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1. INTRODUCTION

This paper has two main sections. In Section 2 we present new Lefschetz fixed

point theorems for the admissible maps of Gorniewicz defined on admissible (to be

defined later) subsets of a Hausdorff topological space. In Section 3 we present some

other Lefschetz fixed point theorems for the admissible maps of Gorniewicz between

Fréchet spaces. Our maps will be defined on PRLF’s or CPRLF’s. These sets are

natural in applications in the Fréchet space setting since they include pseudo–open

sets. The theory in Section 3 is based on results in Section 2 and on viewing a

Fréchet space as a projective limit of a sequence of Banach spaces {En}n∈N (here

N = {1, 2, . . . }).

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map

p : Γ→ X is called a Vietoris map (written p : Γ⇒ X) if the following two conditions

are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic

(ii) p is a proper map i.e. for every compact A ⊆ X we have that p−1(A) is compact.

Let D(X, Y ) be the set of all pairs X
p
⇐ Γ

q
→ Y where p is a Vietoris map and

q is continuous. We will denote every such diagram by (p, q). Given two diagrams
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(p, q) and (p′, q′), where X
p′

⇐ Γ′
q′

→ Y , we write (p, q) ∼ (p′, q′) if there are maps

f : Γ → Γ′ and g : Γ′ → Γ such that q′ ◦ f = q, p′ ◦ f = p, q ◦ g = q′ and p ◦ g = p′.

The equivalence class of a diagram (p, q) ∈ D(X, Y ) with respect to ∼ is denoted by

φ = {X
p
⇐ Γ

q
→ Y } : X → Y

or φ = [(p, q)] and is called a morphism from X to Y . We let M(X, Y ) be the set of

all such morphisms. For any φ ∈M(X, Y ) a set φ(x) = q p−1 (x) where φ = [(p, q)]

is called an image of x under a morphism φ.

Consider vector spaces over a field K. Let E be a vector space and f : E → E

an endomorphism. Now let N(f) = {x ∈ E : f (n)(x) = 0 for some n} where f (n)

is the nth iterate of f , and let Ẽ = E\N(f). Since f(N(f)) ⊆ N(f) we have the

induced endomorphism f̃ : Ẽ → Ẽ. We call f admissible if dim Ẽ < ∞; for such

f we define the generalized trace Tr(f) of f by putting Tr(f) = tr(f̃) where tr

stands for the ordinary trace.

Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector

space E = {Eq}. We call f a Leray endomorphism if (i). all fq are admissible and

(ii). almost all Ẽq are trivial. For such f we define the generalized Lefschetz number

Λ(f) by

Λ(f) =
∑

q

(−1)q Tr (fq).

Let H be the C̆ech homology functor with compact carriers and coefficients in

the field of rational numbers K from the category of Hausdorff topological spaces

and continuous maps to the category of graded vector spaces and linear maps of

degree zero. Thus H(X) = {Hq(X)} is a graded vector space, Hq(X) being the

q–dimensional C̆ech homology group with compact carriers of X. For a continuous

map f : X → X, H(f) is the induced linear map f? = {f? q} where f? q : Hq(X)→

Hq(X).

With C̆ech homology functor extended to a category of morphisms (see [7 pp. 364])

we have the following well known results (note the homology functor H extends over

this category i.e. for a morphism

φ = {X
p
⇐ Γ

q
→ Y } : X → Y

we define the induced map

H (φ) = φ? : H(X)→ H(Y )

by putting φ? = q? ◦ p−1
? ).

Recall the following result [6 pp. 227].
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Theorem 1.1. If φ : X → Y and ψ : Y → Z are two morphisms (here X, Y and

Z are Hausdorff topological spaces) then

(ψ ◦ φ)? = ψ? ◦ φ?.

Two morphisms φ, ψ ∈M(X, Y ) are homotopic (written φ ∼ ψ) provided there

is a morphism χ ∈ M(X × [0, 1], Y ) such that χ(x, 0) = φ(x), χ(x, 1) = ψ(x) for

every x ∈ X (i.e. φ = χ ◦ i0 and ψ = χ ◦ i1, where i0, i1 : X → X × [0, 1] are

defined by i0(x) = (x, 0), i1(x) = (x, 1)).

Recall the following result [6 pp. 231].

Theorem 1.2. If φ ∼ ψ then φ? = ψ?.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is

a nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form

X
p
← Γ

q
→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two

conditions hold:

(i) p is a Vietoris map and

(ii) q (p−1(x)) ⊂ φ(x) for any x ∈ X.

Definition 1.1. A upper semicontinuous compact map φ : X → Y is said to be

admissible (and we write φ ∈ Ad(X, Y )) provided there exists a selected pair (p, q)

of φ.

Definition 1.2. A map φ ∈ Ad(X,X) is said to be a Lefschetz map if for each

selected pair (p, q) ⊂ φ the linear map q? p
−1
? : H(X)→ H(X) (the existence of p−1

?

follows from the Vietoris Theorem) is a Leray endomorphism.

If φ : X → X is a Lefschetz map, we define the Lefschetz set Λ (φ) (or ΛX (φ))

by

Λ (φ) =
{

Λ(q? p
−1
? ) : (p, q) ⊂ φ

}

.

Definition 1.3. A Hausdorff topological space X is said to be a Lefschetz space

provided every φ ∈ Ad(X,X) is a Lefschetz map and Λ(φ) 6= {0} implies φ has a

fixed point.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally

convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a

continuous map. Then the set
{

x = (xα) ∈
∏

α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I and is

denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersection [8 pp. 439]

∩α∈I Eα.)
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2. FIXED POINT THEORY

We begin with Hausdorff topological vector spaces. Some of the ideas in this

section were motivated from [1, 3, 5].

For our first result we assume X is a subset of a Hausdorff topological vector

space E. We say X is NES admissible if for every compact subset K of X and

every neighborhood V of zero there exists a continuous function hV : K → E such

that

(i) x− hV (x) ∈ V for all x ∈ K;

(ii) hV (K) is contained in a subset C of X with C a Lefschetz space; and

(iii) hV and i : K ↪→ X are homotopic.

Theorem 2.1. Let E be a Hausdorff topological vector space and let X ⊆ E be NES

admissible. If φ ∈ Ad(X,X) then

(i) φ is a Lefschetz map and

(ii) if Λ(φ) 6= {0} then φ has a fixed point

i.e. X is a Lefschetz space.

Proof. Let p, q : Γ → X be a pair of maps with (p, q) ⊂ φ and let K denote a

compact set in which φ(X) is included. Next let N be a fundamental system of

neighborhoods of the origin 0 in E and V ∈ N . Now there exists a continuous

function hV : K → E and a C ⊆ X, C a Lefschetz space with x− hV (x) ∈ V for

all x ∈ K, hV (K) ⊆ C and hV ∼ i where i : K ↪→ C.

Now let qV = hV q : Γ → X. Notice qV is a compact map, qV (Γ) ⊆ C and

q ∼ qV ; we know since hV ∼ i that there exists a map χ : K × [0, 1] → X

with χ(x, 0) = hV (x) and χ(x, 1) = i(x), and now let Φ(x, t) = χ(q(x), t) for

(x, t) ∈ Γ× [0, 1] (note p is surjective so p−1(X) = Γ and so q : Γ → K) and note

Φ(x, 0) = hV q(x) = qV (x) and Φ(x, 1) = i(q(x)) = q(x).

Let

pV : p−1(C)→ C, qV : p−1(C)→ C, q′V : Γ→ C

denote contractions of the appropriate maps (see also (1.1) on [3 pp. 214]). Note

Theorem 1.1 and Theorem 1.2 imply

i? (q′V )? p
−1
? = (i q′V )? p

−1
? = (qV )? p

−1
? = q? p

−1
?

since q ∼ qV . Also it is easy to see that (q′V )? p
−1
? i? = (qV )? (pV )−1

? . Notice qV is a

compact map. Lets look at the map ψ : C → C given by ψ = qV p
−1
V . Notice ψ is

an admissible map and hence (pV , qV ) ⊂ ψ. Since C is a Lefschetz space we have

that (qV )? (pV )−1
? is a Leray endomorphism. Now [3 pp. 214 (see (1.3))] guarantees

that q? p
−1
? is a Leray endomorphism and Λ(q? p

−1
? ) = Λ((qV )? (pV )−1

? ).
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Next assume Λ (φ) 6= {0}. Then there exists (p, q) ⊂ φ with Λ(q? p
−1
? ) 6= 0. Also

there exists qV , pV , qV as described above with Λ((qV )? (pV )−1
? ) = Λ(q? p

−1
? ) 6= 0.

Thus Λ((qV )? (pV )−1
? ) 6= 0 so since C is a Lefschetz space there exists xV ∈ C

with xV ∈ qV p
−1
V (xV ). Now xV = hV (yV ) for some yV ∈ q p−1 (xV ). Now since

q p−1 (xV ) ∈ K (note q : Γ → K) from (i) in the definition above we have yV −

hV (yV ) ∈ V . Thus yV − xV ∈ V . Now since K is compact we may assume without

loss of generality that there exists x with yV → x. Also since yV − xV ∈ V we have

xV → x. This together with yV ∈ q p
−1 (xV ) and the upper semicontinuity of q p−1

(see [5 pp.26]) implies x ∈ q p−1 (x) ⊂ φ(x) and the proof is complete.

Let X be a subset of a Hausdorff topological vector space E. Let V be a

neighborhood of the origin 0 in E. X is said to be NES admissible V -dominated

if there exists a NES admissible space XV and two continuous maps rV : XV → X,

sV : X → XV such that x − rV sV (x) ∈ V for all x ∈ X and also that rV sV ∼

IdX . X is said to be almost NES admissible dominated if X is NES admissible

V -dominated for every neighborhood V of the origin 0 in E.

Essentially the same reasoning as in [3 pp. 219 (see (5.6)] and the ideas in Theo-

rem 2.1 above yields the following result.

Theorem 2.2. Let X be a subset of a Hausdorff topological vector space E. Also

assume X is almost NES admissible dominated. If φ ∈ Ad(X,X) then

(i) φ is a Lefschetz map and

(ii) if Λ(φ) 6= {0} then φ has a fixed point

i.e. X is a Lefschetz space.

Next we extend Theorems 2.1 and 2.2 to the case of Hausdorff topological spaces.

First we gather together some well known preliminaries. For a subset K of a topo-

logical space X, we denote by CovX (K) the set of all coverings of K by open sets of

X (usually we write Cov (K) = CovX (K)). Two multivalued maps φ, ψ : X → Y

are said to be α–close (here and α ∈ Cov (Y )) if for any x ∈ X there exists Ux ∈ α

such that φ(x) ∩ Ux 6= ∅ and ψ(x) ∩ Ux 6= ∅. Given a multivalued map φ : X → X

and α ∈ Cov (X), a point x ∈ X is said to be an α–fixed point of φ if there exists

a member U ∈ α such that x ∈ U and φ(x) ∩ U 6= ∅.

The following result can be found in [2 pp. 297].

Theorem 2.3. Let X be a topological space and Φ : X → C(X) a upper semi-

continuous map (here C(X) denotes the family of nonempty closed subsets of X).

Suppose there exists a cofinal family of coverings θ ⊆ CovX (Φ(X)) such that Φ has

an α–fixed point for every α ∈ θ. Then Φ has a fixed point.
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Remark 2.1. From Theorem 2.3 in proving the existence of fixed points in uniform

spaces for continuous compact maps it suffices [2 pp. 298] to prove the existence of

approximate fixed points (since open covers of a compact set A admit refinements

of the form {U [x] : x ∈ A} where U is a member of the uniformity [9 pp. 199] so

such refinements form a cofinal family of open covers). For convenience in this paper

we will apply Theorem 2.3 only when the space is uniform.

Let X be a subset of a Hausdorff topological space and let X be a uniform

space. Then X is said to be Schauder NES admissible if for every compact subset

K of X and every open covering α ∈ CovX(K) there exists a continuous function

πα : K → E such that

(i) πα and i : K ↪→ X are α–close;

(ii) πα(K) is contained in a subset C of X with C a Lefschetz space; and

(iii) πα and i : K ↪→ X are homotopic.

Theorem 2.4. Let X be a subset of a Hausdorff topological space and let X be a

uniform space. Also suppose X is Schauder NES admissible. If φ ∈ Ad(X,X) then

(i) φ is a Lefschetz map and

(ii) if Λ(φ) 6= {0} then φ has a fixed point

i.e. X is a Lefschetz space.

Proof. Let p, q : Γ → X be a pair of maps with (p, q) ⊂ φ and let K denote

a compact set in which φ(X) is included. Also let α ∈ CovX(K). Then there

exists a continuous function πα : K → E, a subset C of X, C a Lefschetz space,

πα(K) ⊆ C, πα and i : K ↪→ X are α–close and πα ∼ i. Let qα = πα q : Γ → X.

Notice as in Theorem 2.1, qα is a compact map, qα(Γ) ⊆ C and q ∼ qα. Let

pα : p−1(C)→ C, qα : p−1(C)→ C, q′α : Γ→ C

denote contractions of the appropriate maps and as in Theorem 2.1 we have

i? (q′α)? p
−1
? = q? p

−1
? and (q′α)? p

−1
? i? = (qα)? (pα)−1

? .

Lets look at the map ψ : C → C given by ψ = qα p
−1
α . Notice ψ is an admissible

map and hence (pα, qα) ⊂ ψ. Since C is a Lefschetz space we have that (qα)? (pα)−1
?

is a Leray endomorphism. Now [3 pp. 214 (see (1.3))] guarantees that q? p
−1
? is a

Leray endomorphism and Λ(q? p
−1
? ) = Λ((qα)? (pα)−1

? ).

Next assume Λ (φ) 6= {0}. Then there exists (p, q) ⊂ φ with Λ(q? p
−1
? ) 6= 0.

Also there exists qα, pα, qα as described above with Λ((qα)? (pα)−1
? ) = Λ(q? p

−1
? ) 6= 0.

Since C is a Lefschetz space there exists xα ∈ C with xα ∈ qα p−1
α (xα). Now since

πα and i are α–close we have that xα is an α–fixed point of φ (note xα = πα (yα)

and yα ∈ q p−1 (xα) ⊂ φ(xα) so there exists Uα ∈ α with (xα =)πα (yα) ∈ Uα and
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yα ∈ Uα i.e. xα ∈ Uα and yα ∈ Uα i.e. xα ∈ Uα and φ(xα)∩Uα 6= ∅ since yα ∈ Uα

and yα ∈ φ(xα)). The result now follows from Theorem 2.3 (with Remark 2.1).

Let X be a Hausdorff topological space and let α ∈ Cov(X). X is said to

be Schauder NES admissible α-dominated if there exists a Schauder NES admissible

space Xα and two continuous functions rα : Xα → X, sα : X → Xα such that

rα sα : X → X and i : X → X are α–close and also that rα sα ∼ IdX . X is said

to be almost Schauder NES admissible dominated if X is Schauder NES admissible

α-dominated for every α ∈ Cov(X).

The same reasoning as in [3 pp. 219 (see (5.6)] establishes the following result.

Theorem 2.5. Let X be a uniform space and let X be almost Schauder NES ad-

missible dominated. If φ ∈ Ad(X,X) then

(i) φ is a Lefschetz map and

(ii) if Λ(φ) 6= {0} then φ has a fixed point

i.e. X is a Lefschetz space.

3. FIXED POINT THEORY IN FRÉCHET SPACES

Let E = (E, {| · |n}n∈N) be a Fréchet space with the topology generated by a

family of seminorms {|·|n : n ∈ N}. We assume that the family of seminorms satisfies

(3.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ · · · · · · for every x ∈ E.

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that

|x|n ≤ rn for all x ∈ X. To E we associate a sequence of Banach spaces {(En, | · |n)}

described as follows. For every n ∈ N we consider the equivalence relation ∼n

defined by

(3.2) x ∼n y iff |x− y|n = 0.

We denote by En = (E /∼n, |·|n) the quotient space, and by (En, |·|n) the completion

of En with respect to | · |n (the norm on En induced by | · |n and its extension to En

are still denoted by | · |n). This construction defines a continuous map µn : E → En.

Now since (3.1) is satisfied the seminorm | · |n induces a seminorm on Em for every

m ≥ n (again this seminorm is denoted by | · |n). Also (3.2) defines an equivalence

relation on Em from which we obtain a continuous map µn,m : Em → En since

Em /∼n can be regarded as a subset of En. We now assume the following condition

holds:

(3.3)

{

for each n ∈ N, there exists a Banach space (En, | · |n)

and an isomorphism (between normed spaces) jn : En → En.

Remark 3.1. (i) For convenience the norm on En is denoted by | · |n.
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(ii) Usually in applications En = En for each n ∈ N .

(iii) Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x is not

necessarily in E and in fact En is easier to use in applications (even though

En is isomorphic to En). For example if E = C[0,∞), then En consists of the

class of functions in E which coincide on the interval [0, n] and En = C[0, n].

Finally we assume

(3.4) E1 ⊇ E2 ⊇ · · · · · · and for each n ∈ N, |x|n ≤ |x|n+1 ∀ x ∈ En+1.

Let lim← En (or ∩∞1 En where ∩∞1 is the generalized intersection [8]) denote the

projective limit of {En}n∈N (note πn,m = jn µn,m j
−1
m : Em → En for m ≥ n) and

note lim← En
∼= E, so for convenience we write E = lim← En.

For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let Xn and

∂Xn denote respectively the closure and the boundary of Xn with respect to | · |n

in En. Also the pseudo-interior of X is defined by [4]

pseudo− int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo− int (X).

Let E and En be as described above. Some of the ideas in this section were

motivated from [10].

Definition 3.1. A set A ⊆ E is said to be PRLS if for each n ∈ N , An ≡ jn µn (A)

is a Lefschetz space.

Definition 3.2. A set A ⊆ E is said to be CPRLS if for each n ∈ N , An is a

Lefschetz space.

Example 3.1. Let A be pseudo-open. Then A is a PRLS.

To see this fix n ∈ N . We now show

An is a open subset of En.

First notice An ⊆ An \ ∂An since if y ∈ An then there exists x ∈ A with y =

jnµn(x) 0and this together with A = pseudo− int A yields jnµn(x) ∈ An \ ∂An i.e.

y ∈ An \ ∂An. In addition notice

An \ ∂An = (int An ∪ ∂An) \ ∂An = int An \ ∂An = int An

since int An ∩ ∂An = ∅. Consequently

An ⊆ An \ ∂An = int An, so An = int An.

As a result An is open in En. Thus An is a Lefschetz space [5 pp. 41 (see (3.1)], so

A is a PRLS.

Our first result is for Volterra type operators.
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Theorem 3.1. Let E and En be as described above, C ⊆ E is an PRLS and

F : C → 2E and for each n ∈ N assume F : Cn → 2En. Suppose the following

conditions are satisfied:

(3.5) for each n ∈ N, F ∈ Ad(Cn, Cn)

(3.6) for each n ∈ N, ΛCn
(F ) 6= {0}

and

(3.7)

{

for each n ∈ {2, 3, . . . .} if y ∈ Cn solves y ∈ F y in En

then y ∈ Ck for k ∈ {1, . . . , n− 1}.

Then F has a fixed point in E.

Proof. Fix n ∈ N . Now there exists yn ∈ Cn with yn ∈ F yn. Lets look at {yn}n∈N .

Notice y1 ∈ C1 and yk ∈ C1 for k ∈ N\{1} from (3.7). As a result yn ∈ C1 for

n ∈ N , yn ∈ F yn in En together with (3.5) implies there is a subsequence N ?
1 of

N and a z1 ∈ C1 with yn → z1 in E1 as n→∞ in N?
1 . Let N1 = N?

1 \ {1}. Now

yn ∈ C2 for n ∈ N1 together with (3.5) guarantees that there exists a subsequence

N?
2 of N1 and a z2 ∈ C2 with yn → z2 in E2 as n → ∞ in N?

2 . Note from (3.4)

that z2 = z1 in E1 since N?
2 ⊆ N1. Let N2 = N?

2 \ {2}. Proceed inductively to

obtain subsequences of integers

N?
1 ⊇ N?

2 ⊇ . . . . . . , N?
k ⊆ {k, k + 1, . . . }

and zk ∈ Ck with yn → zk in Ek as n → ∞ in N?
k . Note zk+1 = zk in Ek for

k ∈ {1, 2, . . . }. Also let Nk = N?
k \ {k}.

Fix k ∈ N . Let y = zk in Ek. Notice y is well defined and y ∈ lim←En = E.

Now yn ∈ F yn in En for n ∈ Nk and yn → y in Ek as n → ∞ in Nk (since

y = zk in Ek) together with the fact that F : Ck → 2E
k is upper semicontinuous

(note yn ∈ Ck for n ∈ Nk) implies y ∈ F y in Ek. We can do this for each k ∈ N

so as a result we have y ∈ F y in E.

Essentially the same reasoning as in Theorem 3.1 yields the following result.

Theorem 3.2. Let E and En be as described above, C ⊆ E is an CPRLS and

F : C → 2E and for each n ∈ N assume F : Cn → 2En. Suppose the following

conditions are satisfied:

(3.8) for each n ∈ N, F ∈ Ad(Cn, Cn)

(3.9) for each n ∈ N, ΛCn

(F ) 6= {0}

and

(3.10)

{

for each n ∈ {2, 3, . . . .} if y ∈ Cn solves y ∈ F y in En

then y ∈ Ck for k ∈ {1, . . . , n− 1}.
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Then F has a fixed point in E.

Our next result was motivated by Urysohn type operators. In this case the map

Fn will be related to F by the closure property (3.15).

Theorem 3.3. Let E and En be as described in the beginning of Section 3, C ⊆ E is

an PRLS and F : C → 2E. Also for each n ∈ N assume there exists Fn : Cn → 2En.

Suppose the following conditions are satisfied:

(3.11) C1 ⊇ C2 ⊇ · · · · · ·

(3.12) for each n ∈ N, Fn ∈ Ad(Cn, Cn)

(3.13) for each n ∈ N, ΛCn
(F ) 6= {0}

(3.14)

{

for each n ∈ N, the map Kn : Cn → 2En, given by

Kn(y) = ∪∞m=n Fm(y) (see Remark 3.2), is compact

and

(3.15)































if there exists a w ∈ E and a sequence {yn}n∈N

with yn ∈ Cn and yn ∈ Fn yn in En such that

for every k ∈ N there exists a subsequence

S ⊆ {k + 1, k + 2, . . . } of N with yn → w in Ek

as n→∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.

Remark 3.2. The definition of Kn is as follows. If y ∈ Cn and y /∈ Cn+1 then

Kn(y) = Fn(y), whereas if y ∈ Cn+1 and y /∈ Cn+2 then Kn(y) = Fn(y) ∪ Fn+1(y),

and so on.

Proof. Fix n ∈ N . Now there exists yn ∈ Cn with yn ∈ Fn yn in En. Lets look

at {yn}n∈N . Note from (3.11) and the fact that |x|1 ≤ |x|n for all x ∈ En that

y ∈ C1 and yn ∈ K1 (yn) in E1 for each n ∈ N . Now K1 : C1 → 2E1 compact

guarantees that there exists a subsequence N ?
1 of N and a z1 ∈ E1 with yn → z1

in E1 as n→∞ in N?
1 . Let N1 = N?

1 \ {1}. Look at {yn}n∈N1
. Also there exists a

subsequence N ?
2 of N1 and a z2 ∈ E2 with yn → z2 in E2 as n→∞ in N?

2 . Note

z2 = z1 in E1 since N?
2 ⊆ N?

1 . Let N2 = N?
2 \ {2}. Proceed inductively to obtain

subsequences of integers

N?
1 ⊇ N?

2 ⊇ · · · · · · , N?
k ⊆ {k, k + 1, . . . }

and zk ∈ Ek with yn → zk in Ek as n → ∞ in N?
k . Note zk+1 = zk in Ek for

k ∈ N . Also let Nk = N?
k \ {k}.
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Fix k ∈ N . Let y = zk in Ek. Notice y is well defined and y ∈ lim← En = E.

Now yn ∈ Fn yn in En for n ∈ Nk and yn → y in Ek as n → ∞ in Nk (since

y = zk in Ek) together with (3.15) implies y ∈ F y in E.

Similarly we have the following result.

Theorem 3.4. Let E and En be as described in the beginning of Section 3, C ⊆ E

is an CPRLS and F : C → 2E. Also for each n ∈ N assume there exists Fn : Cn →

2En. Suppose the following conditions are satisfied:

(3.16) C1 ⊇ C2 ⊇ · · · · · ·

(3.17) for each n ∈ N, Fn ∈ Ad(Cn, Cn)

(3.18) for each n ∈ N, ΛCn

(F ) 6= {0}

(3.19)

{

for each n ∈ N, the map Kn : Cn → 2En, given by

Kn(y) = ∪∞m=n Fm(y) is compact

and

(3.20)































if there exists a w ∈ E and a sequence {yn}n∈N

with yn ∈ Cn and yn ∈ Fn yn in En such that

for every k ∈ N there exists a subsequence

S ⊆ {k + 1, k + 2, . . . } of N with yn → w in Ek

as n→∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.
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