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Olomouc-Hejč́ın, Czech Republic andres@inf.upol.cz

Department of Engineering Sciences and Methods, University of Modena and

Reggio Emilia - Via Fogliani 1, I-42100 Reggio Emilia, Italy

malaguti.luisa@unimore.it

Department of Engineering of Information, University of Siena - Via Roma 56,

I-53100 Siena, Italy taddei@dii.unisi.it

ABSTRACT. The solvability of Floquet boundary value problems is investigated for upper-Cara-

théodory differential inclusions by means of strictly localized C2-bounding functions. The existence

of an entirely bounded solution is obtained in a sequential way. Our criteria can be regarded as a

multivalued extension of recent results of Mawhin and Thompson concerning periodic and bounded

solutions of Carathéodory differential equations. A simple illustrating example is supplied.
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1. INTRODUCTION

We consider the multivalued Floquet boundary value problem (b.v.p.)

(1)

{

x′ + A(t)x ∈ F (t, x), for a.a. t ∈ [a, b],

x(b) = Mx(a).

and throughout the paper we assume that the following conditions are satisfied:

(a) A : [a, b] → R
n×n is a matrix-valued measurable function such that |A(t)| ≤ γ(t),

for all t ∈ [a, b], with some integrable function γ : [a, b] → [0, +∞);

(b) F : [a, b] × R
n

( R
n is an upper-Carathéodory (u-Carathéodory) set-valued

map (see Definition 1 below);

(c) M is a regular n × n matrix.

Definition 1. Given a real interval J and a set X ⊆ R
m, we say that F : J×X ( R

p,

i.e. F : J × X → 2R
p

\ {∅}, is an u-Carathéodory map, provided
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(i) the values F (t, x) are nonempty, compact and convex sets for every (t, x) ∈

J × X,

(ii) F (·, x) is measurable, for each x ∈ X,

(iii) F (t, ·) is upper semicontinuous (u.s.c.), for almost all (a.a.) t ∈ J ,

(iv) |w| ≤ r(t)(1 + |x|), for every (t, x) ∈ J × X, w ∈ F (t, x), where r ∈ L1
loc(J).

In [4], we proposed a method for the investigation of problem (1) which consisted

of several steps. We associated to (1) a one-parameter family of linearized problems.

Furtermore, we considered a bounded subset K ⊆ R
n and proved that all linearized

problems have no solutions tangent to ∂K. Finally, we employed a continuation

principle developed by the first author, jointly with Gabor and Górniewicz (see [2]

and [3]).

Let us note that our technique applies to every Floquet problem of type (1), not

only for the special case M = I related to periodic solutions. Hence, it enables us to

solve problem (1) for a wide class of right-hand sides F (see [2]–[5]).

A delicate point in this investigation is to check the transversality condition

required on ∂K, for all linearized problems. We overcome this obstruction when

assuming that K is a bound set. The theory of bound sets was introduced by Gaines

and Mawhin (see [9]) in the single valued case. In [4], [5], we generalized it for

differential inclusions.

We recall that a bound set approach consists of application of a family of Lyapunov-

like functions, called in this context bounding functions. As indicated in [13], if F is

a Carathéodory map and locally Lipschitzian bounding functions are applied, then

transversality conditions should be satisfied all over a neighborhood of ∂K. A typical

result of this type was also our Theorem 3.2 in [5] which is slightly modified, according

to our needs, as Proposition 2 below.

However, when a more regular bounding function is applied, then an approxima-

tion argument of Scorza–Dragoni type (see Proposition 1) allows us to localize the

transversality conditions again on ∂K, as in the case of a globally u.s.c. F in [4].

Mawhin and Thompson (see [12]) proposed this technique for the study of periodic

solutions in the single valued case. Our aim here is to extended their approch to

multivalued setting for Floquet b.v.p. of type (1).

The following result completes the investigations in [4] and [5] concerning b.v.p.

(1), in a finite dimensional state space. Due to higher regularity of applied bounding

functions, it especially improves the analogous statements in [5].

Theorem 1. Assume that
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1) the associated to (1) homogenous problem
{

x′ + A(t)x = 0, for a.a. t ∈ [a, b],

x(b) = Mx(a),

has only the trivial solution;

2) there exists an u-Carathéodory mapping G : [a, b]×R
2n × [0, 1] ( R

n such that,

for all t ∈ [a, b], x, y ∈ R
n and λ ∈ [0, 1], it holds

G(t, x, y, 0) = G0(t, x), G(t, y, y, 1) ⊂ F (t, y);

|w| ≤ s(t)(1 + |x| + |y| + λ),

with w ∈ G(t, x, y, λ) and s ∈ L1([a, b]);

3) there exist a non-empty, open and bounded set K ⊂ R
n, whose closure is a

retract of R
n, and whose boundary ∂K satisfies M∂K = ∂K, and a C2-function

V : R
n → R such that V (x) ≤ 0 on K, V (x) = 0, ∇V (x) 6= 0 on ∂K, and

(2) < ∇V (x), w >≤ 0,

for all t ∈ (a, b], x ∈ ∂K, y ∈ K, λ ∈ [0, 1], and w ∈ G(t, x, y, λ)−A(t)x, where

< ·, · > denotes the inner product;

4) G(t, ·, y, λ) is Lipschitzian with a sufficiently small Lipschitz constant L, for each

(t, y, λ) ∈ [a, b] × K × [0, 1];

5) for each solution x(·) of problem

(3)

{

x′ + A(t)x ∈ G0(t, x), for a.a. t ∈ [a, b],

x(b) = Mx(a)

it holds x(t) ∈ K for all t ∈ [a, b].

Then (1) admits a solution.

The proof of this theorem is performed in Section 3. It is based on the usage of a

sequence of approximating problems involving strict transversality conditions. These

approximating problems are solvable according to Proposition 2, and a standard

limiting argument is then applied to conclude the proof. It is clear from the proof

that every solution x(·) obtained by means of Theorem 1, satisfies x(t) ∈ K, for all

t ∈ [a, b].

As far as we know, existence results for problem (1) are rare and they mainly

concern periodic solutions. We refer to [2], [5], [10] and [16] for a wide list of related

references; for an updated list of references, see also very recent papers [1], [11], [14]

and [15].

In Section 4, combining Theorem 1 with a classical sequential approach, we still

prove the existence of entirely bounded solutions of inclusion (1) (see Theorem 2).

We conclude with an illustrating example.
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Given X ⊆ R
n and δ > 0, we put

Bδ
X :=

⋃

x∈X

Bδ
x

where Bδ
x denotes the ball centered in x and of radius δ.

As usual, the set C([a, b], X) is the Banach space of all continuous functions

x : [a, b] → X endowed with the sup-norm.

2. PRELIMINARY RESULTS

For our purposes, we need the following Scorza–Dragoni type result for multival-

ued maps (see [8, Proposition 5.1]).

Proposition 1. Let F : [a, b]×X ( R
n be an u-Carathéodory map such that X ⊂ R

n

is compact. Then there exists a multivalued mapping F0 : [a, b]×X ( R
n ∪ {∅} with

compact, convex values and F0(t, x) ⊂ F (t, x), for all (t, x) ∈ [a, b] × X, having the

following properties:

(i) if u, v : [a, b] → R
n are measurable functions with v(t) ∈ F (t, u(t)), on [a, b], then

v(t) ∈ F0(t, u(t)), a.e. on [a, b];

(ii) for every ε > 0, there exists a closed Iε ⊂ [a, b] such that λ([a, b] \ Iε) < ε,

F0(t, x) 6= ∅, and it is u.s.c. on Iε × X.

We now state an existence result for problem (1) which is a slight modification of

the main existence result in [5]. It requires a sharp transversality condition (see (4)

below) and will be a tool for our present investigation.

Proposition 2. Assume that

1) the associated homogeneous problem
{

x′ + A(t)x = 0, for a.a. t ∈ [a, b],

x(b) = Mx(a)

has only the trivial solution;

2) there exists an u-Carathéodory mapping G : [a, b]×R
2n × [0, 1] ( R

n such that,

for all t ∈ [a, b], x, y ∈ R
n and λ ∈ [0, 1], it holds

G(t, x, y, 0) = G0(t, x), G(t, y, y, 1) ⊂ F (t, y);

|w| ≤ s(t)(1 + |x| + |y| + λ),

where w ∈ G(t, x, y, λ) and s ∈ L1([a, b]);

3) there exists a non-empty, open and bounded subset K of R
n, whose closure is a

retract of R
n, satisfying M∂K = ∂K, and a C1− function V : R

n → R such

that V (x) ≤ 0 on K, V (x) = 0 on ∂K, and

(4) 〈∇V (x), w〉 < 0,
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for all t ∈ (a, b], x ∈ K ∩ Bε
∂K , y ∈ K, λ ∈ (0, 1] and w ∈ G(t, x, y, λ) − A(t)x,

with ε > 0;

4) for each (t, y, λ) ∈ [a, b]×K × [0, 1], G(t, ·, y, λ) is Lipschitzian with a Lipschitz

function L(t) = L + l(t) such that L as well as
∫ b

a
l(t)dt are sufficiently small;

5) the set of solutions of
{

x′ + A(t)x ∈ G0(t, x), for a.a. t ∈ [a, b],

x(b) = Mx(a)

is a subset of C([a, b], K).

Then (1) admits a solution.

Sketch of the proof. The result can be obtained as a special case of [5, Theorem 3.2]

(see also [3, Theorem (8.77)]). Condition 5) guarantees that problem (3) has no

solutions on the boundary of C([a, b], K). Property (iv) in Definition 1, jointly with

Gronwall’s lemma, assure that all solutions x(·) of

(5) x′(t) + A(t)x(t) ∈ G(t, x(t), q(t), λ)

are equi-bounded, for every q ∈ C([a, b], K) and λ ∈ [0, 1]. Consequently, there

exists an integrable c : [a, b] → [0, +∞) such that |w| ≤ c(t), a.e. in [a, b], for all

w ∈ G(t, x(t), q(t), λ), q ∈ C([a, b], K), λ ∈ [0, 1], and solution x(·) of (5). The proof

is the same as in [5], apart from two slight modifications. The first one is related to

the fact that A(·) can be taken integrable, instead of to be continuous. The second

modification consists in replacing a sufficiently small Lipschitz constant of the function

G w.r.t. x by an L1-Lipschitz function L(·) such that
∫ b

a
L(t)dt is sufficiently small.

These two changes are standard and they do not affect the conclusion concerning the

Rδ-structure of the solution set, when following step by step the proof of the main

result in [6].

Remark 1. In [7] (see also [3, p. 283]), the same Lipschitz-type assumption was

employed, in order to guarantee the Rδ-structure of the solution set. It was explicitly

expressed, but only in the single valued case.

3. PROOF OF THEOREM 1

Proof. According to condition 3), ∇V (x) 6= 0, for all x ∈ ∂K. Moreover, ∂K is

compact. Thus, we get that there exist δ, γ > 0 such that ∇V (x) 6= 0, for all

x ∈ Bδ
∂K, and |∇V (x)| ≥ γ, for each x ∈ ∂K. Since K is also compact, there exists

µ ∈ C1(RN , [0, 1]) such that µ ≡ 1 on B
δ
2

∂K , and µ ≡ 0 on R
n \ Bδ

∂K .

Consider an open bounded set K0 ⊂ R
n such that K ⊂ K0. Since G is an u-Ca-

rathéodory mapping and A(·) is a measurable operator satisfying assumption (a), we

can apply a Scorza–Dragoni type result (see e.g. Proposition 1 and [12, Theorem 2.3]).
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We obtain the existence of a monotone decreasing sequence {θm}m of subsets of [a, b]

and a measurable map G : [a, b] × K0 × K0 × [0, 1] ( R
n such that, for every

m ∈ N, [a, b] \ θm is compact, λ(θm) < 1
m

, G(t, x, y, λ) ⊂ G(t, x, y, λ), G is u.s.c. in

([a, b] \ θm)×K0 ×K0 × [0, 1] and A is continuous in ([a, b] \ θm). Obviously, ∩∞
m=1θm

has zero Lebesgue measure and lim
m→∞

χθm
(t) = 0, for every t /∈ ∩∞

m=1θm. Thus, G is an

u-Carathéodory multivalued mapping.

Now, consider

(6)

Ĝ : [a, b] × R
2n × [0, 1] ( R

n

(t, x, y, λ) (

{

G(t, x, y, λ) if (x, y) ∈ K0 × K0

G(t, x, y, λ), otherwise.

Since K0 is open and G(t, x, y, λ) ⊂ G(t, x, y, λ), it follows that Ĝ is also an

u-Carathéodory mapping.

Define, for each m ∈ N and (t, x, y, λ) ∈ [a, b] × R
2n × [0, 1],

Fm(t, x) := F (t, x) − µ(x)

(

p(t)χθm
(t) +

1

m

)

∇V (x)

|∇V (x)|
,

and

Gm(t, x, y, λ) := Ĝ(t, x, y, λ) − µ(x)

(

p(t)χθm
(t) +

1

m

)

∇V (x)

|∇V (x)|
,

where p(t) = 2s(t)(1 + σ) + γ(t)σ with σ := max
x∈K

|x| and s(t), as in condition 2).

By definition, for each (t, x) ∈ [a, b] × R
n and every wm ∈ Fm(t, x), there exists

wF ∈ F (t, x) such that

wm = wF − µ(x)

(

p(t)χθm
(t) +

1

m

)

∇V (x)

|∇V (x)|
.

Hence, according to the definition of µ, wm = wF , when x ∈ R
n\Bδ

∂K, while ∇V (x) 6=

0, when x ∈ Bδ
∂K . Moreover, |wm| ≤ |wF |+p(t)+1 ≤ r(t)(1+|x|)+p(t)+1. Therefore,

Fm is a well-defined u-Carathéodory map on [a, b]×R
n. Similarly, for each (t, x, y, λ) ∈

[a, b]×R
2n×[0, 1] and every wm ∈ Ĝm(t, x, y, λ), |wm| ≤ s(t)(1+|x|+|y|+λ)+p(t)+1.

Thus, Gm is a also well-defined u-Carathéodory map.

Let us prove that there exists m0 such that, for all m ≥ m0, the b.v.p.

(7)

{

x′ + A(t)x ∈ Fm(t, x), t ∈ [a, b],

x(b) = Mx(a),

satisfies the assumptions of Proposition 2. Assumption 1) of Proposition 2 is triv-

ially satisfied, for all m ∈ N. Now, we show that Gm satisfies assumption 2) of

Proposition 2, for all m ∈ N. In fact, because of Ĝ(t, x, y, λ) ⊂ G(t, x, y, λ), we have

Gm(t, y, y, 1) ⊂ G(t, y, y, 1)− µ(y)

(

p(t)χθm
(t) +

1

m

)

∇V (y)

|∇V (y)|
⊂ Fm(t, y),
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for all (t, y) ∈ [a, b] × R
n. Moreover, for all (t, x, y) ∈ [a, b] × R

2n, we obtain

Gm(t, x, y, 0) ⊂ G0(t, x) − µ(x)

(

p(t)χθm
(t) +

1

m

)

∇V (y)

|∇V (y)|
.

Now, let us investigate assumption 3) in Proposition 2. For every (t, x, y, λ) ∈ θm ×

(B
δ
2

∂K ∩ K) × K × [0, 1] and wm ∈ Gm(t, x, y, λ) −A(t)x, we obtain

〈∇V (x), wm〉 = 〈∇V (x), wG − A(t)x〉 −

(

p(t) +
1

m

)

|∇V (x)|

≤

[

|wG| + |A(t)x| −

(

p(t) +
1

m

)]

|∇V (x)|

≤

[

s(t)(1 + |x| + |y| + λ) + γ(t)|x|

−

(

p(t) +
1

m

)]

|∇V (x)|

≤ −
1

m
|∇V (x)|

< 0,

because µ ≡ 1 in B
δ
2

∂K ∩ K.

Let us consider t ∈ [a, b] \ θm. According to assumption 3), for every x ∈ ∂K,

y ∈ K, λ ∈ [0, 1] and wm ∈ Gm(t, x, y, λ)− A(t)x,

〈∇V (x), wm〉 = 〈∇V (x), wG − A(t)x〉 −
1

m
|∇V (x)|

≤ −
1

m
|∇V (x)|

≤ −
γ

m
,

because |∇V (x)| ≥ γ, for each x ∈ ∂K. Since Ĝ ≡ G which is u.s.c. in ([a, b] \

θm) × K × K × [0, 1], A ∈ C([a, b] \ θm) and V ∈ C2(Rn), it follows that (t, x) (

〈∇V (x), Gm(t, x, y, λ)−A(t)x〉 is u.s.c. on the compact set ([a, b]\θm)×K×K×[0, 1].

Hence, the existence of σm > 0 is implied such that

〈∇V (x), wm〉 < 0,

for every t ∈ [a, b] \ θm, x ∈ Bσm

∂K ∩ K, y ∈ K, λ ∈ [0, 1], wm ∈ Gm(t, x, y, λ) − A(t)x,

and assumption 3) of Proposition 2 follows, when taking εm = min(σm, δ
2
).

Let us also notice that, since µ and V are respectively of class C1 and C2, denot-

ing by P the Lipschitz constant of µ ∇V
|∇V |

, Gm(t, ·, y, λ) is Lipschitzian with Lipschitz

function L+l(t), where l(t) := (p(t)χθm
(t)+ 1

m
)P. Since p(·) ∈ L1[a, b] and λ(θm) < 1

m
,

it is possible to find m such that, for all m ≥ m,
∫ b

a
l(t)dt is sufficiently small, and

condition 4) implies assumption 4) of Proposition 2.
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Finally, recalling that Ĝ(t, x, y, 0) ⊂ G(t, x, y, 0) = G0(t, x), for each (t, x, y) ∈

[a, b] × Rn × Rn, consider a solution x(·) of the b.v.p.

(8)

{

x′ + A(t)x ∈ G0(t, x) − µ(x)
(

p(t)χθm
(t) + 1

m

) ∇V (x)
|∇V (x)|

,

x(b) = Mx(a), t ∈ [a, b].

Only two cases can occur: x(t) ∈ R
n \ Bδ

∂K, for all t ∈ [a, b] or there exists

t0 ∈ [a, b] such that x(t0) ∈ Bδ
∂K . According to condition 5), in the first case, x(·) is a

solution of (3), because µ(x(t)) = 0, for all t. Hence, |x(t)| ≤ σ for all t ∈ [a, b]. We

show that also in the second case the solutions x(·) are equi-bounded. In fact, first

assuming t ∈ [t0, b], integrating the inclusion in (8) and passing to the norm, we get

|x(t)| ≤ |x(t0)| +

∫ t

t0

γ(τ)|x(τ)| dτ +

∫ t

t0

s(τ)(1 + |x(τ)|) dτ

+

∫ t

t0

(p(τ) + 1) ≤ α +

∫ t

a

(γ(τ) + s(τ))|x(τ)| dτ,

where α := σ + δ +
∫ b

a
(s(τ) + p(τ) + 1) dτ . By Gronwall’s lemma, we obtain

|x(t)| ≤ αe
R b

a
(γ(τ)+s(τ)) dτ , t0 ≤ t ≤ b.

Notice that previous estimate holds also when t ∈ [a, t0], so we have proved that the

solutions of (8) are equi-bounded, independently of m ∈ N. Let us suppose that, for

each m ∈ N, there exist pm ≥ m, solution xpm
(·) of (8) and tpm

∈ [a, b] such that

xpm
(tpm

) /∈ K. We note that, since G is of u-Carathéodory type (see condition 2))

and {xpm
(·)}m is an equi-bounded sequence, then {x′

pm
(·)}m is also equi-bounded in

L1[a, b]. Indeed,

|x′
pm

(t)| ≤ γ(t)|xpm
(t)| + s(t)(1 + |xpm

(t)|) + p(t) + 1,

for all t ∈ [a, b] and m ∈ N. Thus, the Ascoli–Arzelà theorem implies that {xpm
(·)}m

has a subsequence, again denoted as the sequence, such that xpm
(t) → x(t), as m →

+∞, uniformly in [a, b], the function x(·) is absolutely continuous in [a, b], and x′
pm

⇀

x′, weakly in L1[a, b]. Notice, moreover, that since lim
m→∞

χθm
(t) = 0, for every t /∈

∩∞
m=1θm, and λ(∩∞

m=1θm) = 0,

µ(xpm))
(

p(t)χθpm
+

1

pm

) ∇V (xpm
(t))

|∇V (xpm
(t))|

→ 0, a.e. in [a, b].

Consequently, a standard limiting argument (see e.g. [16, page 88]) implies that x(·)

is a solution of (3). Hence, according to 5), we obtain that x(t) ∈ K, for all t ∈ [a, b].

On the other hand, {tpm
}m has a subsequence which converges to some t ∈ [a, b].

This leads to a contradiction with xpm
(tpm

) /∈ K, for all m, because K is open. So,

we can conclude that there exists m such that, for all m ≥ m and solution xm(·) of

(8), it holds xm(t) ∈ K, for all t ∈ [a, b].
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Hence, we can apply Proposition 2, obtaining, for every m ≥ max{m, m}, a

solution xm(·) of (7) such that xm(t) ∈ K, for each t ∈ [a, b]. Passing to a subsequence,

again denoted as the sequence, also in this case we can show the existence of an

absolutely continuous function x : [a, b] → K such that xm(·) → x(·) as m → +∞,

uniformly in [a, b] and x′
m ⇀ x′ weakly in L1[a, b]. The same limiting argument

mentioned above implies that x(·) is a solution of problem (1) which completes the

proof.

Remark 2. A typical case occurs when G(t, x, y, λ) = λF (t, y) + (1 − λ)G0(t, x),

where G0 is an u-Carathéodory multivalued mapping. If, in particular, G0(t, x) ≡ 0,

then according to condition 1), the set of solutions of (3) is a subset of C([a, b], K) if

and only if K is a neighborhood of the origin.

4. BOUNDED SOLUTIONS

Consider the inclusion

(9) x′ ∈ F (t, x), for a.a. t ∈ R,

where F : R × R
n

( R
n is an u-Carathéodory set-valued map. Combining Theorem

1 with a classical sequential approach, we would like to guarantee the existence of

an entirely (i.e. on the whole real line) bounded solution of (9). This result is a

generalization of [5, Theorem 4.2], because the strict monotonicity of the bounding

function V along the solutions of (9) is now required only at the boundary ∂K of the

bound set K.

Theorem 2. Assume that

1) there exists an u-Carathéodory mapping G : R × R
n × R

n × [0, 1] ( R
n such

that, for all (t, x, y) ∈ R × R
2n and λ ∈ [0, 1], it follows;

G(t, x, y, 0) = G0(t, x), G(t, y, y, 1) ⊂ F (t, y);

|w| ≤ s(t)(1 + |x| + |y| + λ),

with w ∈ G(t, x, y, λ) and s ∈ L1
loc

(R);

2) there exists a bounded, non-empty and open K ⊂ R
n, symmetric with respect to

the origin, whose closure is a retract of R
n, and a function V : R

n → R of class

C2 such that V (x) ≤ 0 on K, V (x) = 0 and ∇V (x) 6= 0, for every x ∈ ∂K, and

〈∇V (x), w〉 ≤ 0,

for all t ∈ R, x ∈ ∂K, y ∈ K, λ ∈ [0, 1], w ∈ G(t, x, y, λ);

3) G(t, ·, y, λ) is Lipschitzian with a sufficiently small Lipschitz constant L, for

every (t, y, λ) ∈ R × K × [0, 1];
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4) for each m ∈ N, the set of solutions of

(10)

{

x′ ∈ G0(t, x), for a.a. t ∈ [a, b],

x(m) = −x(−m)

is a subset of C([−m, m], K).

Then (9) admits a bounded solution.

Proof. Given m ∈ N, let us consider problem (1) with [a, b] = [−m, m], M = −I and

A ≡ 0, i.e. the anti-periodic boundary value problem on [−m, m]:

(11)

{

x′ ∈ F (t, x), for a.a. t ∈ [−m, m],

x(m) = −x(−m),

whose associated homogeneous problem has only the trivial solution. In this case, the

invariance of ∂K with respect to M is equivalent to the symmetry of ∂K with respect

to the origin. Thus, all the assumptions of Theorem 1 are satisfied, and we get, for

each m ∈ N, the existence of solutions xm(·) of (11) such that xm(t) ∈ K, for all

t ∈ [−m, m]. The conclusion follows from Lemma 4.1 in [5] (cf. Proposition III.1.37

in [3]).

Example 1. Consider the differential inclusion

(12) x′ ∈ F1(t, x) + F2(t, x),

where F1, F2 : R × R
n

( R
n are u-Carathéodory maps and F1(t, ·) is Lipschitzian,

with a sufficiently small Lipschitz constant, for all t ∈ R. Assume, furthermore, the

existence of a positive constant R such that 〈x, w〉 ≤ 0, for all t ∈ R, x, y ∈ R
n, with

|x| = R and |y| ≤ R, and w ∈ F1(t, x) + F2(t, y).

Take the u-Carathéodory map G(t, x, y, λ) := λ(F1(t, x)+F2(t, y)), and put K =

BR
0 . Since K is a neighborhood of the origin and G0 ≡ 0, the set of solutions of

(10) is, for all m, a subset of C([−m, m], K) (see Remark 2). Furtermore, since all

assumptions of Theorem 2 can be satisfied by means of C2-function V (x) = |x|2−R2,

the inclusion (12) admits a bounded solution.
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