COMPLETE AND SINGLE-POINT BLOW-UP OF THE SOLUTION FOR A DEGENERATE SEMILINEAR PARABOLIC PROBLEM WITH MIXED BOUNDARY CONDITIONS

C. Y. CHAN AND N. E. DYAKEVICH

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010 USA E-mail: chan@louisiana.edu Department of Mathematics, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407-2397 USA E-mail: dyakevic@csusb.edu

ABSTRACT. Let a, σ and q be constants with $a > 0, 0 < \sigma \le \infty$, and $q \ge 0$. This article studies the following degenerate semilinear parabolic initial-boundary value problem,

 $\begin{aligned} \xi^{q} u_{\tau} - u_{\xi\xi} &= f\left(u\right) \text{ for } 0 < \xi < a, \ 0 < \tau < \sigma, \\ u(\xi, 0) &= u_{0}(\xi) \ge 0 \text{ for } 0 \le \xi \le a, \\ u(0, \tau) &= 0 = u_{\xi}(a, \tau) \text{ for } \tau > 0. \end{aligned}$

We assume that $f \in C^2([0,\infty))$, $f(0) \ge 0$, f'(u) > 0 for u > 0, $f''(u) \ge 0$, $(s/f(s))' \le 0$, and $\int_{k_1}^{\infty} f^{-1}(s) ds < \infty$, where k_1 is any positive constant. The function $u_0(\xi) \in C^{2+\alpha}([0,a])$ for some constant $\alpha \in (0,1)$ is positive for $\xi > 0$ such that $u_0(0) = 0$ and $u'_0(a) = 0$. Existence of a unique classical solution u is shown. A criterion for u to blow up in a finite time τ_b , and an upper bound for τ_b are given. Using a lower solution and an upper solution, we investigate conditions on $u_0(\xi)$, q and f(u) such that either u blows up completely or the blow-up occurs only at the point x = a.

AMS (MOS) Subject Classification. 35K57, 35K60, 35K65.

1. INTRODUCTION

Let a, σ and q be constants with a > 0, $0 < \sigma \leq \infty$, and $q \geq 0$. We consider the following degenerate semilinear parabolic initial-boundary value problem,

$$\xi^{q} u_{\tau} - u_{\xi\xi} = f(u) \text{ for } 0 < \xi < a, \ 0 < \tau < \sigma, u(\xi, 0) = u_{0}(\xi) \ge 0 \text{ for } 0 \le \xi \le a, u(0, \tau) = 0 = u_{\xi}(a, \tau) \text{ for } \tau > 0.$$

Let $\xi = ax$, $\tau = a^{q+2}t$, D = (0, 1), $\Omega = D \times (0, T)$, \overline{D} and $\overline{\Omega}$ be the closures of D and Ω respectively, and $Lu = x^q u_t - u_{xx}$. In the sequel, let k_i (i = 1, 2, 3, ..., 9) denote

positive constants. The above problem is transformed into

(1.1)
$$\begin{cases} Lu = a^2 f(u) \text{ in } \Omega, \\ u(x,0) = u_0(x) \text{ on } \bar{D}, \\ u(0,t) = 0 = u_x(1,t), \ 0 < t < T, \end{cases}$$

where $T = \sigma/a^{q+2} \leq \infty$. We assume that $f \in C^2([0,\infty)), f(0) \geq 0, f'(u) > 0$ for $u > 0, f''(u) \geq 0, \int_{k_1}^{\infty} f^{-1}(s) ds < \infty, (s/f(s))' \leq 0, u_0(x) \in C^{2+\alpha}(\bar{D})$ for some constant $\alpha \in (0,1), u_0(0) = 0, u'_0(1) = 0$, and $u_0(x) > 0$ for x > 0.

A solution u of the problem (1.1) is said to blow-up at the point (\bar{x}, t_b) if there exists a sequence $\{(x_n, t_n)\}$ such that $u(x_n, t_n) \to \infty$ as $(x_n, t_n) \to (\bar{x}, t_b)$. The blowup of u is complete at t_b if at t_b , u blows up at every point $x \in \bar{D}$. If at t_b , u blows up at only one point $x \in \bar{D}$, then the blow-up is a single-point blow-up.

The blow-up of the solution for the degenerate semilinear parabolic equation $Lu = u^p$ subject to homogeneous first boundary conditions was studied by Floater [5] for the case 1 , and by Chan and Liu [2] for the case <math>p > q+1. Chan and Yang [3] investigated the complete blow-up of u for the problem (1.1) with $u_x(1,t)$ and f(u) replaced by u(1,t) and $f(u(x_0,t))$ for some fixed $x_0 \in D$ respectively.

In Section 2, we show existence of a unique classical solution u of the problem (1.1). We investigate the conditions on $u_0(x)$ for u to blow up in a finite time t_b , and give an upper bound for t_b . In Section 3, we establish a criterion for the complete blow-up to occur when $1 . For the case <math>p - 1 > q \geq 0$, we give, in Section 4, a criterion for the single-point blow-up at x = 1.

2. EXISTENCE AND UNIQUENESS

Let $\rho(x)$ in $C^1[0,1]$ be an increasing function such that $\rho(x)$ is 0 for $x \leq 0$ and 1 for $x \geq 1$. Also, let δ and t_0 be positive constants with $\delta < 1/2$, $D_{\delta} = (\delta, 1)$, $\omega_{\delta} = D_{\delta} \times (0, t_0)$, \bar{D}_{δ} and $\bar{\omega}_{\delta}$ be, respectively, the closures of D_{δ} and ω_{δ} ,

$$\rho_{\delta} = \begin{cases} 0, & x \leq \delta \\ \rho(\frac{x}{\delta} - 1), & \delta < x < 2\delta \\ 1, & x \geq 2\delta, \end{cases}$$
$$u_{0\delta}(x) = \rho_{\delta}(x)u_{0}(x).$$

We note that

$$\frac{\partial u_{0_{\delta}}(x)}{\partial \delta} = \begin{cases} 0, & x \leq \delta \\ -\frac{x}{\delta^2} \rho'(\frac{x}{\delta} - 1)u_0(x), & \delta < x < 2\delta \\ 0, & x \geq 2\delta. \end{cases}$$

Since ρ is increasing, we have $\partial u_{0_{\delta}}(x)/\partial \delta \leq 0$. It follows from $0 \leq \rho_{\delta} \leq 1$ that $u_{0_{\delta}}(x) \leq u_0(x)$.

A proof analogous to that of Lemma 1 by Chan and Yuen [4] gives the following comparison result.

Lemma 2.1. For any fixed $\bar{t} \in (0,T)$, and any bounded and nontrivial function b(x,t) on $\bar{D} \times [0,\bar{t}]$, if

$$(L-b) u \ge (L-b) v \text{ in } D \times (0,\bar{t}],$$

$$u_0(x) \ge v_0(x), x \in \bar{D},$$

$$u(0,t) \ge v(0,t), u_x(1,t) \ge v_x(1,t), t \in (0,\bar{t}].$$

then $u \ge v$ on $\overline{D} \times [0, \overline{t}]$.

Let $\omega = D \times (0, t_0)$ for some positive number t_0 , and $\bar{\omega}$ be its closure. We modify the proof of Lemma 2 of Chan and Liu [2] to prove the following existence result.

Lemma 2.2. There exists some positive constant t_0 (< T) such that the problem (1.1) has a unique solution $u \in C(\bar{\omega}) \cap C^{2,1}((0,1] \times [0,t_0])$.

Proof. We consider the problem,

(2.1)
$$\begin{cases} Lu_{\delta} = a^2 f(u_{\delta}) \text{ in } D_{\delta} \times (0, t_0], \\ u_{\delta}(x, 0) = u_{0_{\delta}}(x) \text{ on } \bar{D}_{\delta}, \\ u_{\delta}(\delta, t) = 0 = u_{\delta_x}(1, t) \text{ for } 0 < t \leq t_0 \end{cases}$$

Let us construct an upper solution $\mu(x,t)$ for all u_{δ} with $\mu(x,t) \in C^{2,1}(\bar{\omega})$ as follows: let

$$\theta_1(x) = \frac{x \left(2k_2 + 1 - x\right)}{2},$$

where k_2 is chosen such that $k_2 > 1/2$, and $u_0(x) \le a^2 (1 + f(0)) \theta_1(x)$. We note that $\theta'_1(x) = k_2 + 1/2 - x \ge k_2 - 1/2 > 0$. Let ϵ be some positive constant in (0, 1/2) such that $f(\theta_1(\epsilon) [a^2 (1 + f(0))]) < 1 + f(0)$. Since f is continuous, there exists some t_1 such that the initial-value problem,

(2.2)
$$\tau'(t) = \frac{a^2 f(k_2 \tau)}{\epsilon^q \theta_1(\epsilon)}, \qquad \tau(0) = a^2 (1 + f(0)),$$

has a unique solution for $0 \le t \le t_1$. Let us choose some constant t_0 in $(0, t_1]$ such that $f(\theta_1(\epsilon) \tau_1(t_0)) \le 1 + f(0)$. Let $\mu(x, t) = \theta_1(x)\tau_1(t)$. Since $x^q \theta_1 \tau'_1 \ge 0$, and $\theta''_1(x) = -1$, we obtain for any $x \in [0, \epsilon]$ and $t \in (0, t_0]$,

$$L\mu - a^{2} f(\mu) \ge \tau_{1} - a^{2} f(\theta_{1} \tau_{1}) \ge a^{2} \left(1 + f(0) - f(\theta_{1}(\epsilon) \tau_{1}(t_{0}))\right) \ge 0.$$

For $0 \le x \le 1$, $\theta_1(x) \le k_2$. Since θ_1 and f are increasing functions, we have for $x \in (\epsilon, 1]$,

$$L\mu - a^{2}f(\mu) \ge \epsilon^{q}\theta_{1}\tau_{1}'(t) - a^{2}f(\theta_{1}\tau_{1}) \ge \epsilon^{q}\theta_{1}\left(\tau_{1}'(t) - \frac{a^{2}f(k_{2}\tau_{1})}{\epsilon^{q}\theta_{1}(\epsilon)}\right) = 0$$

by (2.2). From construction, $\mu(x,0) = a^2 (1 + f(0)) \theta_1(x) \ge u_0(x), \ \mu(0,t) = 0$, and $\mu_x(1,t) > 0$. By Lemma 2.1, $\mu(x,t) \in C^{2,1}(\bar{\omega})$ is an upper solution.

We note that $x^{-q} \in C^{\alpha,\alpha/2}(\bar{\omega}_{\delta})$, $|a^2x^{-q}f(u_{\delta})| \leq a^2\delta^{-q}f(u_{\delta})$ for $(x, t, u_{\delta}) \in \bar{\omega}_{\delta} \times R$, and $u_{0_{\delta}}(x) \in C^{2+\alpha}(\bar{D}_{\delta})$. Our boundary conditions are homogeneous, and 0 and μ are lower and upper solutions. By Lemma 2.1, $0 \leq u_{\delta} \leq \mu$. Thus, a proof analogous to that of Theorem 4.2.2 of Ladde, Lakshmikantham and Vatsala [6, p. 143] shows that the problem (2.1) has a solution $u_{\delta} \in C^{2+\alpha,1+\alpha/2}(\bar{\omega}_{\delta})$. Since $\partial u_{0_{\delta}}(x)/\partial \delta \leq 0$, we have $u_{\delta_1} \geq u_{\delta_2}$ in $\bar{\Omega}_{\delta_2}$ if $\delta_1 \leq \delta_2$. Therefore, $\lim_{\delta \to 0} u_{\delta}$ exists for all $(x,t) \in \bar{\omega}$. Let $u(x,t) = \lim_{\delta \to 0} u_{\delta}(x,t)$. Using the singular index 3 (cf. Ladyženskaja, Solonnikov and Ural'ceva [7, p. 351]), a proof similar to that in the proof of Lemma 2 of Chan and Liu [2] shows that $u(x,t) \in C(\bar{\omega}) \cap C^{2,1}((0,1] \times [0,t_0])$ is a solution of the problem (1.1).

By Lemma 2.1, u(x, t) is unique.

Let T be the supremum over t_0 for which the problem (1.1) has a unique solution $u(x,t) \in C(\bar{\omega}) \cap C^{2,1}((0,1] \times [0,t_0])$. Then, the problem (1.1) has a unique solution $u(x,t) \in C(\bar{D} \times [0,T)) \cap C^{2,1}((0,1] \times [0,T))$. The proof of the following result is a modification of that of Theorem 2.5 by Floater [5].

Theorem 2.3. If $T < \infty$, then u is unbounded in Ω .

Proof. Let us suppose that u is bounded above by some positive constant M in Ω . We would like to show that u can be continued into a time interval $[0, T + \tilde{t}_0]$ for some positive \tilde{t}_0 . Let

$$K = \max \left\{ a^2 f(M), 1 + f(0), a^2 (1 + f(0)) \right\},$$
$$\tilde{\theta}_1(x) = \frac{K}{2} x (2k_2 + 1 - x).$$

Then in Ω ,

$$L\left(\tilde{\theta}_1 - u\right) = K - a^2 f\left(u\right) \ge 0.$$

Also, $\tilde{\theta}_1(x) \ge u_0(x)$, $\tilde{\theta}_1(0) = u(0,t)$, $\tilde{\theta}'_1 > 0$ for $x \in \overline{D}$, and $\tilde{\theta}'_1(1) = K(k_2 - 1/2) > 0 = u_x(1,t)$ for t > 0. By Lemma 2.1, $\tilde{\theta}_1(x) \ge u(x,t)$ for any $t \le T$. With $\tilde{\theta}_1(x)$ as the initial function at T, we are to construct an upper solution $\tilde{\mu}(x,t)$ of u(x,t) on $\overline{D} \times [T, T + \tilde{t}_0]$ for some positive \tilde{t}_0 . Let $\hat{\epsilon} \in (0, 1/2)$ be some fixed positive constant such that $f(a^2\tilde{\theta}_1(\hat{\epsilon})) < 1 + f(0) \le K$. There exists some t_2 such that the initial-value problem,

$$\tau' = \frac{a^2 f(Kk_2\tau (t-T))}{\hat{\epsilon}^q \tilde{\theta}_1(\hat{\epsilon})}, \ \tau(T-T) = a^2,$$

has a unique positive solution $\tilde{\tau}_1(t-T)$ for $T \leq t \leq T+t_2$. Let $\tilde{\mu}(x,t) = \tilde{\theta}_1(x)\tilde{\tau}_1(t-T)$, and \tilde{t}_0 be chosen such that $0 < \tilde{t}_0 \leq t_2$ and

$$f\left(\tilde{\theta}_{1}\left(\hat{\epsilon}\right)\tilde{\tau}_{1}\left(\tilde{t}_{0}\right)\right)\leq1+f\left(0\right)\leq K.$$

Since $x^q \tilde{\theta}_1 \tilde{\tau}'_1(t) \ge 0$, and $\tilde{\theta}''_1(x) = -K$, we obtain for any $x \in (0, \hat{\epsilon}]$ and $t \in [T, T + \tilde{t}_0]$,

$$L\tilde{\mu} - a^2 f\left(\tilde{\mu}\right) \ge K\tilde{\tau}_1 - a^2 f\left(\tilde{\theta}_1\tilde{\tau}_1\right) \ge a^2 \left(K - f\left(\tilde{\theta}_1\left(\hat{\epsilon}\right)\tilde{\tau}_1\left(\tilde{t}_0\right)\right)\right) \ge 0.$$

It follows from $\tilde{\theta}_1''(x) = -K$, $\tilde{\tau}_1(t-T) \ge a^2$ for $t \in [T, T + \tilde{t}_0]$, and $\tilde{\theta}_1(x) \le Kk_2$ that for $x \in (\hat{\epsilon}, 1]$ and $t \in [T, T + \tilde{t}_0]$,

$$\begin{split} L\tilde{\mu} - a^2 f\left(\tilde{\mu}\right) &\geq \hat{\epsilon}^q \tilde{\theta}_1 \tilde{\tau}_1' \left(t - T\right) - a^2 f(\tilde{\theta}_1 \tilde{\tau}_1 \left(t - T\right)) \\ &\geq \hat{\epsilon}^q \tilde{\theta}_1 \left(\tilde{\tau}_1' \left(t - T\right) - \frac{a^2 f\left(K k_2 \tilde{\tau}_1 \left(t - T\right)\right)}{\hat{\epsilon}^q \tilde{\theta}_1(\hat{\epsilon})}\right) \\ &= 0. \end{split}$$

By Lemma 2.1, $\tilde{\mu}(x,t)$ is an upper solution of u on $\bar{D} \times [T, T + \tilde{t}_0]$. As in Lemma 2.2, we can show that the problem (1.1) has a unique solution $u(x,t) \in C(\bar{D} \times [0, T + \tilde{t}_0]) \cap C^{2,1}((0,1] \times [0, T + \tilde{t}_0])$. This contradicts the definition of T, and hence the theorem is proved.

From Chan and Liu [2], the general solution of the Sturm-Liouville problem,

(2.3)
$$\varphi'' + \lambda x^q \varphi = 0, \ \varphi(0) = 0, \ \varphi'(1) = 0,$$

is given by

$$\varphi(x) = A\sqrt{x}J_{\frac{1}{q+2}}\left(\frac{2\sqrt{\lambda}}{q+2}x^{\frac{q+2}{2}}\right) + B\sqrt{x}J_{-\frac{1}{q+2}}\left(\frac{2\sqrt{\lambda}}{q+2}x^{\frac{q+2}{2}}\right),$$

where A and B are arbitrary constants, and $J_{1/(q+2)}$ and $J_{-1/(q+2)}$ denote Bessel functions of the first kind of order 1/(q+2) and -1/(q+2) respectively. From McLachlan [8, p. 197],

$$J_{\nu}(z) = \sum_{r=0}^{\infty} (-1)^r \frac{z^{\nu+2r}}{2^{\nu+2r} r! \Gamma(\nu+r+1)},$$

where $\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt$. From $\varphi(0) = 0$, we obtain B = 0, which gives

$$\varphi(x) = A\sqrt{x}J_{\frac{1}{q+2}}\left(\frac{2\sqrt{\lambda}}{q+2}x^{\frac{q+2}{2}}\right)$$

We have

$$\varphi'(x) = A\sqrt{\lambda}x^{\frac{q+1}{2}}J_{-1+\frac{1}{q+2}}\left(\frac{2\sqrt{\lambda}}{q+2}x^{\frac{q+2}{2}}\right).$$

From Watson [9, p. 479], the zeros $2\sqrt{\lambda_i}/(q+2)$ $(i=1,2,3,\cdots)$ of

$$J_{-1+\frac{1}{q+2}}\left(\frac{2\sqrt{\lambda}}{q+2}\right)$$

are positive. Let

$$\varphi_i(x) = \frac{(q+2)^{1/2} x^{1/2} J_{\frac{1}{q+2}} \left(\frac{2\sqrt{\lambda_i}}{q+2} x^{\frac{q+2}{2}}\right)}{\left| J_{1+\frac{1}{q+2}} \left(\frac{2\sqrt{\lambda_i}}{q+2}\right) \right|}$$

Then, $\{\varphi_i(x)\}$ forms an orthonormal set with the weight function x^q (cf. Chan and Chan [1]).

Let

$$E(t) = \int_{D} x^{q} \varphi_{1}(x) u(x, t) dx,$$

where $\varphi_1(x)$ denotes the eigenfunction corresponding to the fundamental eigenvalue λ_1 .

Theorem 2.4. If

(2.4)
$$\lambda_1 E(0) < a^2 f(E(0))$$

then there exists some $t_b < \infty$ such that

$$\lim_{t \to t_b^-} \max_{x \in \bar{D}} u(x, t) = \infty.$$

Furthermore,

(2.5)
$$t_b \le \frac{f(E(0))}{a^2 f(E(0)) - \lambda_1 E(0)} \int_{E(0)}^{\infty} \frac{d\eta}{f(\eta)} < \infty$$

Proof. Multiplying the differential equation $Lu = a^2 f(u)$ by φ_1 and integrating over x from 0 to 1, we obtain

$$E'(t) = \int_D u_{xx}\varphi_1 dx + \int_D a^2 f(u)\varphi_1 dx.$$

Using (2.3), integration by parts, and Jensen's inequality for convex functions, we have

$$E'(t) = -\lambda_1 E(t) + a^2 \int_D f(u)\varphi_1 dx$$

$$\geq -\lambda_1 E(t) + a^2 \int_D x^q f(u)\varphi_1 dx$$

$$\geq f(E(t)) \left(a^2 - \frac{\lambda_1 E(t)}{f(E(t))}\right).$$

From $(s/f(s))' \leq 0$ and (2.4), we have

(2.6)
$$E' \ge f(E) \left(a^2 - \frac{\lambda_1 E(0)}{f(E(0))} \right) > 0.$$

It follows from E(0) > 0 that the function E(t) cannot be bounded for all t. Therefore, there exists some $t_b (<\infty)$ such that $E(t) \to \infty$ as $t \to t_b^-$. Using the Schwarz inequality, we have

$$E(t) \le \left(\max_{x\in\bar{D}} u\left(x,t\right)\right) \left(\int_{D} x^{q} \varphi_{1}^{2}(x) dx\right)^{1/2} \left(\int_{D} x^{q} dx\right)^{1/2} \le \left(\max_{x\in\bar{D}} u\left(x,t\right)\right)$$

Hence, u blows up.

Integrating (2.6), we obtain (2.5).

608

3. COMPLETE BLOW-UP

It follows from Theorem 2.4 that if the initial data are sufficiently large, then the solution u of the problem (1.1) blows up in a finite time t_b . In the sequel, we assume that the blow-up time t_b is a fixed given number corresponding to a given initial function $u_0(x)$. We would like to construct a lower solution $\psi(x,t) \in C^{2,1}(\bar{D} \times [0,t_b))$ in the form $\theta_2(x)\tau_2(t)\eta(t)$ that blows up completely over (0,1] at t_b .

Theorem 3.1. Let 1 , and

(3.1)
$$f(u) = u^p f(u),$$

where $a^2 \min_{0 \le u < \infty} \tilde{f}(u) = k_3 > 0$. If u blows up, then u blows up completely, provided

(3.2)
$$u_0(x) \ge e^{(3q+5)(q+2)t_b + \frac{1}{p-1}} \left[\frac{2}{k_3 t_b(p-1)}\right]^{\frac{1}{p-1}} x e^{x^{q+1}(1-x)}.$$

Proof. Let $\gamma(x,t) = \theta_2(x)\tau_2(t)$, where $\theta_2(x) = xe^{x^{q+1}(1-x)}$, and

(3.3) $\tau'_{2}(t) = -[(3q+5)(q+2)+k_{4}]\tau_{2}, \ \tau_{2}(0) = e^{[(3q+5)(q+2)+k_{4}]t_{b}} > 0$

with k_4 to be chosen later appropriately. We note that

$$\tau_2(t) = e^{[(3q+5)(q+2)+k_4](t_b-t)}$$

is a positive decreasing function for any $t \ge 0$. For any $x \in \overline{D}$ and $t \in [0, t_b]$,

$$L\gamma + k_4 x^q \gamma$$

= $x^{q+1} e^{x^{q+1}(1-x)} \tau_2' - e^{x^{q+1}(1-x)} \{ (q+1) x^q + (q+1)^2 x^{2q+1} - 2 (q+1) (q+2) x^{2q+2} - (q+2) x^{q+1} + (q+2)^2 x^{2q+3} + (q+1)^2 x^q - (q+2)^2 x^{q+1} \} \tau_2 + k_4 x^{q+1} e^{x^{q+1}(1-x)} \tau_2$
= $x^{q+1} e^{x^{q+1}(1-x)} \{ \tau_2' + [(q+2) (3q+5) + k_4] \tau_2 \}$
= 0.

We note that $\gamma(0,t) = \theta_2(0)\tau_2(t) = 0$, and $\gamma_x(1,t) = \theta'_2(1)\tau_2(t) = 0$. Let $\gamma(x,0)$ be denoted by $\gamma_0(x)$. From

$$\gamma(x,t) = x e^{x^{q+1}(1-x)} e^{[(3q+5)(q+2)+k_4](t_b-t)} > 0 \text{ for any } x \in (0,1],$$

we have $\gamma_0(0) = 0$, and $\gamma'_0(1) = 0$.

Let us construct a positive increasing function $\eta(t) \in C^1([0, t_b))$:

$$\eta(t) = \begin{cases} \eta_1(t) \text{ for } t \in \left[0, \frac{t_b}{2}\right], \\ \eta_2(t) \text{ for } t \in \left[\frac{t_b}{2}, t_b\right), \end{cases}$$

where

(3.4)
$$\eta'_1 = k_4 \eta_1 \text{ for } 0 < t \le \frac{t_b}{2}, \ \eta_1(0) = \eta_{1_0},$$

(3.5)
$$\eta'_2 = k_3 \eta_2^p \text{ for } \frac{t_b}{2} < t < t_b, \ \eta_2 \left(\frac{t_b}{2}\right) = \eta_{2_0}.$$

Here, the constants k_4 and η_{1_0} are to be chosen such that $\eta(t)$ is continuously differentiable at $t = t_b/2$ while the constant η_{2_0} is to be chosen such that η_2 blows up at $t = t_b$.

For $t \in (0, t_b/2]$,

(3.6)
$$x^{q}\eta' - k_{3}\gamma^{p-1}\eta^{p} - k_{4}x^{q}\eta \leq x^{q}(\eta' - k_{4}\eta) = 0.$$

Since $q \ge p-1 > 0$, it follows that for $t \in (t_b/2, t_b)$,

(3.7)
$$x^{q}\eta' - k_{3}\gamma^{p-1}\eta^{p} - k_{4}x^{q}\eta \leq x^{q}\eta' - k_{3}x^{p-1}\eta^{p} \leq x^{q}(\eta' - k_{3}\eta^{p}) = 0.$$

From (3.4) and (3.5),

$$\eta_1(t) = \eta_{1_0} e^{k_4 t} \text{ for } 0 \le t \le \frac{t_b}{2},$$

$$\eta_2(t) = \left[\frac{1}{\eta_{2_0}^{1-p} - k_3(p-1)\left(t - \frac{t_b}{2}\right)}\right]^{\frac{1}{p-1}} \text{ for } \frac{t_b}{2} \le t < t_b.$$

To ensure that $\eta_2(t)$ blows up at $t = t_b$, we choose $\eta_{2_0}^{1-p} = k_3(p-1)t_b/2$. Therefore,

$$\eta_2(t) = \left[\frac{1}{k_3(p-1)(t_b-t)}\right]^{\frac{1}{p-1}} \text{ for } \frac{t_b}{2} \le t < t_b.$$

To ensure that $\eta(t) \in C^{1}[0, t_{b})$, we need to choose $\eta_{1_{0}}$ and k_{4} such that

$$\eta_{1_0} e^{\frac{k_4 t_b}{2}} = \left[\frac{2}{k_3 (p-1) t_b}\right]^{\frac{1}{p-1}},$$
$$k_4 \eta_{1_0} e^{\frac{k_4 t_b}{2}} = k_3 \left[\frac{2}{k_3 (p-1) t_b}\right]^{\frac{p}{p-1}}.$$

Dividing the second equation by the first, we obtain

$$k_4 = \frac{2}{\left(p-1\right)t_b}.$$

Thus,

$$\eta_{1_0} = e^{-\frac{k_4 t_b}{2}} \left[\frac{2}{k_3 (p-1) t_b} \right]^{\frac{1}{p-1}} = e^{-\frac{1}{p-1}} \left[\frac{2}{k_3 (p-1) t_b} \right]^{\frac{1}{p-1}}$$

Hence, $\eta(t) \in C^1[0, t_b)$.

Let $\psi(x,t) = \gamma(x,t)\eta(t)$. Using (3.6), (3.7) and (3.1), we have

$$L\psi - a^{2}f(\psi)$$

$$= x^{q}\gamma\eta' + x^{q}\gamma_{t}\eta - \gamma_{xx}\eta - a^{2}\gamma^{p}\eta^{p}\tilde{f}(\gamma\eta)$$

$$\leq x^{q}\gamma\eta' + x^{q}\gamma_{t}\eta - \gamma_{xx}\eta - k_{3}\gamma^{p}\eta^{p}$$

$$\leq \gamma \left(x^{q}\eta' - k_{3}\gamma^{p-1}\eta^{p} - k_{4}x^{q}\eta\right) + \eta \left(x^{q}\gamma_{t} - \gamma_{xx} + k_{4}x^{q}\gamma\right)$$

$$\leq 0.$$

610

Also, $\psi(0,t) = \gamma(0,t)\eta(t) = 0$, and $\psi_x(1,t) = \gamma_x(1,t)\eta(t) = 0$. Finally, we would like to show that

$$\psi(x,0) \le u_0(x)$$
 for all $x \in \overline{D}$.

From (3.2) and (3.3),

$$u_0(x) \ge e^{(3q+5)(q+2)t_b + \frac{1}{p-1}} \left[\frac{2}{k_3 t_b (p-1)} \right]^{\frac{1}{p-1}} x e^{x^{q+1}(1-x)} = \gamma(x,0) \eta_{1_0} = \psi(x,0).$$

By Lemma 2.1, $\psi(x, t)$ is a lower solution of the problem (1.1). Since $\psi(x, t)$ blows up at t_b at all points of (0, 1], it follows that u(x, t) blows up at $t = t_b$ at all points of (0, 1]. For x = 0, we can find a sequence $\{(x_n, t_n)\}$ such that $(x_n, t_n) \to (0, t_b)$ and $\lim_{n\to\infty} u(x_n, t_n) \to \infty$. Thus, the blow-up set is \overline{D} .

4. SINGLE-POINT BLOW-UP

Let k_5 be the smallest positive constant such that

(4.1)
$$u_0(x) \le k_5 x e^{x^{q+2}(1-x)}$$

Lemma 4.1. Let $p - 1 > q \ge 0$. If

$$f\left(u\right) = u^{p}\bar{f}\left(u\right),$$

where

(4.2)
$$a^{2} \max_{0 \le u < \infty} \bar{f}(u) = k_{6} \le \frac{2}{e^{p+4(q+3)^{2}t_{b}(p-1)}(p-1)t_{b}k_{5}^{p-1}},$$

then there exists some positive constant k_7 such that

(4.3)
$$u(x,t) < \frac{k_7 x}{(t_b - t)^{\frac{1}{p-1}}} \text{ for } x \in \bar{D} \text{ and } t \in \left[\frac{t_b}{2}, t_b\right).$$

Proof. We would like to construct an upper solution $\Psi(x,t)$ of u in the form $\theta_3(x)\tau_3(t)\bar{\eta}(t)$. Let $\bar{\gamma}(x,t) = \theta_3(x)\tau_3(t)$, where $\theta_3(x) = xe^{x^{q+2}(1-x)}$, and

$$\tau'_3 = 4 (q+3)^2 \tau_3, \, \tau_3(0) = e^{-4(q+3)^2 t_b}.$$

We have

$$\tau_3(t) = e^{-4(q+3)^2(t_b-t)} \le 1$$

For any $x \in \overline{D}$ and any $t \in [0, t_b)$,

$$(4.4) L\bar{\gamma} = x^{q+1}e^{x^{q+2}(1-x)}\tau'_{3} - e^{x^{q+2}(1-x)}\{(q+2)x^{q+1} + (q+2)^{2}x^{2q+3} - 2(q+2)(q+3)x^{2q+4} - (q+3)x^{q+2} + (q+3)^{2}x^{2q+5} + (q+2)^{2}x^{q+1} - (q+3)^{2}x^{q+2}\}\tau_{3} \\ \ge e^{x^{q+2}(1-x)}\{x^{q+1}\tau'_{3} - [(q+2)x^{q+1} + (q+2)^{2}x^{2q+3} + (q+3)^{2}x^{2q+5} + (q+2)^{2}x^{q+1}]\tau_{3}\} \\ \ge x^{q+1}e^{x^{q+2}(1-x)}\{\tau'_{3} - [(q+2) + (q+2)^{2} + (q+3)^{2}\}$$

+
$$(q+2)^2]\tau_3$$
}
 $\geq x^{q+1} e^{x^{q+2}(1-x)} [\tau'_3 - 4 (q+3)^2 \tau_3]$
= 0.

We note that $\bar{\gamma}(x,t)$ is positive for any fixed $x \in (0,1], \ \bar{\gamma}(0,t) = \theta_3(0)\tau_3(t) = 0$, and $\bar{\gamma}_x(1,t) = \theta'_3(1)\tau_3(t) = 0$. Since $\bar{\gamma}(x,0) = e^{-4(q+3)^2 t_b} x e^{x^{q+2}(1-x)}$, it is 0 at x = 0, and its derivative with respect to x at x = 1 is 0.

Let $\bar{\eta}(t) \in C^1([0, t_b))$ be a positive increasing function given by

$$\bar{\eta}(t) = \begin{cases} \bar{\eta}_1(t) \text{ for } t \in \left[0, \frac{t_b}{2}\right], \\ \bar{\eta}_2(t) \text{ for } t \in \left[\frac{t_b}{2}, t_b\right), \end{cases}$$

where

(4.5)
$$\bar{\eta}_1' = k_8 \bar{\eta}_1 \text{ for } 0 < t \le \frac{t_b}{2}, \ \bar{\eta}_1(0) = \bar{\eta}_{1_0},$$

(4.6)
$$\bar{\eta}_2'(t) = k_6 e^{p-1} \bar{\eta}_2^p \text{ for } \frac{t_b}{2} < t < t_b, \ \bar{\eta}_2\left(\frac{t_b}{2}\right) = \bar{\eta}_{2_0}.$$

The constants k_8 and $\bar{\eta}_{1_0}$ are to be chosen such that $\bar{\eta}(t)$ is continuously differentiable at $t = t_b/2$ while the constant $\bar{\eta}_{2_0}$ is to be chosen in such a way that $\bar{\eta}_2(t)$ blows up at $t = t_b$. From (4.5) and (4.6),

$$\bar{\eta}_{1}(t) = \bar{\eta}_{1_{0}}e^{k_{8}t} \text{ for } t \in \left[0, \frac{t_{b}}{2}\right],$$
$$\bar{\eta}_{2}(t) = \left[\frac{1}{\bar{\eta}_{2_{0}}^{1-p} - k_{6}e^{p-1}(p-1)\left(t - \frac{t_{b}}{2}\right)}\right]^{\frac{1}{p-1}} \text{ for } t \in \left[\frac{t_{b}}{2}, t_{b}\right)$$
hat $\bar{n}_{2}(t)$ blows up at $t = t_{b}$ we choose

To ensure that $\bar{\eta}_2(t)$ blows up at $t = t_b$, we choose

$$\bar{\eta}_{2_0}^{1-p} = \frac{k_6 e^{p-1} \left(p-1\right) t_b}{2}$$

Therefore,

$$\bar{\eta}_2(t) = \left[\frac{1}{k_6 e^{p-1} \left(p-1\right) \left(t_b-t\right)}\right]^{\frac{1}{p-1}} \text{ for } t \in \left[\frac{t_b}{2}, t_b\right).$$

In order to ensure that $\bar{\eta}(t) \in C^1[0, t_b)$, we set $\bar{\eta}_1(t_b/2) = \bar{\eta}_2(t_b/2)$, and $\bar{\eta}'_1(t_b/2) = \bar{\eta}_2(t_b/2)$ $\bar{\eta}_2'(t_b/2)$. We have

(4.7)
$$\bar{\eta}_{1_0} e^{\frac{k_8 t_b}{2}} = \left[\frac{2}{k_6 e^{p-1} \left(p-1\right) t_b}\right]^{\frac{1}{p-1}},$$

$$k_8 \bar{\eta}_{10} e^{\frac{k_8 t_b}{2}} = k_6 e^{p-1} \left[\frac{2}{k_6 e^{p-1} \left(p-1\right) t_b} \right]^{\overline{p-1}}$$

Dividing the second equation by the first, we obtain

$$k_8 = k_6 e^{p-1} \left[\frac{2}{k_6 e^{p-1} \left(p-1\right) t_b} \right] = \frac{2}{\left(p-1\right) t_b}.$$

This and (4.7) give

$$\bar{\eta}_{1_0} = e^{-\frac{1}{p-1}} \left[\frac{2}{k_6 e^{p-1} \left(p-1\right) t_b} \right]^{\frac{1}{p-1}}.$$

Thus, $\bar{\eta}(t) \in C^1[0, t_b)$.

Since q and

$$\max_{t \in [0, t_b/2]} \bar{\eta}(t) = \left[\frac{2}{k_6 e^{p-1} (p-1) t_b}\right]^{\frac{1}{p-1}},$$

it follows that for any $t \in (0, t_b/2]$,

$$(4.8) x^{q}\bar{\eta}' - k_{6}\bar{\gamma}^{p-1}\bar{\eta}^{p} \ge x^{q}\bar{\eta}' - k_{6}x^{p-1}e^{x^{q+2}(1-x)(p-1)}e^{-4(p-1)(q+3)^{2}(t_{b}-t)}\bar{\eta}^{p} \ge x^{q}\bar{\eta}' - k_{6}e^{p-1}x^{p-1}\bar{\eta}^{p} \ge x^{q}\bar{\eta}' - k_{6}e^{p-1}x^{q}\bar{\eta}^{p-1}\bar{\eta} \ge x^{q}\bar{\eta}' - \frac{2}{(p-1)t_{b}}x^{q}\bar{\eta} = x^{q}(\bar{\eta}' - k_{8}\bar{\eta}) = 0,$$

and for any $t \in [t_b/2, t_b)$,

(4.9)

$$x^{q}\bar{\eta}' - k_{6}\bar{\gamma}^{p-1}\bar{\eta}^{p}$$

$$\geq x^{q}\bar{\eta}' - k_{6}x^{p-1}e^{x^{q+2}(1-x)(p-1)}e^{-(p-1)4(q+3)^{2}(t_{b}-t)}\bar{\eta}^{p}$$

$$\geq x^{q}\bar{\eta}' - k_{6}e^{p-1}x^{p-1}\bar{\eta}^{p}$$

$$\geq x^{q}\left(\bar{\eta}' - k_{6}e^{p-1}\bar{\eta}^{p}\right)$$

$$= 0.$$

For $\Psi(x,t) = \bar{\gamma}(x,t)\bar{\eta}(t)$, we have

$$L\Psi - a^{2}f(\Psi)$$

= $x^{q}\bar{\gamma}\bar{\eta}' + x^{q}\bar{\gamma}_{t}\bar{\eta} - \bar{\gamma}_{xx}\bar{\eta} - a^{2}f(\bar{\gamma}\bar{\eta})$
 $\geq x^{q}\bar{\gamma}\bar{\eta}' + x^{q}\bar{\gamma}_{t}\bar{\eta} - \bar{\gamma}_{xx}\bar{\eta} - k_{6}\bar{\gamma}^{p}\bar{\eta}^{p}$
= $\bar{\gamma}\left(x^{q}\bar{\eta}' - k_{6}\bar{\gamma}^{p-1}\bar{\eta}^{p}\right) + (L\bar{\gamma})\bar{\eta}.$

From (4.4), (4.8) and (4.9),

$$L\Psi - a^2 f\left(\Psi\right) \ge 0.$$

We note that $\Psi(0,t) = \bar{\gamma}(0,t)\bar{\eta}(t) = 0$, and $\Psi_x(1,t) = \bar{\gamma}_x(1,t)\bar{\eta}(t) = 0$. It follows from (4.1) and (4.2) that for $x \in \bar{D}$,

$$\Psi(x,0) = x e^{x^{q+2}(1-x)} e^{-4(q+3)^2 t_b} e^{-\frac{1}{p-1}} \left[\frac{2}{k_6 e^{p-1} (p-1) t_b} \right]^{\frac{1}{p-1}}$$

$$\geq k_5 x e^{x^{q+2}(1-x)}$$

$$\geq u_0(x).$$

Therefore, $\Psi(x,t)$ is an upper solution of the problem (1.1). Thus for $t \in [t_b/2, t_b)$,

$$(4.10) u(x,t) \le x e^{x^{q+2}(1-x)} e^{-4(q+3)^2(t_b-t)} \left[\frac{1}{k_6 e^{p-1} (p-1) (t_b-t)} \right]^{\frac{1}{p-1}} \\ \le x e \left(\frac{1}{k_6 e^{p-1} (p-1) (t_b-t)} \right)^{\frac{1}{p-1}} \\ = x \left[\frac{1}{k_6 (p-1) (t_b-t)} \right]^{\frac{1}{p-1}} \\ < \frac{k_7 x}{(t_b-t)^{\frac{1}{p-1}}} \end{aligned}$$

for some positive constant $k_7 > 1/[k_6(p-1)]^{1/(p-1)}$. Hence, (4.3) holds.

Let k_9 be an arbitrary constant such that $0 < k_9 < 1$. Also, let us choose the constant β sufficiently large to satisfy the following conditions:

(4.11)
$$\begin{cases} \beta > \max\left\{\frac{q+2}{2}, p-q-1\right\},\\ 1-k_9^{p-q-1} - \frac{4p^2k_9^{2\beta-q-2}}{p-1} - \frac{2k_9^{\beta+p-q-1}}{\beta t_b} \ge 0. \end{cases}$$

Let us choose

$$k_7 = \left[\frac{1}{k_6(p-1)} + \frac{2k_9^\beta}{\beta k_6(p-1)t_b}\right]^{\frac{1}{p-1}}.$$

1

Lemma 4.2. Under the hypotheses of Lemma 4.1,

$$u(x,t_b) \le \frac{k_7 x}{\left[\frac{1}{\beta} \left(k_9^\beta - x^\beta\right)\right]^{\frac{2}{p-1}}} < \infty \quad for \ any \ x \in [0,k_9).$$

Proof. Let

$$\Phi\left(x,t\right) = \frac{k_7 x}{D^{1/(p-1)}},$$

where

$$D(x,t) = \left[\frac{1}{\beta}\left(k_9^\beta - x^\beta\right)\right]^2 + t_b - t.$$

Using (4.11), we obtain for any $x \in (0, k_9)$ and $t_b/2 < t \le t_b$,

$$\begin{split} L\Phi &-a^{2}\Phi^{p}\bar{f}\left(\Phi\right)\\ \geq \frac{k_{7}}{\left(p-1\right)D^{\frac{p}{p-1}}}\left[x^{q+1} - \frac{2}{\beta}\left(k_{9}^{\beta} - x^{\beta}\right)x^{\beta-1}\right.\\ &-\frac{4p}{\beta^{2}\left(p-1\right)D}\left(k_{9}^{\beta} - x^{\beta}\right)^{2}x^{2\beta-1} - 2\left(k_{9}^{\beta} - x^{\beta}\right)x^{\beta-1} - k_{6}k_{7}^{p-1}\left(p-1\right)x^{p}\right]\\ \geq \frac{k_{7}x^{q+1}}{\left(p-1\right)D^{\frac{p}{p-1}}}\\ \times \left[1 - 2k_{9}^{\beta}x^{\beta-q-2} - \frac{4px^{2\beta-q-2}}{p-1} - 2k_{9}^{\beta}x^{\beta-q-2} - k_{7}^{p-1}k_{6}\left(p-1\right)x^{p-q-1}\right]\right]\\ \geq \frac{k_{7}x^{q+1}}{\left(p-1\right)D^{\frac{p}{p-1}}}\\ \times \left[1 - 2pk_{9}^{2\beta-q-2} - \frac{4pk_{9}^{2\beta-q-2}}{p-1} - 2pk_{9}^{2\beta-q-2} - k_{7}^{p-1}k_{6}\left(p-1\right)k_{9}^{p-q-1}\right]\right]\\ \geq \frac{k_{7}x^{q+1}}{\left(p-1\right)D^{\frac{p}{p-1}}}\\ \times \left\{1 - \frac{4p^{2}k_{9}^{2\beta-q-2}}{p-1} - \left[\frac{1}{k_{6}\left(p-1\right)} + \frac{2k_{9}^{\beta}}{\beta k_{6}\left(p-1\right)t_{b}}\right]k_{6}\left(p-1\right)k_{9}^{p-q-1}\right]\right\}\\ = \frac{k_{7}x^{q+1}}{\left(p-1\right)D^{\frac{p}{p-1}}}\left(1 - k_{9}^{p-q-1} - \frac{4p^{2}k_{9}^{2\beta-q-2}}{p-1} - \frac{2k_{9}^{\beta+p-q-1}}{\beta t_{b}}\right)\\ \geq 0. \end{split}$$

It follows from (4.10), $\beta \ge 1$ and $0 < k_9 < 1$ that

$$\begin{split} \Phi\left(x,\frac{t_b}{2}\right) &= \frac{k_7 x}{\left\{\frac{t_b}{2} + \left[\frac{1}{\beta}\left(k_9^\beta - x^\beta\right)\right]^2\right\}^{\frac{1}{p-1}}} \ge \frac{k_7 x}{\left(\frac{t_b}{2} + \frac{k_9^2}{\beta^2}\right)^{\frac{1}{p-1}}} \ge \frac{k_7 x}{\left(\frac{t_b}{2} + \frac{k_9^2}{\beta}\right)^{\frac{1}{p-1}}}\\ &= \frac{\left[\frac{1}{k_6(p-1)} + \frac{2k_9^2}{\beta k_6(p-1)t_b}\right]^{\frac{1}{p-1}} x}{\left(\frac{t_b}{2} + \frac{k_9^2}{\beta}\right)^{\frac{1}{p-1}}} = \frac{\left[\frac{\beta t_b + 2k_9^2}{\beta k_6(p-1)t_b}\right]^{\frac{1}{p-1}} x}{\left(\frac{\beta t_b + 2k_9^2}{2\beta}\right)^{\frac{1}{p-1}}} = \left[\frac{2}{k_6(p-1)t_b}\right]^{\frac{1}{p-1}} x\\ &\ge u\left(x,\frac{t_b}{2}\right) \text{ on } [0,k_9]. \end{split}$$

Since

$$\Phi(0,t) = 0, \ \Phi(k_9,t) = \frac{k_7 k_9}{(t_b - t)^{\frac{1}{p-1}}},$$

it follows from Lemma 1 of Chan and Yuen [4] that $\Phi(x,t)$ is an upper solution of the problem (1.1) for $0 \le x \le k_9$. The lemma is then proved.

Since $k_9 \in (0, 1)$, we have the following result.

Theorem 4.3. Under the hypotheses of Lemma 4.1, if u blows up, then the blow-up set is x = 1.

REFERENCES

- C.Y. Chan and W.Y. Chan, Existence of classical solutions for degenerate semilinear parabolic problems, *Appl. Math. Comput.* 101 (1999), 125-149.
- [2] C.Y. Chan and H.T. Liu, Global existence of solutions for degenerate semilinear parabolic problems, *Nonlinear Anal.* 34 (1998), 617-628.
- [3] C.Y. Chan and J. Yang, Complete blow-up for degenerate semilinear parabolic equations, J. Comput. Appl. Math. 113 (2000), 353-364.
- [4] C.Y. Chan and S.I. Yuen, Impulsive effects on global existence of solutions for degenerate semilinear parabolic equations, Appl. Math. Comput. 90 (1998), 97-116.
- [5] M.S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations, Arch. Rat. Mech. Anal. 114 (1991), 57-77.
- [6] G.S. Ladde, V. Lakshmikantham and A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, MA, 1985.
- [7] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.
- [8] N.W. McLachlan, Bessel Functions for Engineers, 2nd ed., Oxford at the Clarendon Press, London, Great Britain, 1955.
- [9] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition, Cambridge University Press, New York, 1944.