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1. INTRODUCTION

Differential inclusions are abstract representations of control systems, determin-

istic variational inequalities and the so called ”uncertain systems”. For example an

uncertain system may be governed by a differential inclusion given by

ẋ ∈ Ax +G(t, x), x(0) = ξ(1)

where A is the infinitesimal generator of a C0-semi group of operators S(t), t ≥ 0, in

a Banach space E and G : I×E −→ 2E \∅ is a suitable multi valued map determined

by a single valued map g dependent on an unknown parameter α taking values from

a known subset Λ of a topological space Σ. The multifunction G may be given by

G(t, x) ≡ {g(t, x, α), α ∈ Λ} ≡ g(t, x,Λ)

where Λ is the set of uncertainty. In other words, the range of the system parameters

is known but its actual values in force are unknown. This is known as parametric

uncertainty.

Similarly for a control system

G(t, x) ≡ {g(t, x, v), v ∈ U(t, x)} ≡ g(t, x, U(t, x))
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where U(t, ξ) is a suitable multi function from I × E to 2U \ ∅ where U is a metric

space representing the space of controls and g : I×E×U −→ E is a Borel measurable

map.

Another interesting problem arises when the solution is required to satisfy certain

algebraic constraints. Let E, F be any two Banach spaces. Consider the differential-

algebraic system given by

ẋ = Ax + f(x, y), h(x, y) = 0(2)

where f : E × F −→ E, h : E × F −→ F . Define the multifunctions

H(x) ≡ {y ∈ F : h(x, y) = 0} 6= ∅ and G(x) ≡ f(x,H(x)).

Then the differential-algebraic system given above is equivalent to the system gov-

erned by the differential inclusion

ẋ ∈ Ax+G(x).(3)

Similarly, systems governed by parabolic variational inequalities in Hilbert spaces

have equivalent formulation as differential inclusions. For example, a parabolic vari-

ational inequality is described by

(ẋ(t) − Ax(t) − f(t), x(t) − y)V ∗,V ≤ Φ(y) − Φ(x(t)), a.e t ∈ I, ∀y ∈ V(4)

where A ∈ L(V, V ∗) is coercive and V ↪→ H ↪→ V ∗ is the Gelfand triple with continu-

ous and dense embeddings, and Φ is a proper lower semi continuous convex function

defined on V taking values from the extended real number system. This variational

formulation is equivalent to the differential inclusion

ẋ(t) ∈ −Ax(t) +G(t, x(t)), t ∈ I,(5)

on the Hilbert space H where

G(t, ξ) ≡ f(t) − ∂Φ(ξ)

with ∂Φ denoting the subdifferential of Φ.

Another interesting example comes from time optimal control problems for linear

systems where the control may turn out to be a discontinuous function of the state.

For example, consider the system

ẋ = Ax+Bu, x(0) = x0

where A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, in a Hilbert

space H and B is a bounded linear operator, B ∈ L(Rn, H), where the controls are

finite dimensional. Given that u must take values from the unit cube U ≡ {v ∈ Rn :

|vi| ≤ 1, i = 1, 2, · · · , n} and that the pair {x0, 0} ∈ H are controllable, the problem

is to find a control that transfers the system from state x0 to the state 0 in minimum

time. The optimal control may turn out to be a bang-bang control (well known in
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the finite dimensional context) and the corresponding feedback control may turn out

to be a discontinuous function of the state, uo(t) = g(xo(t)) with g : H −→ U . In

this case we have a feedback system

ẋ = Ax+Bg(x)

with discontinuous righthand side. By lifting g from single valued discontinuous map

to an equivalent multifunction G we arrive at a differential inclusion

ẋ ∈ Ax +BG(x).(6)

These examples illustrate very well the generality of differential inclusions. Be-

cause of its generality and hence the prospect of applicability in diverse fields of

physical and social sciences, great many workers in the field have contributed much

to bring it to the present level of depth and understanding. Both deterministic and

stochastic systems on finite and infinite dimensional spaces have been considerably

developed including application to systems and control theory. For deterministic sys-

tems and their optimal control see [1,3,5,6,10,13,14,16,31] and for stochastic systems

see [2,12,24,25,26,27,28,29,30]. For controllability problems see [26] and stochastic

viability problems see [30] and the extensive references therein.

The rest of the paper is organized as follows. In section 2, some basic notions

and notations, used throughout the paper, are presented. In section 3, questions of

existence of solutions for systems governed by Differential Equations and Inclusions

are considered. Regularity properties of solutions are also discussed. Using the results

of sections 3, questions of existence of optimal controls are treated in section 4. Here

two main existence results are presented. In section 5 we present some new results on

the necessary conditions of optimality for systems governed by differential inclusions.

In the concluding section we discuss some open problems in regards to structural

controls where operator valued measures are the controls.

2. PRELIMINARIES

Function Spaces: Let D be an arbitrary nonempty set furnished with a σ-

algebra BD ≡ B of subsets of the set D and suppose that E is a separable Banach

space. Let B(D,E) denote the space of bounded Borel measurable functions on D

with values in E. Furnished with the sup norm topology, this is a Banach space. If

D is also a metric space, then C(D,E), denoting the space of bounded continuous

functions on D with values in E and furnished with the sup norm topology, is again

a Banach space. Note that C(D,E) can not be dense in B(D,E). Similarly let

L1(I, E) denote the Banach space of all Lebesgue-Bochner integrable functions on I

with values in E.
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Multifunctions: Let (Ω,B) be an arbitrary measurable space and Z a Polish

space. A multi function G : Ω −→ 2Z \∅ is said to be measurable (weakly measurable)

if for every closed (open) set C ⊂ Z the set

G−1(C) ≡ {ω ∈ Ω : G(ω) ∩ C 6= ∅} ∈ B.

Since Z is a Polish space, it is metrizable by a metric d with respect to which it is a

complete separable metric space. It is known that measurability of the multi function

G is equivalent to the measurability of the scalar valued function ω → d(x,G(ω)) for

every x ∈ Z. Even more, it is also equivalent to the graph measurability of G in the

sense that

{(x, ω) ∈ Z × Ω : x ∈ G(ω)} ∈ B(Z) × B

where B(Z) denotes the sigma algebra of Borel sets of Z. Let X, Y be any two

topological spaces and G : X −→ c(Y ) be a multi function. G is said to be upper

semi continuous (USC) if for each set C ∈ c(Y )

G−1(C) ≡ {x ∈ X : G(x) ∩ C 6= ∅} ∈ c(X).

This is equivalent to the statement : G is upper semi continuous on X if for every

x ∈ X and every open set V ⊃ G(x) there exists an open set U 3 x in X such that

G(ξ) ⊂ V for all ξ ∈ U . In case G is a single valued map, this is just the definition

of continuity.

If Y is a metric space with metric d, we can introduce a metric dH on c(Y ), called

the Hausdorff metric, as follows:

dH(K,L) ≡ max
{

sup{d(k, L), k ∈ K}, sup{d(K, `), ` ∈ L}
}

where d(x,K) ≡ inf{d(x, y), y ∈ K} is the distance of x from the set K. If Y

is a complete metric space then (c(Y ), dH) is also a complete metric space. We

shall use the following notations: b(Y ), c(Y ), cc(Y ), cbc(Y ), k(Y ) to denote the class

of nonempty bounded, closed, closed convex, closed bounded convex, and compact

subsets of Y respectively whenever they are defined.

Measures of Noncompactness Let E be any Banach space and b(E) the family

of nonempty bounded subsets of E. The map α : b(E) −→ [0,∞] defined by

α(B) ≡ inf{d > 0 : B admits a finite cover by

sets having diameter not exceeding d}

is called the Kuratowski measure of noncompactness.

Similarly, the ball (Hausdorff) measure of noncompactness is defined by

β(B) ≡ inf{r > 0 : B admits a finite cover by balls of radius not exceeding r}.

It is easy to verify that (1): α(Γ) = 0 if and only if Γ is compact. (2): α(cB) = |c|α(B)

(3): α(Γ1 + Γ2) ≤ α(Γ1) + α(Γ2) (4): Γ1 ⊂ Γ2 ⇒ α(Γ1) ≤ α(Γ2) (5) α(Γ) =
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α(coΓ), α(Γ) = α(Γ) (6): α is continuous with respect to the Hausdorff metric dH

(7): for any e ∈ E, α(Br(e)) = 2r, β(Br(e)) = r.

Definition 2.1. A map G : b(E) −→ b(E) is said to be an α contraction if there

exists a k ∈ (0, 1) such that

α(G(B)) ≤ kα(B), ∀ B ∈ b(E)

and it is said to be α-condensing if

α(G(B)) < α(B) ∀ B ∈ b(E).

Vector Measures: Let F be a Banach space and let Mc(I, F ) denote the space

of bounded countably additive vector measures on the sigma algebra B of subsets of

the set I ⊂ R0 ≡ [0,∞) with values in the Banach space F . This is furnished with

the total variation norm. That is, for each µ ∈ Mc(I, F ), we write

|µ| ≡ |µ|(I) ≡ sup
π

{
∑

σ∈π

‖ µ(σ) ‖F}

where the supremum is taken over all partitions π of the interval I into a finite number

of disjoint members of B. With respect to this topology, Mc(I, F ) is a Banach space.

For any σ ∈ B define the variation of µ on σ by

V (µ)(σ) ≡ V (µ, σ) ≡ |µ|(σ).

Since µ is countably additive and bounded, this defines a countably additive bounded

positive measure on B. In case F = R, the real line, we have the space of real valued

signed measures. We denote this by simply Mc(I) in place of Mc(I, R). Clearly

for ν ∈ Mc(I), V (ν) is also a countably additive bounded positive measure. For

uniformity of notation we use λ to denote the Lebesgue measure.

Measurable Selections: Let H : I −→ 2E \∅ be a multi function from I to the

class of nonempty subsets of the Banach space E. We use S1
H to denote the class of

L1(I, E) selections of H, that is

S1
H ≡

{

f ∈ L1(I, E) : f(t) ∈ H(t) a.e on I
}

.

For any set K, coK denotes the convex hull of K and clcoK denotes the closed

convex hull of K. Let E and F be any pair of Banach spaces and L(E, F ) the space

of bounded linear operators from E to F .

For the system dynamics, let the Banach spaces E,U denote the state space and

the control space respectively. We shall introduce additional notations in the sequel

as required.
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3. DIFFERENTIAL INCLUSIONS AND THEIR CONTROL

We have seen in the introduction that differential inclusions provide a general

frame work for study of a wide variety of dynamical systems and their control. Nat-

urally it has broad application in physical and engineering sciences. We will briefly

mention both deterministic and stochastic control and optimization problems where

it has been widely used. We must mention that the subject of differential inclusions

has been studied by many workers in the field over last four and half decades and

still continues to attract interest of both abstract and applied mathematicians. How-

ever control theory for such systems is rather recent possibly a little more than two

decades. There are many interesting results in this area. It is not possible to present

them in any details in a brief account. However it may be useful to some readers to

indicate some of the major tools and techniques used in this area.

In addition to standard functional analysis, some of the major tools used are multi

functions, upper and lower semi continuity of multi functions, Lipschitz continuity

with respect to Hausdorff metric, measurable multi functions, measurable selection,

Lp selections, lower closure theorems, Kuratowski and Cesari properties of multi val-

ued maps, Fixed point theorems for multi valued maps, Kakutani-Ky Fan fixed point

theorems, Kuratowski’s measure of noncompactness and Condensing maps, Inward

maps etc.

We will briefly mention only some of the results the author has been intimately

familiar with. Here is one classical result.

Consider the system

ẋ ∈ F (t, x), t ∈ I ≡ [0, T ], x(0) = ξ.(7)

Theorem 3.1. Let E be any Banach space and suppose F : I × E −→ cc(E) mea-

surable in t on I and usc(upper smicontinuous) in x on E satisfying the following

properties:

(F1): F (·, x) has strongly measurable selections.

(F2): sup{‖ y ‖: y ∈ F (t, x)} ≤ K(t)(1+ ‖ x ‖), K ∈ L+
1 (I).

(F3): α(F (t, B)) ≤ `(t)α(B), ` ∈ L+
1 (I) ∀ B ∈ b(E).

Then system equation (7) has at least one solution x ∈ AC(I, E).

Proof. We present only an outline. First note that by a solution of (7) one means

that there is an x ∈ AC(I, E) and a measurable selection v of the multifunction

t→ F (t, x(t)), which is Lebesgue-Bochner integrable, such that

x(t) = ξ +

∫ t

0

v(s)ds, t ∈ I.
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The proof is based on fixed point theorem for α condensing maps [21,p 506] applied

to the multivalued map F̂ : C(I, E) −→ cbc(C(I, E)) given by

F̂ (z) ≡ {y ∈ C(I, E) : y(t) = ξ +

∫ t

0

v(s)ds, v(t) ∈ F (t, z(t))}.

This completes our outline.

Remark 1. Note that the above result is free of Lipschitz assumption. In case F is

Lipschitz, Banach fixed point theorems for multi valued maps can be used to obtain

similar result for even more general systems. Here is an example involving unbounded

operators.

Consider the system

ẋ ∈ Ax + F (t, x), x(0) = ξ.

We can prove the following result relatively easily.

Theorem 3.2. Suppose the operator A : D(A) ⊂ E −→ E is the infinitesimal

generator of a C0-semigroup of operators S(t), t ≥ 0, in E and the multifunction F

satisfy the following assumptions:

(F1): F : I × E −→ cc(E) is measurable in t on I for each fixed x ∈ E, and, for

almost all t ∈ I, it is upper semicontinuous (usc) on E

(F2): for every finite positive number r, there exists an `r ∈ L+
1 (I) such that

inf{‖ z ‖, z ∈ F (t, x)} ≤ `r(t), ∀ t ∈ I, ∀ x ∈ Br(E)

(F3): there exists an ` ∈ L+
1 (I) such that

dH(F (t, x), F (t, y)) ≤ `(t) ‖ x− y ‖, ∀ x, y ∈ E, t ∈ I.

Then, for each initial state x(0) = ξ ∈ E, the system has at least one solution

x ∈ C(I, E).

Proof. The proof is based on generalized Banach fixed point theorem for multivalued

contraction maps. First define the affine map R : L1(I, E) −→ C(I, E) by

(Rf)(t) ≡ S(t)ξ +

∫ t

0

S(t− r)f(r)dr, t ∈ I

and construct the multi valued map as follows: for each f ∈ L1(I, E) define the set

F̂ (f) ≡ {g ∈ L1(I, E) : g(t) ∈ F (t, (Rf)(t)), t ∈ I}.

One must verify that f → F̂ (f) is a non trivial multifunction. This requires proof of

measurability of the multifunction t −→ F (t, (R)f(t)) and then the proof of existence

of measurable or more precisely L1 selections. Here the assumptions (F1) and (F2) are

required and theory of measurable selections. Once this is satisfied, one must verify

that F̂ : L1(I, E) −→ cc(L1(I, E)) and that F̂ is Lipschitz with respect to Hausdorff
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metric on cc(L1(I, E)) and that it is a contraction on an equivalent space. The proof

then follows from generalized Banach fixed point theorem for multi valued maps. For

details see [5] where also impulsive or more generally measure driven systems and

their optimal controls have been considered.

Existence and regularity properties of solutions for time varying controlled evo-

lution inclusions of the form

ẋ + A(t)x ∈ F (t, x, µt), x(0) = ξ,(8)

where A(·) generates a transition operator of parabolic type and F is a multi valued

map dependent on relaxed controls, have been treated in considerable detail in [1]

(see also the references therein) proving existence of optimal relaxed controls. Here

Kakutani-Ky Fan fixed point theorem was used. In [13,10] questions of existence and

regularity properties of solutions for fully nonlinear problems, rather than semi linear

problems as indicated above, given by

ẋ+ A(t, x) ∈ f +G(t, x), x(0) = ξ,(9)

was treated in the setting of Gelfand triple V ↪→ H ↪→ V ∗ where the embeddings

are continuous. Here the operator A is a nonlinear coercive operator, monotone

and hemicontinuous. The multi valued map G : I × V −→ cc(H) is assumed to

be measurable in t ∈ I and weakly upper semicontinuous in x ∈ V with respect

to inclusion. Here the tools used are Galerkin approximation, monotonicity and

hemicontinuity of A and upper semi continuity and measurable selections for G using

Kuratowski-Cesari property. The solutions are contained in L∞(I,H)∩Lp(I, V ) with

ẋ ∈ Lq(I, V
∗) where (1/p) + (1/q) = 1, p ≥ 2. Equivalently, x ∈ Wp,q ≡ {z ∈

Lp(I, V ) : ż ∈ Lq(I, V
∗)}. Furnished with the norm topology,

‖ x ‖Wp,q
≡‖ x ‖Lp(I,V ) + ‖ ẋ ‖Lq(I,V ∗),

Wp,q is a Banach space. It is known that the embedding Wp,q ↪→ C(I,H) is continuous

[7]. It is also known that if the embedding V ↪→ H is compact then the embedding

Wp,q ↪→ L2(I,H) is also compact [21]. Note that even though G is more regular

than the nonlinear single valued monotone operator A, the continuity requirement is

rather stringent. Using the embedding facts as stated above and assuming stronger

regularity for the multi valued map, G : I×V −→ cc(H), one can relax the assumption

of weak upper semi continuity by simple upper semi continuity. Here V ↪→ V ↪→ H

with the embeddings assumed compact.

Questions of existence of solutions and existence of optimal relaxed controls for

systems governed by measure driven differential inclusions of the form,

dx ∈ Axdt+ f(t, x)ν(dt) +G(t, x, µt)dt, x(0) = ξ,(10)
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have been considered in [5] where the questions of existence and regularity properties

of solutions are treated using generalized Banach fixed point theorem for multivalued

maps mapping L1(I, E) to cc(L1(I, E)).

Relaxed Controls: Let U be a compact Polish space and M1 ≡ M1(U) ⊂ M(U)

the space of probability measures on U where M(U) is the space of Radom measures

on U . Since the weak topology is metrizable, M1 furnished with the weak topology

is also a compact Polish space. For the set of admissible controls we choose

Ûad ≡ Lw
∞(I,M1)

which consists of weakly measurable functions on I with values in M1.

Now we are prepared to present an existence result that appeared in [5]. For this,

the following assumptions were used. Let

G : I × E ×M −→ cc(X)

be a Borel measurable multifunction, linear in the last argument, satisfying the fol-

lowing assumptions:

(G1): for every x ∈ E and µ ∈ Ûad,

t −→ Ĝµ(t, x) ≡ G(t, x, µt)

is a measurable set valued map with values from cc(E),

(G2): for almost all t ∈ I, x −→ Ĝµ(t, x) is continuous in the Hausdorff metric

and there exists a K ∈ L1(I, R+) such that

dH(Ĝµ(t, x), Ĝµ(t, y)) ≤ K(t) ‖ x− y ‖E, ∀ x, y ∈ E.

(G3): there exists a K ∈ L1(I, R+) independent of µ ∈ Ûad such that

sup{‖ z ‖E: z ∈ Ĝµ(t, x)} ≤ K(t){1+ ‖ x ‖E} ∀x ∈ E,

(G4): there exists an h ∈ L1(I, R+), possibly dependent on µ, such that

inf{‖ z ‖E: z ∈ Ĝµ(t, x)} ≤ h(t){1+ ‖ x ‖E}, ∀ x ∈ E.

Under these assumptions the following existence result was proved in [5].

Theorem 3.3. Consider the system (10) driven by relaxed control µ ∈ Ûad. Suppose

A is the infinitesimal generator of a C0-semigroup of operators on E and f : I×E −→

L(F,E) and ν ∈ Mc(I, F ) and the multi function Ĝµ satisfy the assumptions (G1)-

(G4). Then for every initial state x0 = ξ ∈ E, the evolution inclusion (10) has

a nonempty set of (right continuous) solutions X̂ (µ) which is a bounded subset of

B0(I, E).

Proof. See [5].
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Also in [5] the questions of existence of optimal relaxed controls for several control

problems including Lagrange and Bolza problems were considered.

4. STRUCTURALLY PERTURBED INCLUSIONS

Let E and U be separable Banach spaces with E denoting the state space and U

the control space. Throughout this section we assume that E is a reflexive Banach

space. Consider the system

dx ∈ Axdt+B(dt)x(t) + C(t, x(t))dt+ Γ(t)u(dt), x(0+) = x0,(11)

where A ∈ G0(E), C : I × E −→ 2E \ ∅ is a multi function, Γ ∈ BM(I,L(U,E)) and

B is an operator valued measure mapping

B : Σ ≡ B(I) −→ L(E)

and u ∈ Uad ⊂ Mc(I, U) where Uad denotes the class of admissible controls.

We introduce the following assumptions for the multifunction C : I × E −→ cc(E) :

(C1): for every x ∈ E, t −→ C(t, x) is a measurable set valued map with values

from cc(E)

(C2): for almost all t ∈ I, x −→ C(t, x) is continuous in the Hausdorff metric

and there exists a K ∈ L1(I, R+) such that

dH(C(t, x), C(t, y)) ≤ K(t) ‖ x− y ‖E, ∀ x, y ∈ E.

(C3): there exists a K ∈ L1(I, R+) such that

sup{‖ z ‖E: z ∈ C(t, x)} ≤ K(t){1+ ‖ x ‖E} ∀x ∈ E,

(C4): there exists an h ∈ L1(I, R+) such that

inf{‖ z ‖E: z ∈ C(t, x)} ≤ h(t){1+ ‖ x ‖E}, ∀ x ∈ E.

Theorem 4.1. Suppose A ∈ G0(E) generating the semigroup S(t), t ≥ 0, and B ∈

Mc(I,L(E)) a countably additive bounded (L(E)-valued) vector measure having

bounded total variation on I. The multifunction C satisfies the assumptions (C1)-

(C4) and Γ ∈ BM(I,L(U,E)) the space of bounded measurable operator valued func-

tions. Then for every x0 ∈ E and u ∈ Mc(I, U) the system (11) has a nonempty set

of mild solutions X(u) ⊂ B(I, E).

Proof. First consider the system

dy = Aydt+B(dt)y(t−), y(0) = x0.

Under the assumptions on A and the operator valued measure B it follows from [4,

Theorem 4.1] that this equation has a unique mild solution y ∈ B(I, E) given by
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y(t) = UB(t, 0)x0 where UB(t, s), 0 ≤ s ≤ t ≤ T is a strongly measurable evolution

operator in E. This follows from the fact that the integral equation

y(t) = S(t)x0 +

∫ t

0

S(t− s)B(ds)y(s−), t ∈ I

has a unique mild solution y ∈ B(I, E). For any given u ∈ Uad, define the multifunc-

tion Nu on L1(I, E) by

Nu(f) ≡ {g ∈ L1(I, E) : g(t) ∈ C(t, (Luf)(t)), a.e}

where Lu is the affine map as defined below:

(Luf)(t) ≡ γu(t) +

∫ t

0

UB(t, s)f(s)ds, t ∈ I

with

γu(t) ≡ UB(t.0)x0 +

∫ t

0

UB(t, s)Γ(s)u(ds).(12)

We have already seen that the question of existence of (mild) solutions for systems

of the form (11) is equivalent to the question of existence of a fixed point of the

multifunction Nu. The proof that the set of fixed points of the multi function Nu is

nonempty is precisely the same as in [5, Theorem 3.5] once we prove that the system

dx = Axdt+B(dt)x + f(t)dt+ Γ(t)u(dt), x(0) = x0(13)

has a unique mild solution in B(I, E) for each x0 ∈ E and f ∈ L1(I, E). But this

follows readily from the well known variation of constants formula giving

x(t) = (Luf)(t) ≡ γu(t) +

∫ t

0

UB(t, s)f(s)ds(14)

where γu(t) is as defined above. Thus under the assumptions (C1)-(C4), it follows

from [5, Theorem 3.5] that the multifunction Nu is nonempty and that the set of fixed

points, denoted by

Fix Nu ≡ {f ∈ L1(I, E) : f ∈ Nu(f)},

is also nonempty. Hence for each u ∈ Uad, the system (11) has a nonempty set of

solutions denoted

X(u) ≡ {Lu(f), f ∈ Fix Nu} ⊂ B(I, E).

Since both the control measure u(·) and the operator valued measure B(·) are assumed

to be countably additive having bounded total variation on I, they can have at most

a countable set of atoms in I and hence the elements {x} of the set X(u) are actually

piecewise continuous. This ends the brief outline of our proof.
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Remark 2. If the set Uad ⊂ Mc(I, U) is bounded then

X ≡
⋃

{X(u), u ∈ Uad}

is also bounded. This is easy to verify. Let xu be any mild solution of equation (13)

and define Zu(t) ≡ sup{‖ xu(s) ‖E, 0 ≤ s ≤ t}. Then using the growth assump-

tion (C3) for the multifunction C and the expressions (13) and (14), it follows from

elementary computations that

Zu(t) ≤ α(u) +M

∫ t

0

Zu(s) νB(ds), t ∈ I(15)

where

α(u) ≡M
{

‖ x0 ‖E + ‖ Γ ‖0 |u|+ ‖ K ‖L1

}

,

νB(σ) ≡ µB(σ) +

∫

σ

K(s)ds, σ ∈ B

‖ Γ ‖0≡ sup{‖ Γ(s) ‖L(U,E), s ∈ I},

and |u| is the total variation norm of the vector measure u, µB is the measure induced

by the variation (in the uniform operator topology) of the operator valued measure

B(·) and νB is the measure as defined above. Note that this is a countably additive

bounded positive measure. Using generalized Gronwall inequality, it follows from (15)

that

Zu(t) ≤ α(u) exp{MνB(I)}.

Since Uad is bounded sup{α(u) : u ∈ Uad} < ∞. Hence sup{Zu(t), u ∈ Uad} < ∞ for

all t ∈ I and thus X is a bounded subset of B(I, E).

Theorem 4.2. Under the assumptions of Theorem 4.1, for each u ∈ Mc(I, U), the

solution set X(u) is bounded; and further, if the semigroup S(t), t > 0, is compact,

then this set is also sequentially closed. If in addition, the operator Γ(t) is also

compact for each t ∈ I and Uad is bounded, then the graph of X given by

Gr(X) ≡ {(u, x) ∈ Uad × B(I, E) : x ∈ X(u)}

is closed with respect to the weak topology of vector measures Mc(I, U) and strong

topology of B(I, E).

Proof. As seen in the preceding remark, the set X(u) is a bounded subset of B(I, E).

Hence there exists a finite positive number bu such that ‖ x ‖B(I,E)≤ bu for all x ∈

X(u). Let xn ∈ X(u) and suppose xn
s

−→ xo. We verify that xo ∈ X(u). Since

xn ∈ X(u) there exists a sequence {fn} ∈ FixNu such that fn(t) ∈ C(t, xn(t)) a.e or

equivalently

xn(t) = S(t)x0 +
∫ t

0
S(t− s)Γ(s)u(ds) +

∫ t

0
S(t− s)B(ds)xn(s−)

+
∫ t

0
S(t− s)fn(s)ds.(16)
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Again by the assumption (C3) and the boundedness of the set X(u) we have

‖ fn(t) ‖E≤ (1 + bu)K(t) a.e t ∈ I

for all n ∈ N . This implies that the family {fn} is contained in a bounded subset

of L1(I, E) and it is also uniformly integrable. Since E is a reflexive Banach space

it follows from Dunford-Pettis theorem that this set is relatively weakly sequentially

compact. Hence there exists a subsequence of the sequence {fn}, relabeled as {fn},

and an element f o ∈ L1(I, E) such that fn
w

−→ f 0. Thus we have

xn(t)
s

−→ xo(t) hboxinE

fn
w

−→ f o hboxinL1(I, E).

Hence it follows from lower closure theorem [5, Lemma 4.1] that f o(t) ∈ C(t, xo(t)),

a.e t ∈ I. Using the expression (14) and compactness of the semigroup S(t), t > 0,

one can easily verify that xo = Luf
o and hence f o(t) ∈ C(t, (Luf

o)(t)) for almost all

t ∈ I. This implies that xo ∈ X(u) and hence X(u) is a closed subset of B(I, E).

We now prove that the graph of this multifunction is closed. Take any sequence

(un, xn) ∈ Gr(X), that is, xn ∈ X(un) for all n ∈ N and suppose

un
w

−→ uo in Uad

xn
s

−→ xo in B(I, E).

We must show that xo ∈ X(uo). By definition of solution, there exists a sequence

fn ∈ L1(I, E) such that for almost all t ∈ I we have

fn(t) ∈ C(t, xn(t)) and xn(t) = (Lun
fn)(t)).

Since Uad is bounded it follows from the preceding remark that {xn} is contained in

a bounded subset of B(I, E) and consequently it follows from the assumption (C3)

that the set {fn} ⊂ L1(I, E) is bounded and uniformly integrable. Hence, again

by Dunford-Pettis theorem one can extract a subsequence, relabeled as the original

sequence, so that fn −→ f o weakly in L1(I, E) and by virtue of assumption on

compactness of the operator valued function Γ and the semigroup S, one can verify

that xo = Luof o. Since, by the lower closure theorem, f o(t) ∈ C(t, xo(t)), a.e t ∈ I

we have xo ∈ X(uo) proving that the graph Gr(X) is closed.

Control Problem: We wish to consider the following control problem. Define the

functional

Υ(u, x) ≡

∫ T

0

`(t, x(t))dt+ Ψ(x(T )) + ϕ(u), x ∈ X(u)(17)

where X(u) denotes the family of solutions of the Differential inclusion (11) corre-

sponding to the control u ∈ Uad. Define the objective functional as

Jo(u) ≡ sup{Υ(u, x) : x ∈ X(u)}.(18)
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The problem is to find a control that minimizes the functional Jo(u), that is a control

uo ∈ Uad such that

Jo(u
o) ≤ Jo(u) ∀ u ∈ Uad.(19)

This is equivalent to the games problem: infu∈Uad
supx∈X(u) Υ(u, x). We call this

problem the weak min-max problem if for every u ∈ Uad, the supremum in (18) is

attained at some point xu ∈ X(u) reducing the problem to

inf
u∈Uad

Jo(u) ≡ inf
u∈Uad

Υ(u, xu).

Now we are prepared to prove the existence of an optimal control.

Theorem 4.3. Suppose the assumptions of Theorem 4.2 hold, Uad is a weakly se-

quentially compact subset of Mc(I, U), the integrand ` is measurable in t ∈ I for each

fixed x ∈ E and continuous in x on E for almost all t ∈ I, Ψ is continuous in x on

E and there exist `0, `1 ∈ L1(I), c0, c1 ∈ R and a pair of nonnegative, nondecreasing,

continuous, real valued functions β1, β2 : [0,∞] −→ [0,∞] bounded on bounded sets

satisfying

`0(t) ≤ `(t, x) ≤ `1(t) + β1(‖ x ‖), c0 ≤ Ψ(x) ≤ c1 + β2(‖ x ‖)(20)

and u −→ ϕ(u) is weakly lower semi continuous on Mc(I, U) and bounded on bounded

sets. Then, there exists an optimal control.

Proof. Since X(u) is a bounded subset of B(I, E), it follows from the assumptions on `

and Ψ that Jo(u) ≡ sup{Υ(u, x), x ∈ X(u)} <∞. Let {xn} ∈ X(u) be a maximizing

sequence for the functional x −→ Υ(u, x). Clearly by definition of solution, there

exists a sequence {fn} ∈ L1(I, E) such that fn(t) ∈ C(t, xn(t)) for almost all t ∈ I.

Again by virtue of boundedness of the set X(u) and the property (C3) it follows

from similar arguments as in Theorem 4.2, that there exists a subsequence of the

sequence {xn}, relabeled as the original sequence, and an element x∗ ∈ X(u) such

that xn
s

−→ x∗ in B(I, E). In fact this also proves that the set X(u) is conditionally

sequentially compact. By Theorem 4.2 X(u) is closed and hence X(u) is actually

sequentially compact. Since both ` and Ψ are continuous in x on E, by virtue of (20)

it follows from Lebesgue dominated convergence theorem that

lim
n→∞

Υ(u, xn) = Υ(u, x∗).

This shows that for every u ∈ Uad, there exists an x∗ ≡ xu ∈ X(u) at which the

functional x→ Υ(u, x) attains its maximum. Thus the functional

Jo(u) ≡ sup{Υ(u, x), x ∈ X(u)} = Υ(u, xu)
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is well defined for every u ∈ Uad. We show that Jo is weakly lower semi continuous

on Uad. For simplicity of notation define

Φ(x) ≡

∫

I

`(t, x(t))dt + Ψ(x(T )), x ∈ B(I, E).

Let {un} ∈ Uad and un
w

−→ uo ∈ Mc(I, U). Since Uad is weakly sequentially compact

uo ∈ Uad. Denote by xn = xun

the maximizer of the functional Υ(un, ·) giving

Jo(un) = Υ(un, xn). Clearly (un, xn) ∈ Gr(X). By virtue of compactness of the

operators Γ(t), t ∈ I, and the semigroup S(t), t > 0, we can again argue that, along

a subsequence if necessary, xn
s

−→ xo as un
w

−→ uo. Then it follows from the closure

of the graph Gr(X), as stated in Theorem 4.2, that (uo, xo) ∈ Gr(X). Thus

lim inf Jo(un) = lim inf
{

Φ(xn) + ϕ(un)
}

≥ lim inf Φ(xn) + lim inf ϕ(un) = lim Φ(xn) + lim inf ϕ(un)

≥ Φ(xo) + ϕ(uo) = Jo(uo).(21)

The last inequality follows from continuity of Φ on B(I, E) and weak lower semi

continuity of ϕ on Mc(I, U). This proves lower semi continuity of the functional

u −→ Jo(u), and, it is clear from (20) that Jo > −∞. Thus Jo attains its infimum on

Uad. This proves the existence of an optimal control.

5. NECESSARY CONDITIONS OF OPTIMALITY

In this section we present a set of necessary conditions of optimality for the control

problem (19) subject to the dynamic system (11). Here we must use differentials of

multifunctions. There are several notions of derivatives for multi functions; the most

popular ones being those due to Bouligand, Nagumo, and Clerk [15, 16]. The most

appropriate one for us is the last one. For transparency we present this in the direct

context of the problem in hand. Denote X ≡ B(I, E), Y ≡ L1(I, E) and assume that

the product space Z ≡ X × Y is furnished with the product topology τ ≡ τs × τw

where τs denotes the strong topology (supnorm topology) on X and τw the weak

topology on Y . Define the multifunction Ĉ : X −→ Y and its graph Gr(Ĉ) as follows:

Ĉ(x) ≡ {f ∈ Y : f(t) ∈ C(t, x(t)) a.e I}, x ∈ X

Gr(Ĉ) ≡ {(x, f) ∈ X × Y : f ∈ Ĉ(x)}

The Clerk derivative of the multifunction Ĉ at the point (x, f) ∈ Gr(Ĉ) is again a

multifunction DcĈ(x; f) from X to Y . An element (y, g) of Z is in the graph of

DcĈ(x; f), that is, g ∈ DcĈ(x; f)(y) if the following identity holds:

lim
(xε,fε)

Gr(Ĉ),ε↓0
−→ (xo,fo)

inf
yε→y

{

d
(

g,
Ĉ(xε + εyε) − f ε

ε

)}

= 0,(22)

where d(g, F ) denotes the distance of g ∈ Y from the set F ⊂ Y .
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Lemma 5.1. Suppose the assumptions of Theorem 4.3 hold, the multifunction Ĉ

is differentiable in the sense of Clerk and Uad is a convex subset of Mc(I, U). Let

uo, u ∈ Uad and uε ≡ uo + ε(u − uo) and let xo ∈ X(uo) and xε ∈ X(uε). Let

f ε ∈ Ĉ(xε) and f o ∈ Ĉ(xo). Then y ≡ limε↓0 y
ε ≡ (1/ε)(xε − xo) exists and it is a

mild solution of the variational evolution inclusion

dy = Aydt+B(dt)y + g(t)dt+ Γ(t)(u− uo)(dt), y(0) = 0,(23)

g ∈ DcĈ(xo, f o)(y).(24)

Proof. By definition of mild solution of the evolution inclusion (11) we have

xε(t) = UB(t, 0)x0 +

∫ t

0

UB(t, s)f ε(s)ds+

∫ t

0

UB(t, s)Γ(s)uε(ds)(25)

xo(t) = UB(t, 0)x0 +

∫ t

0

UB(t, s)f o(s)ds+

∫ t

0

UB(t, s)Γ(s)uo(ds).(26)

Taking the difference xε − xo and using the Lipschitz property (C2) and Gronwall

inequality one can easily verify that

‖ xε(t) − xo(t) ‖E≤ ε

(

MB ‖ Γ ‖0

)

‖ u− uo ‖v exp
{

MB

∫ t

0

K(s)ds
}

, t ∈ I.(27)

It is clear from this inequality that as ε ↓ 0 we have

xε s
−→ xo in X = B(I, E).(28)

Define

yε ≡ (1/ε)xε − xo)(29)

gε ≡ (1/ε)(f ε − f o).(30)

Again from inequality (27) we have

limε↓0 ‖ y
ε ‖X<∞.(31)

Clearly it follows from (25)-(26) and the above definitions that

yε(t) =

∫ t

0

UB(t, s)gε(s)ds+

∫ t

0

UB(t, s)Γ(s)(u− uo)(ds), t ∈ I.(32)

Since by assumptions (C1) and (C3), the multifunction C(t, ξ) is closed convex valued

and integrably bounded, it follows from Dunford-Pettis theorem that f ε w
−→ f o. It

follows from (28)-(30) and the Lipschitz property (C2) of the multifunction C that

the family {gε} is contained in bounded subset of L1(I, E) and, being the difference

of uniformly integrable functions, the set {gε}ε>0 is also uniformly integrable. Since

E is a reflexive Banach space, this set is relatively weakly sequentially compact. Thus

along a subsequence if necessary, gε w
−→ g in L1(I, E). By virtue of compactness of

the semigroup S(t), t > 0, or equivalently compactness of the transition operator
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UB(t, s), 0 ≤ s < t ≤ T , it follows from (32) that there exists an y ∈ B(I, E) so that

yε s
−→ y giving

y(t) =

∫ t

0

UB(t, s)g(s)ds+

∫ t

0

UB(t, s)Γ(s)(u− uo)(ds), t ∈ I.(33)

Hence it follows from the differentiability of the multifunction Ĉ that (y, g) ∈ Gr(DcĈ)

(xo; f o). In other words

g(t) ∈ DcC(t, xo(t); f o(t))(y(t)), a.e. t ∈ I.

From this we conclude that the pair (y, g) is a mild solution of the evolution system

(23)-(24). This completes the proof.

Now we are prepared to prove the necessary conditions of optimality.

Theorem 5.2. Consider the system (11) and the control problem (19). Suppose the

assumptions of Lemma 5.1 hold, ϕ is sub differentiable on Uad, ` is Borel measurable

on I ×E with x −→ `(t, x) and x −→ Ψ(x) being continuously Frechet differentiable.

Then for the pair (uo, xo) ∈ Uad × B(I, E), xo ∈ X(uo) to be optimal for the problem

(19), it is necessary that there exists a ψ ∈ B(I, E∗) which together with (uo, xo)

satisfy the evolution inclusions (34)-(35) (in the mild sense) and the inequality (36):

dxo = Axodt+B(dt)xo + f o(t)dt + Γ(t)uo(dt), xo(0) = x0(34)

f o(t) ∈ C(t, xo(t)) a.e

dψ = −A∗ψdt− B∗(dt)ψ − ho(t)dt− `x(t, x
o(t))dt, ψ(T ) = Ψx(x

o(T ))(35)

ho(t) ∈ (DcC)∗(xo, f o)(ψ(t))
∫ T

0

< Γ∗(t)ψ(t) + zo(t), (u− uo)(dt) >U∗,U ≥ 0, zo ∈ ∂ϕ(uo) & u ∈ Uad(36)

where (DcC)∗(x, f) denotes adjoint of the closed convex process DcC evaluated at

(x, f) ∈ Gr(C) and ∂ϕ(u) is the subdifferential of ϕ given by

∂ϕ(u) ≡ {ζ ∈ Mc(I, U)∗ :< ζ, w− u > ≤ ϕ(w) − ϕ(u) ∀ w ∈ Mc(I, U)}.

Proof. Suppose the pair (uo, xo) ∈ Uad × B(I, E) is optimal for the control problem.

Let u ∈ Uad and define uε ≡ uo + ε(u− uo), ε ∈ [0, 1]. Since Uad is convex uε ∈ Uad.

By Theorem 4.3, there exists xε ∈ X(uε) so that Υ(uε, xε) = Jo(u
ε), that is x −→

Υ(uε, x) attains its maximum at xε. Thus for the pair (uo, xo) to be optimal it is

clearly necessary that

Jo(u
o) ≡ Υ(uo, xo) ≤ Υ(uε, xε) ≡ J0(u

ε) ∀ ε ∈ [0, 1].(37)
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Since xo and xε are solutions of the differential inclusion (11) corresponding to controls

uo and uε respectively, there exist f o ∈ L1(I, E) and f ε ∈ L1(I, E) such that

xo(t) = UB(t, 0)x0 +

∫ t

0

UB(t, s)f o(s)ds+

∫ t

0

UB(t, s)Γ(s)uo(ds), t ∈ I,(38)

f o(t) ∈ C(t, xo(t))

xε(t) = UB(t, 0)x0 +

∫ t

0

UB(t, s)f ε(s)ds+

∫ t

0

UB(t, s)Γ(s)uε(ds), t ∈ I,(39)

f ε(t) ∈ C(t, xε(t)).

Let dJo(u
o, u−uo) denote the sub differential of Jo at uo in the direction u−uo. Since

by assumption ϕ is sub differentiable and `,Ψ are Frechet differentiable, Jo possesses

its sub differential. Hence it follows from (37) that

dJo(u
o, u− uo) =

∫ T

0

< `x(t, x
o(t)), y(t) >E∗,E dt+ < Ψx(x

o(T )), y(T ) >

+

∫ T

0

< zo(t), (u− uo)(dt) >≥ 0, ∀zo ∈ ∂ϕ(uo)&∀ u ∈ Uad,(40)

where, by Lemma 5.1 we have y ∈ B(I, E) given by the expression (33) with

g ∈ DcC(xo, f o)(y).(41)

It is clear from the expression (33) and (41) that the map Γ(u−uo) −→ y is continuous

linear from Mc(I, E) to B(I, E). It follows from the assumptions on ` and Ψ (see

(20)) that `o, given by `o(t) ≡ `x(t, x
o(t)), belongs to L1(I, E

∗) and Ψx(x
o(T )) ∈ E∗.

Since y ∈ B(I, E) we conclude from this that the map

y −→ L(y) ≡

∫ T

0

< `x(t, x
o(t)), y(t) >E∗,E dt+ < Ψx(x

o(T )), y(T ) >(42)

is a continuous linear functional on B(I, E). Since Γ ∈ BM(I,L(U,E)) it is clear

that for any u ∈ Mc(I, U), the measure defined by

v(K) ≡

∫

K

Γ(t)u(dt), K ∈ B,

is also a countably additive E valued vector measure of bounded total variation. Thus

the composition map

Γ(u− uo) −→ y −→ L(y) ≡ L̃(Γ(u− uo))

is a continuous linear functional on Mc(I, E). Hence there exists an element ψ ∈

(Mc(I, E))∗, the dual of Mc(I, E), such that

(43) L(y) ≡ L̃(Γ(u− uo)) =

∫ T

0

〈ψ(t),Γ(t)(u− uo)(dt)〉E∗,E.
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Later we will see that ψ ∈ B(I, E∗). Using (43) in (40) we arrive at the following

inequality

dJo(u
o, u− uo) =

∫

I

〈Γ∗(t)ψ(t) + zo(t), (u− uo)(dt)〉(44)

≥ 0, ∀ zo ∈ ∂ϕ(uo) and u ∈ Uad.

This is the necessary condition (36). Recall that y given by (33) is the mild solution

of the variational evolution equation

dy = Aydt+B(dt)y + g(t)dt+ Γ(u− uo)(dt), y(0) = 0(45)

g ∈ DcC(xo, f o)(y).

Using standard arguments based on Yosida approximation of the generator A, it

follows from (45) and integration by parts that (43) can be rewritten as

L(y) = 〈ψ(T ), y(T )〉E∗,E −

∫ T

0

〈dψ + A∗ψdt+B∗(dt)ψ + ho(t)dt, y(t)〉(46)

where

ho ∈ (DcC)∗(xo, f o)(ψ),

with (DcC)∗ being the codifferential or adjoint process. Equating (42) with (46) and

setting ψ(T ) = Ψx(x
o(T )) and noting that y is a mild solution corresponding to an

arbitrary control u ∈ Uad, we arrive at the adjoint equation

dψ = −A∗ψdt− B∗(dt)ψ − ho(t)dt− `x(t, x
o(T ))dt, ψ(T ) = Ψx(x

o(T )).(47)

Equation (47) and the preceding inclusion give the adjoint inclusion (35). Thus for ψ,

whose existence was announced earlier leading to the representation (43), can be taken

as the mild solution of the adjoint evolution inclusion (35). Following exactly the same

arguments as in Theorem 4.1, we conclude that the adjoint evolution inclusion (35) has

a nonempty set of solutions in B(I, E∗). Thus the statement leading to the expression

(43) can be modified by stating the existence of a ψ ∈ B(I, E∗) ⊂ (Mc(I, E))∗ in the

smaller space. This completes the proof.

Remark 3. It is rather surprising that the adjoint process ψ belongs to the space

B(I, E∗) ⊃ C(I, E∗) even though direct analysis asserts its existence in the space

(Mc(I, E))∗ the weak dual of Mc(I, E). Since E is a reflexive Banach space, C(I, E∗)

is the weak star dual (predual) of Mc(I, E) and note that any f ∈ C(I, E∗) induces

a continuous linear functional on Mc(I, E) through the functional

`f (µ) ≡

∫

I

< f(t), µ(dt) >E∗,E .



32 N. U. AHMED

Some Examples of Control Cost. Here we present some examples of ϕ, repre-

senting the control cost, which are Gateaux differentiable.

Example (E1): This is an example of a quadratic cost. Let Ls(U, U
∗) denote

the class of linear symmetric operators from U to its dual U ∗ and let R ∈ C(I ×

I,Ls(U, U
∗)) and define

ϕ(u) ≡ (1/2)

∫

I×I

〈R(t, s)u(ds), u(dt)〉.

Clearly this is Gateaux differentiable and it is given by

∂ϕ(u)(t) =

∫

I

R(t, s)u(ds) ≡ (Ru)(t).

In this case zo(t) of the necessary condition (36) is given by

zo(t) ≡

∫

I

R(t, s)uo(ds) = (Ruo)(t).

Note that there exist nontrivial kernels R from the class mentioned above for which

the corresponding operator R ∈ L+
s (Mc(I, U)). A simple example of R is a nuclear

operator having the representation

R(t, s) ≡
∑

λi ξi(t) ⊗ ξi(s)

where λi ≥ 0,
∑

λi < ∞ and ‖ ξi ‖C(I,U∗)= 1 and the linear span Span{ξi} is dense

in C(I, U∗).

Example (E2): This example is based on a cylindrical function on Mc(I, U) as

follows

ϕ(u) ≡ p(〈ξ1, u〉, 〈ξ2, u〉, · · · , 〈ξn, u〉)

where ξi ∈ C(I, U∗), 1 ≤ i ≤ n, or B(I, U ∗), p : Rn −→ R is continuously differen-

tiable. In this case

zo(t) =
∑

∂ip
o ξi(t)

where ∂ip
o denotes the partial of p with respect to the i−th variable evaluated at uo.

Example (E3): (Linear Quadratic Regulator) In case the multifunction C ≡ 0,

system (11) reduces to a linear evolution equation. Assuming E,U to be suitable

Hilbert spaces, and taking `(t, x) ≡ (1/2)(Q(t)x, x) with Q(t) a positive self adjoint

operator valued function in E; Ψ(ξ) = (1/2)(Mξ, ξ) with M a positive self adjoint

operator in E and ϕ as given in example (E1) one has a quadratic regulator problem.

In this case the optimal feedback control can be derived from the necessary conditions

of optimality. If Range(Γ∗) ⊆ RangeR, the optimal feedback control is given by

uo = −R−1Γ∗Kx
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where K is an operator valued measure given by the solution of Differential Riccati

equation

dK + (KA+ A∗K)dt+ (KB(dt) +B∗(dt)K) − (KΓ)R−1(Γ∗K) = 0, K({T}) = M.

Since R is an integral operator, this is a functional (nonlocal) differential equation and

its solution if one exists is an operator valued measure. The author conjectures that if

B ∈ Mc(I,L(E)) then K ∈ Mc(I,L+
s (E)); alternately if B ∈ Mb(I,L(E)) then K ∈

Mb(I,L+
s (E)) where by Mb(I,L(E)) we mean the space of finitely additive bounded

measures with values in L(E). We leave the analysis of this operator equation as an

open problem.

Future Directions. In recent years hybrid systems are occupying the interest of

great many researchers on dynamic systems and control. In general the mathematical

models used for such systems consist of a number of interconnected and possibly

independent dynamic systems which are switched from one configuration to another.

The author of this paper prefers to use operator valued and vector valued measures

to model such systems. We present here few open problems in this area.

(A): Examples of structural controls are found in mechanics, in particular, robot-

ics and in many other interconnected network of large systems that may be subject

to abrupt changes in configuration. Motivated by this we are currently developing

general mathematical models for hybrid systems governed by evolution equations or

inclusions containing operator valued measures. We develop optimal control theory

for such systems using operator valued measures as controls.

(B): In the context of hybrid systems the questions of linear and nonlinear filtering

is wide open. To start with one may consider (Kalman or) linear filtering and control

of systems of the form

dx = Axdt+B(dt)x + C(t)u(dt) +D(t)dW (t)(48)

dy = Hxdt+ Co(t)dV (t),(49)

where {W,V } are Brownian motions on a filtered Probability space (Ω,F ,Ft≥0, P )

with values in compatible Hilbert spaces. Here x is the inaccessible state process

and y is the observed process. The controls are random vector valued measures {u}

suitably adapted to the filtration F y
t≥0 ⊂ Ft≥0.

(C): The questions of nonlinear filtering and control of differential equations

and/or inclusions driven by vector and operator valued measures in infinite dimen-

sional spaces is completely open.
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