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ABSTRACT. A new model of Hopfield-type neural network of neurons with crisp somatic activa-

tions which have some fuzzy synaptic modifications is formulated which incorporates a Hebbian-type

unsupervised learning algorithm. A set of sufficient conditions are derived for the existence of a glob-

ally exponentially stable steady state; the exponential convergence of the learning algorithm is also

considered. Our model will reduce to one of fuzzy neural networks considered by others when the

learning component is absent; when the fuzzy synapses are absent, our model will reduce to the well

known Hopfield-type network
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1. INTRODUCTION

A neural network known as the Hopfield-type and several of its generalizations

have been intensively investigated by numerous authors from the areas of mathe-

matics, physics, engineering, computer science etc. Earlier work on neural networks

can be traced to the neuron model known as McCulloch-Pitts model (McCalloch and

Pitts [19]). Many applications of neural networks have been known in diverse ar-

eas such as optimization, signal and image processing, pattern recognition, control

system etc. These applications are based on the existence and stability of equilibria

of the network models. The neuron models in these networks have been based on

the McCalloch-Pitts neuron and those derived form it while the mathematics of the

analysis used has been based on usual bivalent logic of set theory. It has been rec-

ognized (see Lee and Lee [15]) that neuron models based on the McCalloch-Pitts or

those of the Hopfield-type fail to appropriately “reflect the fact that the behaviour

of even the simplest type of nerve cell exhibits not only randomness but more impor-

tantly a type of imprecision which is associated with the lack of sharp transition from

the occurrence of an event to its non-occurrence” (Lee and Lee [15]). Furthermore

neural networks, biological or artificial have to analyze, process and resolve certain

ambiguities different from those of randomness of probability theory. Phenomena of

the type such as associative memories, images, perceptions become targets of certain
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neural networks. The mechanism of fuzzy logic based on multivalence rather than

bivalence may be another alternative (see Zadeh [29], Kosko [14], Rao and Rao [22],

Chen and Pham [3], Kaufman and Gupta [12]) to build a class of “fuzzy neurons”

and associated neural networks to model the phenomena related to human thinking,

perception, memory etc. A simplistic characterization of a biological neuron is that

it has four major components namely its soma, axon, dendrites and synapses; it is

at an immediate neighborhood of the soma that computations are done whose result

is transmitted through its axon to its synaptic fan close to the dendrites of other

neurons; synapses themselves can do some preprocessing of the information they re-

ceive before information carrying signals are delivered by a chemical transfer to the

dendrites of other neurons. In this respect we can say that if a neuron does not

follow the crisp logic and related computations, then it can become a “fuzzy neu-

ron” in the sense that its somatic computations can become “fuzzy” by following a

set of “if-then” rules or the synaptic processes can become “fuzzy” in the sense that

the usual process of multiplication and addition are replaced by operations of fuzzy

logic namely “min” and “max” operators respectively. Thus neural networks can

merge with fuzzy logic leading to the concept of “fuzzy neural networks” (see Kosko

[14]) which is believed to have considerable potential for applications in the areas

of image processing, medical diagnosis, control system, pattern recognition, anti-lock

brake systems, automatic transmission, smart elevators, auto-pilot systems and many

other house-hold appliances. It is well known that classical control theory is based

on the theory of differential equations; however as it has been noted by Haykin [5]

that “intelligent control is largely rule based because the dependencies involved in its

development are much too complex to permit an analytical representation. And to

deal with such dependencies, it is expedient to use the mathematics of fuzzy systems

and neural network”. This is largely due to the ability of fuzzy systems in quantifying

linguistic inputs and formulate a workable approximation to the complex problem.

Neural networks can learn or adapt themselves to new environments and there is a

natural “synergy neural networks and fuzzy systems” (see Haykin [5].)

More recently there have been several publications on the theme of neural net-

works where fuzzy logic is used; Yang and Yang [24, 25] and Yang et al. [26] have

proposed a fuzzy cellular neural network to include and analyze the ambiguity or

vagueness inherent in the inputs and outputs of neural networks; we can say that in

these networks the somatic operations are crisp while some of the the synaptic opera-

tions are not crisp and are from fuzzy logic. Further analysis of this type of networks

can be found in the works of Yuan et al. [28], Liu and Tang [17], Huang and Zhang

[10], Huang [7, 8], Chen and Liao [2]. This author could find only one publication

which considers a network of fuzzy neurons which use fuzzy logic in their somatic

computations (see Huang et al. [9]). There are many other publications where rule
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based fuzzy dynamical systems have been considered (see Kosko [13, 14], Johnson et

al. [11], Yang et al. [27], Tian and Peng [23]).

The mathematical operations in a network of crisp neurons are defined by means

of the usual multiplication and addition of signals at the synapses; the learning and

adaptation are also based on the crisp logic of bivalence. In the case of synapti-

cally fuzzy networks, the synaptic computations are carried out by fuzzy operators

of “maximum” and “minimum”. It is the purpose of this article to propose a system

modelling the dynamics of somatically crisp and synaptically fuzzy neurons with a

learning component incorporated in the network to learn a set of crisp weights when a

crisp external signal is presented to the network. The network can learn a set of crisp

synaptic weights. The network is fuzzy in the sense that the operations include those

of fuzzy logic namely “max” and “min” in addition to those of the bivalent addition

and multiplication. We suppose that the learning component in the network is based

on the crisp logic and is similar to the Hebbian based learning rule with a forgetting

term included as proposed by Amari [1]. We obtain sufficient conditions for the ex-

istence of a unique equilibrium and its global stability in a network of synaptically

fuzzy neurons. While various types of time delays can be included, we have not done

this aspect in this article.

We recall that the well known and widely studied Hopfield-type neural network

can be described by the system of equations

dxi(t)

dt
= −aixi(t) +

n
∑

j=1

aijfj(xj(t)) + Ji, i = 1, 2, · · · , n, t > 0

in which xi(t) denotes the state of the neuron i at time t, ai denotes a resetting time

constant, aij, (i, j = 1, 2, · · · , n) denotes the synaptic weight associated with the j ′th

synapse of the i′th neuron; fj() denotes the activation function of the j ′th neuron and

Ji denotes the external input directed to the neuron i from outside the network. The

literature on neural networks contains a large number of extensions, modifications

and variations of the above type of the model system. A predominant theme in the

mathematics of the above system and its generalizations is to find conditions for the

existence of a unique equilibrium and its stability characteristics.

2. MODEL FORMULATION

It is widely believed that information and knowledge are stored in the synaptic

weights and while a neural network learns, the synaptic weights change. We consider a

class of networks of somatically crisp neurons with fuzzy synapses which has learnable
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synaptic weights described by the following system of equations

(2.1)

dui(t)

dt
= − aiui(t) +

n
∑

j=1

aijfj(uj(t)) + Bi

n
∑

j=1

mij(t)pj

+ bi

n
∨

j=1

bijfj(uj(t)) + ci

n
∧

j=1

cijfj(uj(t)) + Ji

dmij(t)

dt
= −αi mij(t) +

[

βifi(ui(t)) + γi

n
∧

j=1

γijfj(uj(t))

+ δi

n
∨

j=1

δijfj(uj(t))

]

pj
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
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








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


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








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

, i = 1, 2, · · · , n, t > 0

in which ui(t) denotes the state of neuron i at time t, ai denotes the passive negative

stabilizing feedback of neuron i, aij, bij, cij, γij, δij denote the denote the synaptic

weights of the various fuzzy and non-fuzzy synapses of neuron i, Bi, bi, ci, βi, γi, δi are

disposable constants, mij denotes a learnable synaptic weight of neuron when it is

presented with a constant input signal vector p = (p1, p2, p3, · · · , pn); the external bias

to the network is denoted by the constant vector J = (J1, J2, · · · , Jn). The operators
∨

and
∧

appearing (2.1) denote respectively the “max” and “min” operators used

in fuzzy logic. The learning equation or algorithm in (2.1) is based on the Hebbian-

type (Hebb [6]) unsupervised algorithm modified by the introduction of a forgetting

term as proposed by Amari [1]; such learning models have been recently discussed by

Lemmon and Kumar [16], Lu and He [18], Meyer-Baese et al. [20, 21]. It is well known

that neuronal activations are fast in comparison with the synaptic modifications of

weights and it may be appropriate to consider the combined dynamics of neuronal

activations and synaptic modifications with two different time scales and possibly

by singular perturbation methods. In our analysis below, we do not consider the

difference in time scales.

The dynamics of neural networks neurons with fuzzy synapses described by (2.1)

without the learning component has been discussed by several authors recently (see

Yang and Yang [24], Yang et al. [27], Liu and Tang [17], Yuan et al. [28], Huang [7, 8],

Chen and Liao [2]). Our model becomes one of fuzzy neural networks in the absence

of the learning component; in the absence of fuzzy synapses, our model reduces to the

most commonly studied Hopfield-type neural network. To analyze the system (2.1)

further we introduce auxiliary variables vi, i = 1, 2, · · · , n defined by

(2.2) vi(t) =
n

∑

j=1

mij(t)pj, i = 1, 2, · · · , n, t ≥ 0
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so that the system (2.1) becomes

(2.3)

dui(t)

dt
= −aiui(t) +

n
∑

j=1

aijfj(uj(t)) + Bivi(t)

+ bi

n
∨

j=1

bijfj(uj(t)) + ci

n
∧

j=1

cijfj(uj(t)) + Ji

dvi(t)

dt
= −αivi(t) +

[

βifi(ui(t)) + γi

n
∧

j=1

γijfj(uj(t))

+ δi

n
∨

j=1

fj(uj(t))

]

c
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








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, i = 1, 2, · · · , n, t > 0

in which c =
∑n

j=1 p2
j . We are interested in the derivation of sufficient conditions

for the existence of a globally stable equilibrium solution of (2.3). The following

preliminary result from Yang and Yang [1996] will be useful in our analysis of the

system (2.3).

Lemma 2.1. Suppose x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) be any two vectors in

R
n. Then

(2.4)

∣

∣

∣

∣

n
∧

j=1

αijfj(xj) −
n

∧

j=1

αijfj(yj)

∣

∣

∣

∣

≤
n

∑

j=1

|αij| |fj(xj) − fj(yj)|
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∣

∣

∣

n
∨

j=1

βijfj(xj) −
n

∨

j=1

βijfj(yj)

∣

∣

∣

∣

≤
n

∑

j=1

|βij| |fj(xj) − fj(yj)|


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, i = 1, 2, · · · , n.

Proof. Suppose there exist indices p and q such that
n

∧

j=1

αijfj(xj) = αip,

n
∧

j=1

αijfj(yj) = αiqfq(yq).

Then it will follow that
∣

∣

∣

∣

n
∧

j=1

αijfj(xj) −
n

∧

j=1

αijfj(yj)

∣

∣

∣

∣

≤ max

{
∣

∣

∣

∣

αip[fp(xp) − fp(yp)]

∣

∣

∣

∣

,

∣

∣

∣

∣

αiq[fq(xq) − fq(yq)]

∣

∣

∣

∣

}

≤

n
∑

j=1

|αij| |fj(xj) − fj(yj)|

and hence (2.4) follows. The proof of the second of (2.4) is similar and is omitted.

3. EQUILIBRIUM EXISTENCE

We will derive sufficient conditions for the existence of a unique equilibrium of

the system (2.3). Note that (x∗, y∗) = (x∗
1, x

∗
2, · · · , x∗

n, y∗
1, y

∗
2, · · · , y∗

n) is an equilibrium
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of (2.3) if (x∗, y∗) satisfies the system of equations

(3.1)

aix
∗
i =

n
∑

j=1

aijfj(x
∗
j) + Biy

∗
i + bi

n
∧

j=1

bijfj(x
∗
j)

+ ci

n
∨

j=1

cijfj(x
∗
j) + Ji

αiy
∗
i =

[

βifi(x
∗
i ) + γi

n
∧

k=1

γikfk(x
∗
k) + δi

n
∨

k=1

δikfk(x
∗
k)

]

c


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


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, i = 1, 2, · · · , n

which simplifies to the system of equations

(3.2)

aix
∗
i =

n
∑

j=1

aijfj(x
∗
j) + bi

n
∧

j=1

bijfj(x
∗
j) + ci

n
∨

j=1

cijfj(x
∗
j) + Ji

+ c
Bi

αi

[

βifi(x
∗
i ) + γi

n
∧

j=1

γijfj(x
∗
j) + δi

n
∨

j=1

δijfj(x
∗
j)

]


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, i = 1, 2, · · · , n.

We can simplify (3.2) further as follows: we let

(3.3) aix
∗
i = X∗

i , i = 1, 2, · · · , n

so that

(3.4)

X∗
i =

n
∑

j=1

aijfj

(

X∗
j

aj

)

+ bi

n
∧

j=1

bijfj

(

X∗
j

aj

)

+ ci

n
∨

j=1

cijfj

(

X∗
j

aj

)

+ Ji

+ c
Bi

αi

[

βifi

(

X∗
i

ai

)

+ γi

n
∧

j=1

γijfj

(

X∗
j

aj

)

+ δi

n
∨

j=1

δijfj

(

X∗
j

aj

)]


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
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
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

, i = 1, 2, · · · , n

Theorem 3.1. Suppose the activation functions fj, j = 1, 2, · · · , n satisfy global

Lipschitz conditions so that

(3.5) |fj(x) − fj(y)| ≤ Lj|x − y|, x, y ∈ R, j = 1, 2, · · · , n.

If

(3.6)

max
1≤i≤n

Li

ai

[ n
∑

j=1

(

|aji| + |bj||bji| + |cj||cji|

)

+ c
Bi

αi

(

|βi| +

n
∑

j=1

{

|γj|γji| + |δj||δji|

}]

< 1


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

then the system (3.4) has a unique solution.
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Proof. Define a map F : R
n 7→ R

n as follows:

(3.7)

F (x) = {F1(x), F2(x), · · · , Fn(x)}, x ∈ R
n

Fi(x) =
n

∑

j=1

aijfj

(

xj

aj

)

+ bi

n
∧

j=1

bijfj

(

xj

aj

)

+ ci

n
∨

j=1

cijfj

(

xj

aj

)

+ Ji

+ c
Bi

αi

[

βifi

(

xi

ai

)

+ γi

n
∧

j=1

γijfj

(

xj

aj

)

+ δi

n
∨

j=1

δijfj

(

xj

aj

)]


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

, i = 1, 2, · · · , n.

We have from (3.7) and for any x, y ∈ R
n that

(3.8)

|Fi(x) − Fi(y)| =

∣

∣

∣

∣

n
∑

j=1

aij

[

fj

(

xj

aj

)

− fj

(

yj

aj

)]

+ bi

n
∧

j=1

bij

[

fj

(

xj

aj

)

− fj

(

yj

aj

)]

+ ci

n
∨

j=1

cij

[

fj

(

xj

aj

)

− fj

(

yj

aj

)]

+ c
Bi

αi

{

βi

[

fi

(

xi

ai

)

− fi

(

yi

ai

)]

+ γi

n
∧

j=1

γij

[

fj

(

xj

aj

)

− fj

(

yj

aj

)]

+ δi

n
∨

j=1

δij

[

fj

(

xj

aj

)

− fj

(

yj

aj

)]}
∣

∣

∣

∣
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
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




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

, i = 1, 2, · · · , n.

We can estimate the right side of (3.8) by using (3.5) and Lemma 2.1 so that

(3.9)

|Fi(x) − Fi(y)| ≤

n
∑

j=1

aij

Lj

aj

|xj − yj| + |bi|

n
∑

j=1

|bij|
Lj

aj

|xj − yj|

+ |ci|
n

∑

j=1

|cij|
Lj

aj

|xj − yj| + c
|Bi|

αi

{

|βi|
Li

ai

|xi − yi|

+ |γi|
n

∑

j=1

|γij|
Lj

aj

|xj − yj| + |δi|
n

∑

j=1

|δij|
Lj

aj

|xj − yj|

}

;


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, i = 1, 2, · · · , n;
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we have directly from the above,

(3.10)

n
∑

i=1

|Fi(x) − Fi(y)| ≤

n
∑

i=1

[ n
∑

j=1

|aji| +

n
∑

j=1

|bj||bji| +

n
∑

j=1

|cj||cji|

+ c
|Bi|

αi

{

|βi| +

n
∑

j=1

|γj||γji| +

n
∑

j=1

|δj||δji|

}]

Li

ai

|xi − yi|

≤ p

n
∑

i=1

|xi − yi|


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





where

(3.11)

p = max
1≤i≤n

[

Li

ai

( n
∑

j=1

{

|aji| + |bj||bji| + |cj||cji|

}

+ c
|Bi|

αi

{

|βi| +
n

∑

j=1

(|γj||γji| + |δj||δji|

})]


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.

By hypothesis p < 1 and therefore it follows from (3.10) that the map F : R
n 7→ R

n

is a contraction and by the contraction mapping principle, there exists a unique fixed

point of the map F say u∗ = (u∗
1, u

∗
2, · · · , u∗

n) so that u∗ = F (u∗) or equivalently that

(3.12)

u∗
i =

n
∑

j=1

aijfj

(

u∗
j

aj

)

+ bi

n
∧

j=1

bijfj

(

u∗
j

aj

)

+ ci

n
∨

j=1

cijfj

(

u∗
j

aj

)

+ Ji

+ c
Bi

αi

{

βifi

(

u∗
i

ai

)

+ γi

n
∧

j=1

γijfj

(

u∗
j

aj

)

+ δi

n
∨

j=1

δijfj

(

u∗
j

aj

)]
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, i = 1, 2, · · · , n.

If we now define

αiv
∗
i = c

[

βifi

(

u∗
i

ai

)

+ γi

n
∧

j=1

γijfj

(

u∗
i

ai

)

+ δi

n
∨

j=1

δijfj

(

u∗
i

ai

)]

then (a1u
∗
1, a2u

∗
2, · · · , anu∗

n, v
∗
1, · · · , v∗

n) is an unique equilibrium solution of (3.1) and

this completes the proof.

4. EXPONENTIAL STABILITY

If (u∗
1, u

∗
2, · · · , u∗

n, v∗
1, v

∗
2, · · · , v∗

n) is an equilibrium of the system (2.3) then we

have from (2.3)
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(4.1)

d

dt

[

ui(t) − u∗
i

]

= − ai

[

ui(t) − u∗
i

]

+

n
∑

j=1

aij

[

fj(uj(t)) − fj(u
∗
j)

]

+ Bi

[

vi(t) − v∗
i

]

+ bi

n
∧

j=1

bij

[

fj(uj(t)) − fj(u
∗
j)

]

+ ci

n
∨

j=1

cij

[

fj(uj(t)) − fj(u
∗
j)

]

d

dt

[

vi(t) − v∗
i

]

= −αi

[

vi(t) − v∗
i

]

+

{

βi

[

fi(ui(t)) − fi(u
∗
i )

]

+ γi

n
∧

j=1

γij

[

fj(uj(t)) − fj(u
∗
j)

]

+ δi

n
∨

j=1

δij

[

fj(uj(t)) − fj(u
∗
j)

]

}

c



























































































,

where i = 1, 2, · · · , n, t > 0. By using the upper right derivatives, the Lipschitzian

nature of the activationss fj, j = 1, 2, · · · , n and the Lemma 2.1 it is not difficult to

derive that

(4.2)

d

dt

∣

∣

∣

∣

ui(t) − u∗
i

∣

∣

∣

∣

≤ − ai |ui(t) − u∗
i | +

n
∑

j=1

|aij|Lj|uj(t) − u∗
j | + |Bi|Li|vi(t) − v∗

i |

+ |bi|

n
∑

j=1

|bij|Lj|uj(t) − u∗
j | + |ci|

n
∑

j=1

|cij|Lj|uj(t) − u∗
j |;

d

dt

∣

∣

∣

∣

vi(t) − v∗
i

∣

∣

∣

∣

≤ −αi |vi(t) − v∗
i | + |βi|cLi|ui(t) − u∗

i |

+ |γi|c
n

∑

j=1

|γij|Lj|uj(t) − u∗
j | + |δi|c

n
∑

j=1

|δij|Lj|uj(t) − u∗
j |



































































,

where i = 1, 2, · · · , n, t > 0. We can now formulate our result on the exponential

stability of the equilibrium (u∗
i , v

∗
i ), i = 1, 2, · · · , n.

Theorem 4.1. Suppose the activation functions fj, j = 1, 2, · · · , n are globally Lip-

schitzian with constants Lj, j = 1, 2, · · · , n respectively. If furthermore,

(4.3)

a > Li

{ n
∑

j=1

(

|aji| + |bj||bji| + |cj||cji|

)

+

[

|βi| +

n
∑

j=1

(

|γj||γji| + |δj||δji

)]

c

}

αi > |Bi|















,

where i = 1, 2, · · · , n; then the system (2.3) has a unique equilibrium (u∗
i , v

∗
i ) which

is globally exponentially stable in the sense that if (ui(t), vi(t) is any solution of (2.3)
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then there exist positive numbers K and µ such that

(4.4)

n
∑

i=1

(

|ui(t) − u∗
i | + |vi(t) − v∗

i |

)

≤ Ke−µt, t ≥ 0.

Proof. The inequalities in (4.3) together imply that

(4.5)

ai > Li

{ n
∑

j=1

(

|aji| + bj||bji + |cj||cji|

)

+

n
∑

j=1

(

|γj||γji| + |δj||δji|

)

c +
|βi||Bi|

αi

}



























, i = 1, 2, · · · , n

and hence it follows from Theorem 3.1 that the system (2.3) has a unique equilibrium.

Let

p = min
1≤i≤n

[

ai − Li

{ n
∑

j=1

(

|aji| + |bj||bji| + |cj||cji|

)

+ c|βi| +
n

∑

j=1

(

|γj||γji| + |δj||δji|

)

c

}]

(4.6)

q = min
1≤i≤n

[

αi − |Bi|
]

.(4.7)

Let

(4.8) r = min{p, q}

and note that there is a positive number say λ such that 0 < λ < r. We consider a

Lyapunov function V (t) = V (x, y)(t) defined by

(4.9) V (t) = eλt

n
∑

i=1

[

|ui(t) − u∗
i | + |vi(t) − v∗

i |

]

.

One can calculate the upper right derivative of V along the solutions of (2.3) and

estimate it by using (4.2) to obtain

dV (t)

dt
= λV (t) + eλt

n
∑

i=1

[

d

dt
|ui(t) − u∗

i | +
d

dt
|vi(t) − v∗

i |

]

≤ λV (t) + eλt

n
∑

i=1

[

− ai + Li

n
∑

j=1

(

|aji| + |bj||bji| + |cj||cji|

)]

|ui(t) − u∗
i |

+ |Bi||vi(t) − v∗
i |e

λt

+ eλt

n
∑

i=1

[

− αi|vi(t) − v∗
i | +

{

|βi|Li +

n
∑

j=1

|γj||γji| + |δj||δji|

}

Li|ui(t) − u∗
i |

]

(4.10)

≤ λV (t) − reλt

n
∑

i=1

[

|ui(t) − u∗
i | + |vi(t) − v∗

i |

]

(4.11)
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≤ −(r − λ)V (t) ≤ 0.

(4.12)

It follows from the above that

V (t) ≤ V (0)

and hence

(4.13)

n
∑

i=1

[

|ui(t) − u∗
i | + |vi(t) − v∗

i |

]

≤ V (0)e−λt, t ≥ 0

and this completes the proof.

We consider briefly the asymptotic behaviour of the learning dynamics governed

by the equation

dmij(t)

dt
= −αimij(t) +

[

βifi(ui(t)) + γi

n
∧

k=1

βikfk(uk(t))

+ δi

n
∨

k=1

γikfk(uk(t))

]

pj, i, j = 1, 2, · · · , n, t > 0.(4.14)

Under the conditions of the previous theorem, the equation (4.14) has a unique equi-

librium m∗
ij given by

(4.15) m∗
ij =

[

βifi(u
∗
i ) + γi

n
∧

k=1

βikfk(u
∗
k) + δi

n
∨

k=1

γikfj(u
∗
k)

]

pj, i, j = 1, 2, · · · , n.

We have from (4.14) and (4.15) that

d

dt

[

mij(t) − m∗
ij

]

= −αi

[

mij(t) − m∗
ij

]

+ pj

[

βi

(

fi(ui(t)) − fi(u
∗
i )

)

+ γi

n
∧

k=1

βik

(

fk(uk(t)) − fk(u
∗
k)

)

+ δi

n
∨

k=1

δik

(

fk(uk(t)) − fk(u
∗
k)

)]

, i, j = 1, 2, · · · , n, t > 0.(4.16)

It is found from (4.16) that

d

dt

∣

∣

∣

∣

mij(t) − m∗
ij

∣

∣

∣

∣

≤ −αi|mij(t) − m∗
ij| + |pj||βi|Li|ui(t) − u∗

i |

+ |γi||pj|
n

∑

k=1

|βik|Lk|uk(t) − u∗
k| + |δi||pj|

n
∑

k=1

|δik|Lk|uk(t) − u∗
k|(4.17)

≤ −αi|mij(t) − m∗
ij|

+ |pj|

(

|βi|Li + |γi|

n
∑

k=1

|βik|Lk + |δi|

n
∑

k=1

|δik|Lk

)

V (0)e−λt, t > 0.(4.18)
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One can put the above equation in the form

(4.19)
d

dt
|mij(t) − m∗

ij| ≤ −αi|mij(t) − m∗
ij| + QijV (0)e−λt, t > 0, i, j = 1, 2, · · · , n

for some suitable positive constants Qij, i, j = 1, 2, · · · , n. We note that 0 < λ < r <

αi and hence it follows that

|mij(t) − m∗
ij| ≤ |mij(0) − m∗

ij|e
−αit +

∫ t

0

e−αi(t−s)QijV (0)e−λs ds

≤ |mij(0) − m∗
ij|e

−αit + QijV (0)e−λt, i, j = 1, 2, · · · , n, t > 0

≤

[

|mij(0) − m∗
ij| + QijV (0)

]

e−λt, i, j = 1, 2, · · · , n, t > 0(4.20)

Thus we can conclude that the time dependent and learnable synaptic weights con-

verge exponentially to the time independent weights m∗
ij encoding the signal vector

p = (p1, p2, · · · , n) in the sense that

lim
t→∞

mij(t) = m∗
ij =

pj

αi

[

βifi(u
∗
i )+γi

n
∧

k=1

γikfk(u
∗
k)+δi

n
∨

k=1

δikfk(u
∗
k)

]

, i, j = 1, 2, · · · , n.

5. CONCLUDING REMARKS

We have proposed a network of somatically crisp and synaptically fuzzy neurons

which learn an externally input signal vector by means of an unsupervised Hebbian-

type learning algorithm incorporating a forgetting term. The neurons are somatically

crisp in the sense that their intrinsic parameters such as the decay rate of its state and

its output are crisp while some of their synapses on receiving crisp signals produce

and send fuzzily computed signals to the neurons’ soma for somatic processing. The

other possibility is for a neuron to be somatically fuzzy so that their parameters are

rule based leading to rule based fuzzy systems. Such systems are considered recently

by Huang et al. [2005] where the relevance of the premise variables to the model is

not clear.

In our analysis we have derived sufficient conditions for the existence of a unique

exponentially stable equilibrium of the combined system of neuronal activations and

synaptic modifications. Our model is a generalization of other existing models in the

sense that if the learning component is removed, it will reduce to a fuzzy network and

if the fuzziness is removed, it will reduce to a non-fuzzy network. One can further

generalize our model by the incorporation of discrete or continuous time delays and

this can be done in routine way by using Lyapunov functions or functionals. A

physiological interpretation of our sufficient condition is that the self-regulating and

stabilizing effect of the neurons have to dominate other effects in the dynamics of

the neuron and the forgetting coefficient should be strong enough to quickly learn (or

converge) to an equilibrium and a failure to do so will imply inability to learn or slow

learning. One can incorporate some time delays in our model and if there are no time
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delays in the stabilizing negative feedback terms, then our stability conditions should

be robust to provide stability under time delays in processing and transmission.
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