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ABSTRACT. This paper considers the stability problem of a class of impulsive functional differ-

ential equations using two Lyapunov functions. By employing the Lyapunov-Razumikhin technique,

we establish several stability criteria in terms of two measures. These criteria are then applied

to get sufficient conditions for uniform asymptotical stability of Lotka-Volterra systems subject to

impulsive effects.
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1. INTRODUCTION

The theory of impulsive functional differential equations has been developed

rapidly in recent years. Existence and uniqueness results are established in [1, 9].

A series of stability results are developed in [10, 13, 15]. The study of impulsive

functional differential equations is much more difficult than that of impulsive differ-

ential equations [5, 9]. This is mainly due to the discontinuities of the solutions which

renders the classical techniques used in the theory of functional differential equations

ineffective(see [3]).

The Lyapunov-Razumikhin technique is a powerful tool for the investigation of

qualitative properties of functional differential equations and has been extended re-

cently to the study of stability in terms of two measures([11, 12]). However, in most

cases, only one Lyapunov function is used, which makes it difficult to construct appro-

priate Lyapunov functions, especially for real world systems. In this paper, we utilize

two Lyapunov functions to investigate the stability in terms of two measures for im-

pulsive functional differential equations based on the ideas developed in [7, 11, 12],

and then apply our results to Lotka-Volterra systems subject to impulsive effects.

The rest of the paper is organized as follows. In Section 2, we introduce some

notations and definitions. In Section 3, we obtain several Razumikhin-type stability
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criteria for impulsive functional differential equations and in Section 4, these results

are applied to obtain stability properties of Lotka-Volterra systems subject to impul-

sive effects.

2. PRELIMINARIES

Let R denote the set of real numbers, R+ the set of nonnegative real numbers

and Rn the n-dimensional real space equipped with the Euclidean norm || · ||. Let N

denote the set of positive integers, i.e., N = {1, 2, · · · }.

We define the following classes of functions for later use.

Γ =

{
h ∈ C(R+ ×Rn, R+)

∣∣∣∣ inf(t,x) h(t, x) = 0

}
,

Γ0 =

{
h0 : R+ × PC([−r, 0], Rn) → R+

∣∣∣∣h0(t, φ) = sup−r≤s≤0 h
0(t+ s, φ(s)),

where h0 ∈ Γ

}
,

K0 =

{
g ∈ C(R+, R+)

∣∣∣∣ g(0) = 0 and g(s) > 0 for s > 0

}
,

K =

{
g ∈ K0

∣∣∣∣ g is strictly increasing in s

}
,

PC([a, b], S) =

{
ψ : [a, b] → S

∣∣∣∣ψ(t) = ψ(t+), ∀t ∈ [a, b);ψ(t−) exists in S, ∀t

∈ (a, b]; and ψ(t−) = ψ(t) for all but at most a finite number

of points t ∈ (a, b]

}
,

PC([a, b), S) =

{
ψ : [a, b) → S

∣∣∣∣ψ(t) = ψ(t+), ∀t ∈ [a, b);ψ(t−) exists in S, ∀t

∈ (a, b); and ψ(t−) = ψ(t) for all but at most a finite number

of points t ∈ (a, b)

}
,

and PC([a,∞), S) =

{
ψ : [a,∞) → S

∣∣∣∣∀c > a, ψ|[a,c] ∈ PC([a, c], S)

}
,

where ψ(t+) = lims→t+ ψ(s), ψ(t−) = lims→t− ψ(s), a, b ∈ R with a < b and S ⊂ Rn.

Given a constant r > 0, we equip the linear space PC([−r, 0], Rn) with the norm

‖ · ‖r defined by ‖ψ‖r = sup−r≤s≤0 ‖ψ(s)‖; when r = ∞, we mean [−r, 0] = (−r, 0].



RAZUMIKHIN TECHNIQUE VIA TWO LYAPUNOV FUNCTIONS AND APPLICATIONS 619

Consider the following impulsive functional differential equations

(2.1)





x′(t) = f(t, xt), t ∈ [tk−1, tk),

x(tk) = Jk(xt−
k

), k ∈ N,

xt0 = φ,

where f : R+ × PC([−r, 0], Rn) → Rn; Jk ∈ C(Rn, Rn), φ ∈ PC([−r, 0], Rn);

0 ≤ t0 < t1 < t2 < · · · < tk < · · · , with tk → ∞ as k → ∞; 4x(t) = x(t+) − x(t−);

and xt, xt− ∈ PC([−r, 0], Rn) are defined by xt(s) = x(t + s), xt−(s) = x(t− + s) for

−r ≤ s ≤ 0, respectively.

In this paper, we assume that the functions f, Jk, k ∈ N satisfy all necessary

conditions for the global existence and uniqueness of solutions for all t ≥ t0(see

[7, 10]). Denote the solution of system (2.1) by x(t) = x(t, t0, φ) such that xt0 = φ.

The solution x(t) is continuous for t 6= tk, k ∈ N , and has discontinuities of the first

kind at t = tk where it is assumed to be continuous from the right, i.e., x(t+k ) =

x(tk), k ∈ N([7, 10]).

Definition 2.1. Let h ∈ Γ, h0 ∈ Γ0. Then system (2.1) is said to be

(S1). (h0, h)-equi-stable(equi-S for short), if for each ε > 0 and t0 ≥ 0, there exists

some δ = δ(ε, t0) > 0, such that h0(t0, φ) < δ implies h(t, x(t)) < ε for t ≥ t0,

where x(t) = x(t, t0, φ) is any solution of system (2.1);

(S2). (h0, h)-uniformly stable(US for short), if the δ in (S1) is independent of t0;

(S3). (h0, h)-equi-asymptotically stable(equi-AS for short), if (S1) holds and for each

ε > 0 and t0 ≥ 0, there exists some δ = δ(t0) > 0 and T = T (ε, t0) > 0, such

that h0(t0, φ) < δ implies h(t, x(t)) < ε for t ≥ t0 + T ;

(S4). (h0, h)-uniformly asymptotically stable(UAS for short), if (S2) holds and for each

γ > 0 and t0 ≥ 0, there exists some η = η(γ) > 0 and T = T (γ) > 0 such that

h0(t0, φ) < η implies h(t, x(t)) < γ for any t ≥ t0 + T and t0 ≥ 0.

Definition 2.2. A function V (t, x) : [t0−r,∞)×Rn → R+ is said to belong to class

ν0 if

(H1). V is continuous on each of the sets [tk−1, tk) × Rn, and for all x, y ∈ Rn and

k ∈ N , lim(t,y)→(t−
k
,x) V (t, y) = V (t−k , x) exists;

(H2). V (t, x) is locally Lipschitz in x ∈ Rn.

Definition 2.3. Given a function V : [t0 − r,∞) × Rn → R+, the upper right-hand

derivative of V with respect to system (2.1) is defined by

V ′(t, ψ(0)) = lim sup
h→0+

1

h
[V (t+ h, ψ(0) + hf(t, ψ)) − V (t, ψ(0))],

for (t, ψ) ∈ R+ × PC([−r, 0], Rn).
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3. STABILITY CRITERIA

We shall state and prove our main results in this section.

Theorem 3.1. Suppose (2.1) is (h0, h)-US, wi ∈ K, V, H ∈ ν0 such that

(i) 0 ≤ V (t, x) ≤ w1(h(t, x)) and

w2(h(t, x)) ≤ H(t, x) ≤ w3(h(t, x)), if h(t, x) < ρ;

(ii) V (tk, Jk(x)) ≤ ψk(V (t−k , x)) and H(tk, Jk(x)) ≤ ψk(H(t−k , x)), if h(t, x) < ρ,

where ψk ∈ C(R+, R+), ψk(s) ≥ s and ψk(s)
s

is nondecreasing for s > 0, and for

any a1 > 0, there is a constant M so that

∞∑

k=1

[
ψk(a1)

a1

− 1] = M < ∞;

(iii) there exist constants r, T ∗ > 0 and g ∈ C(R,R+) such that for any solution x(t)

of (2.1) and t ≥ T ∗

V ′(t, x(t)) ≤ −F (t, h(t, x(t))) + g(t),

H ′(t, x(t)) ≤ −F1(t, h(t, x(t))),

whenever h(t, x(t)) < ρ and P (H(t, x(t))) > H(t + s, x(t + s)) for −r ≤ s ≤ 0,

where P ∈ C(R+, R+), P (s) > s for s > 0 and F (t, h(t, x(t))) ≥ ψ(t, η) ≥ 0 for

h(t, x(t)) ≥ η > 0, where ψ(t, η) is measurable; F1(t, h(t, x(t))) ≥ 0;

(iv) for any given η > 0, limp→∞ inft≥0

∫ t+p

t
ψ(s, η)ds = ∞ and

∫ ∞

0
g(t)dt = Ω <

∞;

(v) there exists some 0 < ρ0 < ρ such that h(tk, x) < ρ0 implies h(tk, Jk(x))< ρ.

Then (2.1) is (h0, h)-UAS.

Proof. Since (2.1) is (h0, h)-US, then for ρ0 > 0, there exists a δ > 0 independent

of t0, such that h0(t0, φ) < δ implies h(t, x(t)) < ρ0 for all t ≥ t0. Choose a β > 0 so

that w3(β) = w2(ρ0), then if h0(t0, φ) < δ, we have

(3.1) H(t, x(t)) ≤ w3(β) and V (t, x(t)) ≤ w1(ρ0), ∀t ≥ t0.

Thus, for any t ≥ t0, we have h(t, x(t)) ≤ ρ0 < ρ.

For any ε ∈ (0,min{ρ0, β}), choose

(3.2) 0 < 2a < min
{
w2(ε), inf

w2(ε)
2

≤s≤w3(β)

{P (s) − s}
}
.

Since
∑∞

k=1 [ψk(a1)
a1

− 1] < ∞, there exists K∗ ∈ N such that

(3.3)

∞∑

k=K∗

[
ψk(a1)

a1
− 1] <

a

w3(β)
.
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By condition (iv), for η = w−1
3 [w2(ε)

2
], there exists T̃ > 0 such that

(3.4)

∫ t+ eT

t

ψ(t, η)dt > Ω + w1(ρ0)(1 +M), ∀t ≥ t0.

Let N be the first positive integer such that

(3.5) w3(β) ≤ w2(ε) +Na

We shall show that, for any i = 0, 1, · · · , N

(3.6) H(t, x(t)) ≤ w2(ε) + (N − i)a, t ≥ t0 + tK∗ + i(T̃ + r),

It is clear that (3.6) holds for i = 0 since from (3.1) and (3.5)

(3.7) H(t, x(t)) ≤ w3(β) ≤ w2(ε) +Na, ∀t ≥ t0.

Suppose (3.6) holds for i = k, i.e.

(3.8) H(t, x(t)) ≤ w2(ε) + (N − k)a, t ≥ τk, k = 0, 1, · · · , N − 1,

where τk = t0 + tK∗ + k(T̃ + r), k = 0, 1, · · · , N − 1.

We shall show (3.6) holds for i = k + 1, i.e.

(3.9) H(t, x(t)) ≤ w2(ε) + (N − k − 1)a, t ≥ τk+1, k = 0, 1, · · · , N − 1.

Let Ik = [τk + r, τk+1], we claim that there exists some t∗ ∈ Ik, such that

(3.10) H(t∗, x(t∗)) < w2(ε) + (N − k − 2)a.

Otherwise, for all t ∈ Ik, we have

(3.11) H(t, x(t)) ≥ w2(ε) + (N − k − 2)a.

From (3.2) we have a < w2(ε)
2

, noticing k ≤ N − 1, (3.1) and (3.11), we obtain

(3.12)
w2(ε)

2
≤ H(t, x(t)) ≤ w3(β), ∀t ∈ Ik.

Then by (3.2), (3.8) and (3.12), we have, for any t ∈ Ik,

(3.13)

P (H(t, x(t))) > H(t, x(t)) + 2a

≥ w2(ε) + (N − k − 2)a+ 2a

≥ w2(ε) + (N − k)a

≥ V (t+ s, x(t + s)), ∀s ∈ [−r, 0].

From condition (iii), we have, for any t ∈ Ik

(3.14) V ′(t, x(t)) ≤ −F (t, h(t, x(t))) + g(t).

On the other hand, condition (i) and (3.12) imply, for any t ∈ Ik

w3(h(t, x(t))) ≥ H(t, x(t)) ≥
w2(ε)

2
,
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i.e.

(3.15) h(t, x(t)) ≥ w−1
3 (

w2(ε)

2
) = η > 0.

From (3.15) and the assumption on F , we have

F (t, h(t, x(t))) ≥ ψ(t, η) ≥ 0,

together with (3.14), we obtain

(3.16) V ′(t, x(t)) ≤ −ψ(t, η) + g(t), ∀t ∈ Ik.

Integrating (3.16) from τk + r to τk+1, and noticing τk+1 = τk + r + T̃ , from (3.1),

(3.4) and condition (ii) and (iv), we have

(3.17)

V (τk+1, x(τk+1)) ≤ V (τk + r, x(τk + r)) −
∫ τk+1

τk+r
ψ(s, η)ds+

∫ τk+1

τk+r
g(s)ds

+
∑

τk+r<tk≤τk+1
(V (tk, x(tk)) − V (t−k , x(t

−
k )))

≤ w1(ρ0) −
∫ τk+r+ eT

τk+r
ψ(s, η)ds+

∫ ∞

0
g(s)ds

+
∑

τk+r<tk≤τk+1
V (t−k , x(t

−
k ))[

ψk(V (t−
k
,x(t−

k
)))

V (t−
k
,x(t−

k
))

− 1]

≤ w1(ρ0) −
∫ τk+r+ eT

τk+r
ψ(s, η)ds+ Ω

+w1(ρ0)
∑∞

k=1[
ψk(w1(ρ0))
w1(ρ0)

− 1]

≤ w1(ρ0)(1 +M) −
∫ τk+r+ eT

τk+r
ψ(s, η)ds+ Ω

< 0.

This contradicts V (t, x(t)) ≥ 0, so (3.10) holds.

Now we prove, for all t ≥ t∗

(3.18) H(t, x(t)) ≤ w2(ε) + (N − k − 1)a.

We consider two cases: t∗ 6= tk for any k ∈ N and t∗ = tk for some k ∈ N .

Case 1. t∗ 6= tk for any k ∈ N .

We claim (3.18) holds for all t ≥ t∗. Otherwise, there exists some

t̂ = inft≥t∗{H(t, x(t)) ≥ w2(ε) + (N − k − 1)a}, and then we have

(3.19) H(t̂, x(t̂)) ≥ w2(ε) + (N − k − 1)a.

Since H(t∗, x(t∗)) < w2(ε) + (N − k − 2)a and t∗ 6= tk for any k ∈ N , so t̂ > t∗; and

we have H(t∗, x(t∗)) ≤ H(t, x(t)) ≤ H(t̂, x(t̂)) for all t ∈ [t∗, t̂].
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Then for all t ∈ [t∗, t̂], we have

(3.20)

P (H(t, x(t))) > H(t, x(t)) + 2a ≥ H(t∗, x(t∗)) + a

≥ w2(ε) + (N − k − 2)a+ 2a

≥ w2(ε) + (N − k)a

≥ H(t+ s, x(t+ s)), ∀s ∈ [−r, 0].

By condition (iii), we have

(3.21) H ′(t, x(t)) ≤ −F1(t, h(t, x(t))) ≤ 0.

By integrating both sides of (3.21) and using (3.3) and t∗ ≥ τk + r > tK∗, we obtain

(3.22)

H(t̂, x(t̂)) ≤ H(t∗, x(t∗)) +
∑

t∗≤tk
(H(tk, x(tk)) −H(t−k , x(t

−
k )))

< w2(ε) + (N − k − 2)a+ w3(β)
∑∞

k=K∗[
ψk(w3(β))
w3(β)

− 1]

< w2(ε) + (N − k − 2)a+ w3(β) · a
w3(β)

≤ w2(ε) + (N − k − 1)a,

which contradicts (3.19) and shows that (3.18) holds.

Case 2. t∗ = tk for some k ∈ N .

In this case, we first prove that (3.18) holds for any t ∈ [t∗, tk+1). Suppose not,

then there exists some t∗∗ ∈ (t∗, tk+1) such that

(3.23) H(t∗∗, x(t∗∗)) = w2(ε) + (N − k − 1)a,

and H(t∗, x(t∗)) ≤ H(t, x(t)) ≤ H(t∗∗, x(t∗∗)) for all t ∈ [t∗, t∗∗]. Then we have (3.20)

and (3.21) hold for all t ∈ [t∗, t∗∗]. Integrating both sides of (3.21), we obtain

(3.24)
H(t∗∗, x(t∗∗)) ≤ H(t∗, x(t∗))

≤ w2(ε) + (N − k − 2)a,

which contradicts (3.23) and shows (3.18) holds for any t ∈ [t∗, tk+1).

Next, we shall prove that (3.18) holds for any t ≥ tk+1. Suppose not, then there

exists some t∗∗∗ = inft≥tk+1
{H(t, x(t)) ≥ w2(ε) + (N − k − 1)a}, and then we have

(3.25) H(t∗∗∗, x(t∗∗∗)) ≥ w2(ε) + (N − k − 1)a.

Since H(t∗, x(t∗)) < w2(ε)+(N−k−2)a and (3.18) holds for any t ∈ [t∗, tk+1), so t̂ >

t∗; and we have H(t∗, x(t∗)) ≤ H(t, x(t)) ≤ H(t̂, x(t̂)) for all t ∈ [t∗, t∗∗∗]. Then using

similar way as that in case 1, we can prove (3.20) and (3.21) hold for all t ∈ [t∗, t∗∗∗].

And then by integrating (3.21) from t∗ to t∗∗∗, we can obtainH(t∗∗∗, x(t∗∗∗)) < w2(ε)+

(N−k−1)a similarly as that in (3.22). This contradicts (3.25) and shows that (3.18)

holds.

Thus we know (3.18) holds in both cases, and hence (3.9) is true since t∗ ≤ τk+1.

So by induction, (3.6) holds for i = 0, 1, · · · , N . Let i = N in (3.6), we have

w2(h(t, x(t))) ≤ H(t, x(t)) ≤ w2(ε), ∀t ≥ τN = t0 + T ∗,
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i.e.

h(t, x(t)) ≤ ε, ∀t ≥ τN = t0 + T ∗,

where T ∗ = tK∗ +N(T̃ + r) is independent of t0. The proof is complete.

Corollary 3.1. If condition (iii) and (iv) of Theorem 3.1 are replaced by (iii′) and

(iv′) respectively,

(iii′) for any λi ≥ 0(i = 1, 2), there exist constants r, T ∗ > 0 such that for any

solution x(t) of (2.1) and t ≥ T ∗

V ′(t, x(t)) ≤ −b(t) [ w4(h(t, x(t))) − λ1 ] + g(t),

H ′(t, x(t)) ≤ −c(t) [ w5(h(t, x(t))) − λ2 ],

whenever h(t, x(t)) < ρ, and P (V (t, x(t))) > V (t + s, x(t + s)), −r ≤ s ≤ 0,

where P ∈ C(R+, R+), P (s) > s for s > 0, b(t), c(t) ≥ 0;

(iv′) limT→∞ inft≥0

∫ t+T

t
b(s)ds = ∞.

Then the result is still true.

Proof. Let λ1 = w4(σ)
2

for any σ > 0, we have

(3.26) b(t) [ w4(σ) − λ1 ] = b(t)
w4(σ)

2
∆
= ψ̃(t, σ), ∀t ≥ T ∗,

so condition (iii) of Theorem 3.1 can be rewritten so that there exist constants r, T ∗ >

0 such that for any solution x(t) of (2.1)

(3.27)
V ′(t, x(t)) ≤ −b(t) [ w4(h(t, x(t))) − λ1 ] + g(t)

∆
= −F1(t, h(t, x(t))) + g(t), t ≥ T ∗,

whenever h(t, x(t)) < ρ and P (V (t, x(t))) > V (t+s, x(t+s)), −r ≤ s ≤ 0, where P ∈

C(R+, R+), P (s) > s for s > 0 and F (t, h(t, x(t))) ≥ ψ̃(t, σ) ≥ 0 for h(t, x(t)) ≥ σ >

0. Moreover, let F1(t, h(t, x(t))) = c(t) [ w5(h(t, x(t)))−λ2 ], then F1(t, h(t, x(t))) ≥ 0.

Together with condition (iv′), we know condition (iv) of Theorem 3.1 holds. This

completes the proof.

Remark 3.1. In Corollary 3.1, if we let h0(t, x(t)) = ‖x(t)‖r, h(t, x(t)) = ‖x(t)‖,

where ‖ · ‖ is any norm in Rn, and let Jk(x) ≡ x, then we can get the same UAS

result in Theorem 2.1 in reference [12].

Corollary 3.2. If condition (ii) of Theorem 3.1 is replaced by (ii′),

(ii′) V (tk, Jk(x)) ≤ (1+bk)V (t−k , x) and H(tk, Jk(x)) ≤ (1+bk)H(t−k , x), if h(t, x) <

ρ, where bk > 0 and
∑∞

k=1 bk <∞.

Then the result is still true.

Proof. Let ψk(s) = (1 + bk)s in condition (ii) of Theorem 3.1, together with bk > 0

and
∑∞

k=1 bk < ∞, then condition (ii) of Theorem 3.1 holds.
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4. APPLICATION TO LOTKA-VOLTERRA SYSTEMS WITH TIME

DELAY AND IMPULSIVE EFFECTS

Functional differential equations are frequently used to model population dynam-

ics. The Lotka-Volterra equation for predator-pray problems or that of competing

species is often considered([2, 4, 12]). When population levels repeatedly undergo

changes of relatively short duration(due, for instance, to stocking or harvesting of

species), the these events may be more suitably modelled by an impulsive functional

differential equation (see [8] and references therein).

Consider the following Lotka-Volterra system subject to impulsive effects

x′i(t) = bi(xi(t))
{
ri(t) − ai(t)xi(t) +

n∑

j=1

∫ t

−∞

xj(s)dµij(t, s)
}
, t 6= tk,(4.1a)

xi(tk) = cikxi(t
−
k ) + (1 − cik)x

∗
i , i = 1, · · · , n.(4.1b)

x(θ) = φ(θ), θ ∈ (−∞, 0].,(4.1c)

where x∗ = (x∗1, x
∗
2, · · · , x

∗
n) is assumed to be a positive equilibrium of system (4.1a)

and (4.1c), and initial functions satisfy

(4.2) φi(θ) ≥ 0, φi(0) > 0, for i = 1, 2, · · · , n.

Suppose for i, j = 1, 2, · · · , n, k ∈ N , the following conditions hold

(A1). Constants cik ∈ [0, 1] and functions bi ∈ K0 and for any 0 < β � 1,
∫ β

0
ds
bi(s)

=

+∞;

(A2). ri(t) ≥ 0 and ai(t) ≥ 0 are continuous functions;

(A3). µij(t, s) have bounded variation for any t ∈ R and s ≤ t, and satisfy
∫ u

−∞

|dµij(t, s)| ≤ ai(t)µ̂ij(t, u),

where µ̂ij(t, u)(u ≤ t) are nondecreasing with respect to u, and there exist

constants γij ≥ 0 with γii < 1 such that µ̂ij(t, t) ≤ γij, and for any ε > 0, there

exists constant h > 0 such that µ̂ij(t, t− h) ≤ ε, ∀t ≥ 0.

Remark 4.1. From Lemma 3.1([12]), we know the solutions of (4.1a) and (4.1c) are

positive in their maximal existence intervals. So the solutions of (4.1) are positive in

their maximal existence intervals, since cik ∈ [0, 1] for any i = 1, · · · , n, k ∈ N .

Theorem 4.1. Assume conditions (A1)-(A3) hold, and

(i). bi(s) are nondecreasing and for any i = 1, · · · , n, t ∈ R

(4.3) lim
p→+∞

∫ t+p

t

ai(s)ds = +∞
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(ii). Γ1 is an M-matrix, where

Γ1 =




1 − γ11 −γ12 · · · −γ1n

−γ21 1 − γ22 · · · −γ2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−γn1 −γn2 · · · 1 − γnn




then x∗ is uniformly asymptotically stable.

Proof. Rewrite system (4.1a) and (4.1b), we obtain

y′i(t) = bi(yi(t) + x∗i )
{
− ai(t)yi(t) +

n∑

j=1

∫ t

−∞

yj(s)dµij(t, s)
}
, t 6= tk,(4.4a)

yi(tk) = cikyi(t
−
k ), i = 1, · · · , n.(4.4b)

where yi(t) = xi(t) − x∗i , i = 1, · · · , n. Since Γ1 is an M-matrix, there exist positive

constants di, i = 1, · · · , n, such that

(4.5) di(1 − γii) >
n∑

i6=j

djγij, i = 1, · · · , n.

Choose

H(y(t)) = max{d−1
i |yi(t)| : 1 ≤ i ≤ n},

NH = {i ∈ {1, 2, · · · , n} : H(y(t)) = d−1
i |yi(t)|, t ≥ 0}.

For any i ∈ NH , using (4.5), we calculate H ′(y(t))

(4.6)

H ′(y(t)) ≤ bi(xi(t))
{
− ai(t)|yi(t)| +

∑n

j=1

∫ t

−∞
|yj(s)||dµij(t, s)|

}

≤ −bi(xi(t))d
−1
i

{
di(1 − γii) −

∑n

i6=j djγij
}
ai(t)H(y(t))

≤ 0

whenever H(s, y(s)) ≤ H(t, y(t)) for s ≤ t.

And

H(y(tk)) = max{d−1
i |yi(tk)| : 1 ≤ i ≤ n}

= max{d−1
i cik|yi(t

−
k )| : 1 ≤ i ≤ n}

≤ H(y(t−k )).

Thus we know from Theorem 2.1([11]) that the trivial solution of (4.4) is uni-

formly stable.

Now choose h0(t, y(t)) = ‖y(t)‖∞ = sup−∞<s≤0

{
max1≤i≤n{d

−1
i |yi(t + s)|}

}
,

h(t, y(t)) = ‖y(t)‖n = max1≤i≤n{d
−1
i |yi(t)|}, then for any given ε > 0, there exists

δ = δ(ε) > 0 such that ‖φ‖∞ ≤ δ implies |yi(t)| ≤ ε for t ≥ t0, i = 1, 2, · · · , n.

Then for t ≥ t0, let

(4.7) V (y(t)) = max
1≤i≤n

{
d−1
i Vi(t), where Vi(t) =

∫ |yi|

0

du

bi(x∗i + sgn(yi)u)

}
,
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and

NV = {i ∈ {1, 2, · · · , n} : V (y(t)) = d−1
i Vi(t), t ≥ 0}.

We have 1
bi(x∗i +sgn(yi)u)

> 0 since

x∗i + sgn(yi)u =

{
x∗i + u ≥ x∗i > 0, if yi ≥ 0,

x∗i − u ≥ x∗i + yi = xi > 0, if yi < 0,

so V (y(t)) ≥ 0.

And we have V (y(tk)) ≤ V (y(t−k )) since

Vi(y(tk)) =

∫ cik|yi(t
−

k
)|

0

du

bi(x∗i + sgn(yi)u)
≤ Vi(y(t

−
k ))

in view of cik ∈ [0, 1].

Moreover, choose ρ > 0 such that ρ < min1≤i≤n{d
−1
i x∗i }, then there exists η > 0

such that

ρ ≤ min
1≤i≤n

{d−1
i (x∗i − η)}.

Thus, together with (4.7), we have, for h(t, y(t)) = ‖y(t)‖n < ρ

d−1
i (x∗i − η) ≥ ρ > ‖y(t)‖n ≥ d−1

i |yi(t)|,

i.e. x∗i − |yi(t)| ≥ η. Since bi(s) are nondecreasing, we have

1

bi(x∗i + sgn(yi)u)
≤

1

bi(x∗i − |yi(t)|)
≤

1

bi(η)
, ∀u ∈ (0, |yi(t)|).

which implies V (y(t)) ≤ max1≤i≤n

{ d−1
i

bi(η)
|yi(t)|

}
when h(t, y(t)) < ρ, thus condition

(i) of Corollary 3.1 holds.

By assumption (A3), for any given σ1 > 0, there exists h > 0 such that

(4.8) ε

n∑

j=1

µ̂ij(t, t− h) ≤ σ1, for i = 1, 2, · · · , n.

By (4.5), there exists ρ1 > 1 such that

(4.9) di > ρ1

n∑

j=1

djγij, i = 1, 2, · · · , n.

By assumption (A2) and inequalities (4.8) and (4.9), for any i ∈ NV , we have

V ′(y(t)) = −d−1
i ai(t)|yi(t)| +

∑n

j=1 d
−1
i

{ ∫ t

t−h
+

∫ t−h

−∞

}
|yj(s)dµij(t, s)|

≤ −d−1
i ai(t)

{
H(y(t))[di − ρ1

∑n

j=1 djγij] − σ1

}
,

whenever H(y(s)) ≤ ρ1H(y(t)) for s ∈ [t− h, t]. Similarly, we obtain

H ′(y(t)) ≤ −bi(xi(t))ai(t)d
−1
i

{
H(y(t))[di − ρ1

n∑

j=1

djγij] − σ1

}
,
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whenever H(y(s)) ≤ ρ1H(y(t)) for s ∈ [t − h, t]. Choose P (s) = ρ1s, then all

conditions of Corollary 3.1 are satisfied, and hence the equilibrium x∗ of system (4.1)

is uniformly asymptotically stable.

REFERENCES

[1] G. Ballinger and X. Liu, Existence and uniqueness results for impulsive delay differential

equations, Dynamics of Continuous, Discrete and Impulsive Systems, 5, 579-591 (1999).

[2] X. Fu and L. Zhang, On boundedness and stability in terms of two measures for discrete

systems of Volterra type, Commun. Appl. Anal., 6, 61-71 (2002).

[3] J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations, Springer-

Verlag, NewYork, 1993.

[4] Y. Kuang, Delay differential equations with applications in population dynamics, Academic

press, Boston, 1993.

[5] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equa-

tions, World Scientific, Singapore, 1989.

[6] V. Lakshmikantham and X. Liu, Stability analysis in terms of two measures, World Scientific,

Singapore, 1993.

[7] V. Lakshmikantham and X. Liu, Stability criteria for impulsive differential equations in terms

of two measures, J.Math.Anal.Appl. 137, 591-604 (1989).

[8] X. Liu and G. Ballinger, Boundedness for impulsive delay differential equations and applica-

tions to population growth models, Nonlinear Analysis, 53, 1041-1062 (2003).

[9] X. Liu and G. Ballinger, Existence and continuability of solutions for differential equations

with delays and state-dependent impulses, Nonlinear Analysis, 51, 633-647 (2002).

[10] X. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations,

Computers and Mathematics with Applications, 41, 903-915 (2001).

[11] X. Liu and Q. Wang, On stability in terms of two measures for impulsive functional differential

equations, to appear.

[12] Z. Pu, D. Xu and S. Li, A Razumikhin theorem with two Lyapunov functions and asymptotic

behavior of Lotka-Volterra systems with infinite delay, Ann. Math. Ser., 5, 537-542 (1999).

[13] J.H. Shen and J. Yan, Razumikhin type stability theorems for impulsive functional differential

equations, Nonlinear Analysis, 33, 519-531 (1998).

[14] D. Xu, Uniform asymptotic stability in terms of two measures for functional differential equa-

tions, Nonlinear Analysis, 27, 413-427 (1996).

[15] C. Yuan, Stability in terms of two measures for stochastic differential equations, Dyn. Contin.

Discrete Impuls. Ser. A Math. Anal., 10, 895-910 (2003).


