Therefore, W (z,t) is an upper solution of the problem (1.1). Thus for ¢ € [t,/2,1,),

1

1 pT
keeP= (p — 1) (tp — 1)

_1

= (k v - 1) (t - t>)

1

(4.10) 0 (1,1) < e 200 A ) {

1 T
=z
[kﬁ (p—1)(t — t)}
k
<
(tb — t) p—1
for some positive constant k; > 1/ [k (p — 1)]"/*~Y. Hence, (4.3) holds. O

Let kg be an arbitrary constant such that 0 < kg < 1. Also, let us choose the

constant [ sufficiently large to satisfy the following conditions:

B> max {%2,p— g1},
(4.11)
4p2k£2)5*Q*2 2ké3+pqul

p—q—1
1 -k - p—1 Bty

> 0.

Let us choose

. L 2ky o
" lke(p—1)  Bks(p— Lty |

Lemma 4.2. Under the hypotheses of Lemma 4.1,

k
u(z,ty) < L — < 0o forany x € [0, ko).
1
5 (1 - 7))
Proof. Let
]{Z7LE‘
P (z,t) = DG D
where

D (x,t) = [% (kg-xﬁ)r+tb-t.
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Using (4.11), we obtain for any x € (0, ko) and ,/2 < t < t;,
L® — a’®Pf (D)

kr { 2 _
> - xQ-i—l _“ (]{76 - J}ﬁ) LL’B 1
D B\

(-1
4 2
B (p f1) D (k= a?) a7t =2 (K = o) 22 = ok (= ) gjp}
$q+1
" (p-1) DT
4 2B—q—2
x |1 —okfppmmr 2 - — 2kgaP 7 — R kg (p — 1)xp—q—1}
b

k7xq+1

_1 Dpl

| \/

(p
4 /{326 q—2
x [1 — opp2a 7pp —— — 2k = K ke (p— 1) kg—q—1]

k:7x‘1+1

— 1) D

(p
2k25 q—2 1 2]{56 pg1
x{l — [k‘G(p 5t T —1)tb] ko (p — 1) kg }

_ ]{37$q+1 L kp—q—l B 4p2k§ﬁ—fI—2 B 2/{Z§+p_q_1
(p—1) D77 ? p—1 Bty

> 0.

| \/

It follows from (4.10), # > 1 and 0 < kg < 1 that

@(x,@): krx > krx S krx 1

1
2] »-1 k28 p—1 2\ p—1
{s+[p-)" (%) (3+%)

1 1
2k p—1 Bty+2k8 ] -1 1
[kﬁ(p nT ﬁkS(Pgl)tbi| v [Ma(p—l?tb} v [ 2 rl
ke (

V

— = = T
t_b+£>ﬁ (ﬁtﬁ%é’)ﬁ — 1)t
2 3 20
Ly
>u (w, 5) on [0, ko .
Since -
®(0,t) = 0, D(ky, t) = ———
(tp — )77
it follows from Lemma 1 of Chan and Yuen [4] that ® (z,t) is an upper solution of
the problem (1.1) for 0 < z < k9. The lemma is then proved. O

Since kg € (0, 1), we have the following result.
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Theorem 4.3. Under the hypotheses of Lemma 4.1, if u blows up, then the blow-up

set s x = 1.
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