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1. INTRODUCTION

Given measurable set-valued mappings F' : [0,7] x R™ — CI(R™) and H :
R™ — CI(R™) by a backward stochastic differential inclusion BSDI(F, H) we mean

relations

r, €EF [fEt + fst F(r,z,)dr|F;
(1.1)
xp € H(x7)

that have to be satisfied a.s. for every 0 < s <t < T by a cadlag process x = ()o<i<T
defined on a complete filtered probability space Pr = (2, F, P,IF) with a filtration
IF = (Fi)o<t<r satisfying the usual hypothesis (see [14]). Elx; + fstF(T, X, )dT|Fy
denotes the set-valued conditional expectation (see [4], [5]) of the set-valued mapping
Q5w — z(w)+ fst F(r,z;(w))dr C R™ with respect to the sub-o-algebra F; C F.
If Pr is given then x, satisfying conditions presented above, is said to be a strong
solution to BSDI(F, H). In a general case we can look for systems (P, x) satisfying
conditions (1). Such systems are said to be weak solutions to BSDI(F, H). It is
clear that if x is a strong solution to BSDI(F, H) on P, then a pair (P, ) is its
weak solution. Backward stochastic differential inclusions can be treated as some

generalizations of backward stochastic differential equations of the form

(1.2) rn=F {h(m) +/t f(r, 27, 2;)d7|Fe | a.s.

where the tripet (h, f, z) is called the data set of such equation (see [2], [3], [7], [13]).
Usually, if we consider strong solutions to (1.2) apart from (h, f,z), a probability
space P = (Q,F, P) is also given and a filtration IF is defined by a process z by

taking IF* = (F7)o<t<r, where (Ff)o<i<r is the smallest filtration satisfying the usual
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conditions and such that z is [F*-adapted. Process z is called the driving process.
In practical applications the driving process z is taken as a d-dimensional Brownian
motion or it is a strong solution to a forward stochastic differential equation. In
the case of weak solutions to (1.2) apart from h and f a probability measure p on
the space D(IRY) of d-dimensional cddldg functions on [0,7] is given and its weak
solution with an initial distribution p is defined as a system (Pp,z,z) satisfying
(1.2) and such that P>~' =y and every IF*-martingale is also IF - martingale. Let
us observe that in particular for a given weak solution (P, x) to BSDI(F, H) with
H(z) = {h(z)} and F(t,z) = {f(t,z,2) : z € Z} for (t,x) € [0,T] x R™, where f
and h are given measurable functions and Z is a nonempty compact subset of the
space D(IR?), there exists (see [8], Th. 11.3.12) a measurable IF-adapted stochastic

process (zt)o<t<r With values in Z such that

(1.3) rn=F |:h(ZB) + /T f(r,xr, 2.)dT|F | as.

For given probability masures pyp and pr on IR™, we can look for a weak solution
(P, ) to BSDI(F, H) such that Pz, = jp and Pa;' = pp. If F and H are such
as above then there exists a measurable and IF—adapted stochastic process (z)o<t<r
such that (1.3) is satisfied and such that E[h(z) + fOT [T, 27, 2. )d7] = [ udpo. If
f(t,x,2) = f(t,z) + g(2), with g € C(D(IR?), IRm) then

/ / d)\dT—/ udpy — / w)dpr — E / f(r,z.)d
Rd) R™ Rm™

where A\, = Pz, ! for t € [0,T]. In some special case weak solutions to BSDI(F, H)
describe a class of recursive utilities under uncertainty (see [7]). To verify that
suppose (Pr,z) is a weak solution to BSDI(F,H) with H(z) = {h(x)} and
F(t,x) = {f(t,z,c,z) : (¢,z) € C x Z}, where h and f are measurable functions
and C, Z are nonempty compact subsets of C([0,7],R") and D(R™), respectively.
Similarly as above we can select a pair of measurable IF-adapted stochastic processes

(ct)o<t<r and (2¢)o<t<r with values at C and Z, respectively and such that

T
(1.4) r,=FE {h(m) +/ f(r, 27, ¢cr, 27 )dT|Fy | as.
¢

for 0 <t < T. In such a case (1.4) describes some class of recursive utilities under
uncertainty, where (¢(s,-))o<s<r denotes for fixed ¢ € [0, 7] the future consumption.
Let us observe that in some special case a strong solution x to BSDI(F,H) on a
filtered probability space P with the “constant” filtration IF = (F) is a solution to
a backward random inclusion —z} € coF'(t, z;) with a terminal condition z7 € H(z7)
a.s. for a.e. t € [0,T]. As usual coF'(t,z;) denotes the convex hull of the set F(t,z;).
Throughout the paper we assume that Pr = (2, F P,IF) is a complete filtered prob-
ability space with a filtration IF = (F;)o<i<r satisfying the usual hypotheses. Given
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Pr we denote by ID(IF, R™) the space of all m-dimensional IF-adapted cddlag prcesses
on P and by S%(IF, R™) the set of all m-dimensional IF-semimartingales x such that
#]|s2 = Elsupep.nlzs|’] < co. We have S*(IF,R™) C ID(IF,R™). It can be proved
(see [14], Th. IV2.1, Th. V.2.2) that (S*(IF,R™),| - |ls2) is a Banach space. The
present paper is mainly devoted to properties of solutions set of weak continuous
solutions to BSDI(F, H). It is organized as follows. Section 2 contains some prop-
erties of the set-valued conditional expectations of set-valued integrals. In Section 3
some measurable selection theorems are given. Existence theorems to BSDI(F, H)
are given in Section 4 and Section 5. Finally, in Section 6 a weak compactness of the
set X(F, H) of all continuous weak solutions to BSDI(F, H) is proved.

2. CONDITIONAL EXPECTION OF SET-VALUED INTEGRALS

Let (Q, F, P) be a probability space and let G be a sub-c-algebra of F. Given
an F-measurable set-valued mapping ¢ : Q@ — CI(R™) with a nonempty set S(®) of
all its F-measurable and integrable selectors there exists (see [4]) an unique (in the

a.s. sense) G-measurable set-valued mapping F[®|G]| satisfying
(2.1) S(E[®|G]) = cli{E[¢|G] : v € S(®)}

where cl;, denotes the closure operation in L(€2, G, R™). We call E[®|G] the multival-
ued conditional expectation of ® relative to G. This conditional expectation has prop-
erties similar to those of the usual ones. For example, we have [, E[®|G]dP = [, ®dP
for every A € G, where integrals are understood in the Aumann’s sense (see [5],
Prop. 6.8). It can be proved (see [5], Prop. 6.2) that for given measurable and
integrably bounded set-valued mappings &,V : [0,7] x Q@ — CI(R™) one has
Eh(E[®|G], E[V|G]) < Eh(P,V), where h is the Hausdorff metric on CI(R™). Let
G : [0,7T] x 2 — CI(R™) be measurable and integrably bounded, i.e. there is
m € L([0,T] x Q,Ry) such that |G(t,x)|| < m(t,w), a.e., where R, = [0,00) and
|G(t,w)|| = sup{|g| : ¢ € G(t,w)}. As usual we denote by S(G) a set of all integrable
selectors for G. We have S(G) = {g € L([0,T] x Q,R™) : g(t,w) € G(t,w) a.e.}. It is
easy to verify (see [8]) that S(G) is nonempty and decomposable, i.e. that for every
f,9€ S(G) and E € By @F one has 1gf+1g~g € S(G), where B denotes the Borel
o-algebra of [0, 7] and E~ is the complement of E. In particular, if G(¢,w) are convex
subsets of R™ for (t,w) € [0,T] x ©, the set S(G) is a convex weakly compact subset
of L([0,T] x Q,R™). Then it is also a closed subset of this space. For the given above
G we can define an Aumann integral ®(w) = fOT G(t,w)dt depending on a parameter
w € Q. By Aumann’s theorem (see [8], Th. I1.3.20) fOT G(t,w)dt is a nonempty, convex
compact subset of R™ for every w € ). Furthermore, fOT G(t,w)dt = fOT coG(t,w)dt
for w € 2. Hence and ([8],Th. I1.3.21) we obtain the following result.
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Proposition 2.1. Let G : [0, T] xQ — CI(R™) be measurable and integrably bounded.
Then a set-valued mapping ® : Q — Conv(R™) defined by ®(w fo (t,w)dt for

w € Q 1s measurable.

Proof. By virtue of ([8],Th. I1.3.8) it is enough only to verify that the function Q2 >
w — s(p, P(w)) € R is measurable for every p € R™, where s(-, A) denotes a support
function of A € CI(R™). By the measurability of G and its integrably boundedness
a function [0,7] x Q > (t,w) — s(p,G(t,w)) C R is measurable for every p € R™
(see [8] Remark IL.3. 5) By virtue of ([8], Th. I1.3.21) for every p € R™ one has
s(p fo G(t,w))dt for w € Q. Hence the measurability of the function
Qo3w— s(p, O (w )) € R follows for every p € R™. Therefore ® is F-measurable. [

Proposition 2.2. Let G : [0,T] xQ — CUR™) be measurable and integrably bounded

and let ®(w fo (t,w)dt for w € Q. Then S(P) is a nonempty conver weakly
compact subset of L(Q F,R™). Furthermore, ¢ € S(®) if and only if there is g €
S(co G) such that p(w fo (t,w)dt for a.e. w € Q.

Proof. By Proposition 2.1, ® is F-measurable. It is also integrably bounded, because
|P(w)] < fo m(t,w)dt for a.e. w € Q. Therefore (see [8], Th. I11.2.3) S(®) is a non-
empty convex weakly compact subset of L(Q2, F,R™). For every g € S(co G) a func-
tion p(w fo (t,w)dt is a measurable selector for @, because of ([8], Th. I1.3.20)
we have @ fo co G(t,w)dt for w € Q. Tt is also integrably bounded, because
w)| < fo (t,w)dt for a.e. w € 2. Then ¢ € S(P) for every g € S(co G). Assume
now ¢ € S(®). Then for every A € F one has Exp € Eo®, where Exp = [, ¢dP
and E,® = [, dP. Let £ > 0 be given and select a measurable partition (A2)"=, of
Q such that F4 fo Odt < /2" For every n=1,..., N there is a g5 € S(G)
such that Fu:¢ = EA% fo g5 (t,)dt. Let g= = SN, IlAign. By the decomposabil-
ity of S(G) one has ¢° € S(G). We have ¢° € S(co G) because S(G) C S(co G).
Taking a sequence ()32, of positive numbers g, > 0 such that ¢, — 0 as k — oo
we can select g € S(co G) and a subsequence, denoted again by (¢°%)%2,, of (¢°%)%2,
weakly converging to ¢ in L([0,7] x ©,R™), because S(co G) is a weakly compact
subset of L([0,7] x ©Q,R™). For every A € F and k = 1,2,... there is a subset
{n1,....np} of {1,..., N, } such that ANAx £ O fori=1,2,...,pand ANA, =0
forre {1,2,..., N, } \ {n1,...,n,}. Therefore
N,

T
Eap — EA/ g (t, -)dt' <>
0

n=1

T
Eynask 0 — Ean g% / gk (t, ')dt‘
0
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for every k =1,2,.... On the other hand for every A € F we also have

T
EAsO—EA/ g(t,-)dt| <
0

T T T
< ‘EAQO — EA/ g (t, -)dt' + ‘EA/ g (t, - )dt — EA/ g(t, -)dt'
0 0 0

T T
<ep+ ‘EA/ gak(t,-)dt—EA/ g(t,-)dt‘
0 0

for kK = 1,2,.... Hence it follows that Esp = EA fo )dt for every A € F,
because e, — 0 and |Ey fOT k(t,-)dt — Ea fo ,)dt| — 0 as k — oo. Therefore
fo )dt for a.e. w € Q O

Corollary 2.3. If G : [0,T] x Q — CI(R™) is measurable and integrably bounded

then S(/OT G(t,-)dt> ) {/OTg(t,.)dt g € S(co G)}.

Corollary 2.4. If G : [0,T] x Q — CI(R™) is measurable and integrably bounded and
G is a sub-o-algebra of F then

S(E{/OT G(t,-)dt!QD _ {E [/OTg(t,-)dt]Q] . g € S(co G)}.

Proof. 1t is enough only to see that the set H = {E]| fo ,-)dt|G] - g € S(co G)} is a
closed subset of L(£2,G,R™). By the properties of cond1t10na1 expectations and the
properties of the set S(co G) it follows that H is a convex weakly compact subset of
L(©2,G,R™). Therefore H is a closed subset of L(€2, G, R™). O

3. MEASURABLE SELECTION THEOREMS

Let x = (x¢)o<t<r be an [F-adapted m-dimensional cadldg process on Pg. Given a
measurable and uniformly integrably bounded multivalued mapping F' : [0, T| xR™ —
CI(R™) we denote by F oz a set-valued mapping defined on [0,7] x € by setting
(Fox)(t,w) = F(t,zy(w)) for (t,w) € [0,T] x Q. It is clear that F' o x is measurable
and IF-adapted, i.e., it is fr ® F-measurable and such that for every fixed ¢t € [0, T
a mapping 2 5 w — (Foz)(t,w) C R™ is Fi-measurable. In what follows we shall
denote by S (F ox) a set of all measurable and IF-adapted selectors for F'ox. Let us
observe that I’ o z is measurable and IF-adapted if and only if it is Y p-measurable,
where ¥p = {A € fr @ F : Ay € F, for 0 <t < T} and A; denotes a section of
aset A€ fr®@F at t € [0,T]. Therefore, immediately from Kuratowski and Ryll-
Nardzewski measurable selection theorem (see [8], Th. 11.3.10) it follows that for the
given above F' and x the set Sgp(F o z) is nonempty. In the general case we shall

also denote by Sg(G) the set of all measurable and IF-adapted selectors for a given
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measurable [F-adapted and integrably bounded set-valued mapping G : [0, 7] x 2 —
CI(R™). Similarly as above we can verify that Sg(co G) is a nonempty convex
and weakly compact subset of L([0,7T] x Q,¥r, R™). We shall prove the following

measurable selection theorem.

Theorem 3.1. Let G : [0, T]xQ — CUR™) be a measurable IF-adapted and integrably
bounded set-valued mapping. Assume v = (x;)o<i<r @S an m-dimensional measurable

process on Pr such that E|rr| < co. Then

(3.1) v, € E [zt—l—/StG(T,-)dﬂfs] a.s.

for every 0 < s <t < T if and only if there is g € Sy(co G) such that

T

(3.2) ©nw==FE [mT +/ g(T, -)d7'|.7-}] a.s.
t

for every 0 <t <T.

Proof. Suppose there is g € Sg(co G) such that (3.2) is satisfied. Then for every
0 <s<t<T one has

vo= 8ot [ e yiriz| =B [ e yir|

+E {xT + /tT g(r, -)dT\fs}

and

Elw|F,)=E [xT+ /t ' g(r,-)dr]]-“sl a.s.

t
r,=F {xt +/ g(T, ~)d7]]-"31 a.s.

for 0 < s <t <T. Hence by Corollary 2.4 it follows that

€S <E [wt + / o -)dﬂfs])

for 0 < s <t < T. Therefore, (3.1) is satisfied a.s. for 0 < s < ¢t < T. Assume
that (3.1) is satisfied for every 0 < s < ¢ < T a.s. and let m € L([0,T] x Q,R;)
be such that |G(t,w)| < mf(t, w) for a.e. (t,w) € [0,T] x Q. For every 0 <t < T
one has Elz;| < El|xp| + Efo )dt < oco. By virtue of Corollary 2.4 z is IF-
adapted. Let n > 0 be arbltrarlly fixed and select 6 > 0 such that § < T and
SUDg<i<7_s Efﬁ‘S 7,-)dT < n/2. For fixed t € [0,7 — §] and t < 7 < ¢+ § we have
x € E| xT + ft ds|.7-"t] a.s. Therefore, for every A € F;, we get Ea(zy — x,) €
Ea [ G(s,-)ds. Then |Ea(zi—a,)| < Ea [ ||G(s,-)||ds < Eft+§ s,+)ds < n/2 for
every 0 § t <T—6and A € F; . Therefore, sup,,<; 5| Ea(x: — xT)| < n/2 for every
Ae Fand fixed0 <t <T —90. Let =0, 73 =9,...,7v.1 = (N —=1)§ <T < NG¢.

Therefore
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Immediately from (3.1) and Corollary 2.4 it follows that for every i = 1,2,...,
there is g; € Sp(co G) such that

ros = Elon+ [ stz ]| <0
Ti—1

E

Furthermore, there is g%, € Sg(co G) such that

E

. .
Ty, — E {x;p +/ g (s, )ds| Fry_, ‘ =0.

TN -1

Define ¢" = >N ' 1 0! + Ly, 119%- By the decomposability of Sg(co G) we
have ¢" € Sg(co G). For fixed t € [0,T] thereis p € {1,2,..., N — 1} or p = N such
that t € [7,_1,7,) or t € [Tn_1,T]. Let t € [1,-1,7,) with 1 <p < N — 1. For every

A € F, one has

Bani=Blon+ | Tgws,.)dsft})‘ <

Tp+1
r, — F {xTPH + / g" (s, -)dT|pr]

P

/;p 9"(s,-)ds
(o[ e o] [ i

P

S |EA(QTt — ZETp)| + E

_'_ |EA(E[:CTZ)+1 ‘pr] - x7p+1)| + E +

+

T
+ FE 'TTN,1 —F |:.[L'T + / gn(s’ -)d7—|f7-N1:|

TN-1

T
HEABlroy oy = o )|+ Ea (] [ ar(siasr |-

TN—1

—E[/T 9”(8,-)d8|ftD' < sup \EA(It—xT)I+E/tt+6m(Sw)dS+

N1 t<r<t+5
N—-2
+Y E

1=p

T
Ty, — F |:IT + / g"(s, -)d7'|]:TN1}

Ti+1
Ex (E[/ g"(s,-)ds\fn}—

Tit+1
Lry — E|:$Ti+1 +/ gn(sv ')d3|‘7?‘ri:|

+E

N-2 N-2
+ Z ‘EA(E[:UHH“’TH] - xﬂ‘ﬂ)‘ + Z
i=p i=p

—E[/+ §"(s, -)ds|}"t} ) '

el e ] 5[ ]|
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But F; C F;, fori =p,p+1,...,N — 1. Then for A € F, one has

N—-2

N-2
Z ’EA<E[$‘H+1 ’FTZ] - xTi+1)’ =0,
i=p

> Ea (E UT” 9'(s, -)ds|.7:ﬂ} _E UT” (s, -)ds|ft] )' 0
Ea <E{/Z_ 9"(s,~)ds|fm1] - E{/j_ g"(s,.)dsm])‘ =0.

Hence it follows
T
Ea (xt - FE [IT +/ q"(s, -)dSIED‘ <7
t

for fixed 0 <t < T and A € F,. Let (1;)72, be a sequence of positive numbers

and

converging to zero. For every j = 1,2, ... we can select g"i € Sg(co G) such that (3.2)
is satisfied with n = n;. By the weak compactness of Sg(co G) there are g € Sgp(co G)
and a subsequence (g )22, of g% )22, weakly converging to g in L([0,T] x Q, ¥, R).
Then for every A € F; C F one has limy_,o, Ey4 ftT g (s,)ds = E4 ftTg(s, -)ds. On
the other hand for every fixed t € [0, 7] and A € F; we have

(- B[+ [ Tg<s,->ds|ftm <

T
< EA(xt—E{xﬁ / g%(s,->dsm])\+
t

+ EA(EMTg%(s,-)dsm} —E{Jr/tTg(s,-)dth])‘ <

T T
sw\EA / g7 (s,-)ds — Ex / o(s, )ds
t t

for k =1,2,.... Therefore

Baln-Blor s [ Tg@,.)dsm]) 0

for every A € F; and fixed 0 < t < T. But z; and Flzr + ftTg(s,‘)ds]}"t] are
Fi-measurable. Then z; = Elxp + ftT g(s,-)ds|F] for 0 <t < T with (P.1). O

Corollary 3.2. Let G :[0,T] x Q — CI(R™) be measurable IF-adapted and square
integrably bounded. If x = (x)o<t<r is mesurable, satisfies (3.1) a.s. for every
0<s<t<T and Elzp|* < oo then z € S*(IF,R™) and x; = o + M; + Ay, where
M, = Elzr + fOT g-dr|F] — Elzr + fOT g-dr|Fo] and Ay = — f(f g-dr for0 <t <T
with g € Sw(coG) such that x; = Elvr + ftT g-dr|F] a.s. for 0 <t <T.
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Proof. The result follows immediately from the representation z; = FE[zp +
ftT g-d7|F;] given in Theorem 3.1 (see [3], Lemma 1.1). O

In what follows we shall assume that F :[0,7] x R™ — CI(R™) and H : R™ —
CI(R™) satisfy the following conditions (A):

(i) F is measurable and uniformly square integrably bounded by a function m €
L0, T], Ry,

(ii) H is measurable and bounded by a number L > 0,

(iii) F(t,-) is Lipschitz continuous, i.e. there is k € L*([0,T],Ry) such that
h(F(t,z1), F(t,xs)) < k(t)|z1 — 22| for a.e. t € [0,T] and x1,x2 € R™, where h
is the Hausdorff metric on CI(R™),

(iv) there is a random variable & € L*(Q2, Fr,R™) such that £ € H(E) a.s.

We shall prove now that conditions (A) imply the existence of some special sequence

of successive approximations for BSDI(F H).

Theorem 3.3. Let F' : [0,T] x R™ — CI(R™) and H : R™ — CI(R™) sat-
isfy conditions (A). There exists a sequence (x™)°, of S*(IF,R™) defined by x7 =
El¢+ ftT frldr|F) a.s. with 71 € Sp(Foz™) form=1,2,... and 0 <t <T
such that z? € FE[z} + fStF(T, e Ndr|F] a.s. and Esupc,op ittt — 2] <

4E(ftT k(T)sup,coep |22 — a7 Mdr)? forn=1,2... and 0<s<t<T.

Proof. Let us observe (see [8], Th. I1.3.13) that for every m-dimensional measurable
and IF-adapted processes = and y on P and every f* € Sg(Fox) thereis fY € Sp(Fo
y) such that [f7(w) — f{(w)] = dist(f (@), Pt 5e(w)) < h(F(E, 2(w), F(t,p(w) <
k(t)|xi(w) — ye(w)] for ae. t € [0,7] and w € Q. Furthermore, by properties of H
there is € € L*(Q, Fr,R™) such that £ € H(&) a.s. Let (2?)p<i<r be an m-dimensional
measurable [F-adapted process on P such that 2% = £ a.s. and let f° € Sp(F o 2°).
Define x! = E[¢ + j;T fldr|F] as. for 0 <t < T. By Corollary 3.2 we have z! €
S?(IF,R™). Select now f! € Sp(Foz!') such that |f} — f2| = dist(f}, F(t,2?)) for a.e.
0 <t < T with (P.1). Then |f} — fP| < k(t)|z} — 20| a.s. for a.e. 0 < ¢ < T. Define
2?2 = B[¢ + ftT frdr|F) as. for 0 <t < T. We have 22 € S*(IF,R™). Continuing
the above procedure we can define 2™ = E[¢ + ftT frdr|F) as. for 0 <t <T with
f* € Sp(F oz™) such that |f7 — f7" 1 < k(t)|a? — 27! a.s. for a.e. 0 <t < T and
n=2,3,.... By Corollary 3.2 we also have 2" € S*(IF, R™). Hence it follows

r pT
a7t -l < B| [ 1= g2 arl]
LJt

IN
&S|

T
[ k) s et -
t

T7<s<T



130 MICHAL KISIELEWICZ

a.s. for 0 <t < T. Therefore,

sup |optt — ]
t<u<T
- .
< sup F / k(t) sup |z — x?’lldﬂfu <
tSuST L Ju ’TSSST J
- .
< sup F / k(t) sup |z — x?‘lldﬂfu
t<u<T LJt T7<s<T d
a.s. for 0 <t <T and n=1,2,.... By Doob’s inequality, we obtain
T 2
£ s [ [ ) s a2 - aris) ) <
t<u<T t T<s<T
T 2
< 4E</ kj(T) sup |J}? — xg—1|d7')
t T7<s<T

for 0 <t < T. Therefore, for every n =1,2,... and 0 <t < T we have

T 2
E sup |zt — 2" << 4E(/ k(t) sup |27 — x?lldr) .
t

t<u<T r<t<T

4. EXISTENCE OF STRONG SOLUTIONS

We shall prove that if F' and H satisfy conditions (A) then BSDI(F,H) possesses at
least one strong solution. Let us observe that immediately from Corollary 3.2 it follows
that every strong solution to BSDI(F,H) on P belongs to S*(IF, R™). Immediately
from the properties of multivalued conditional expections (see [5], Prop. 6.2.) the

following result follows.

Proposition 4.1. Let F satisfies conditions (A). Then for every z,y € S*(IF,R™)

one has

Eh (E U:F(T, ) d7|5’-"5} E UStF(T, yT)dTmD < /: k() E|x, — y,|dr

for every 0 < s <t <T, where h is the Hausdorff metric on CI(R™).

We can prove now the following existence theorem.

Theorem 4.2. Let Pr be given. If F: [0,T] x R" — CI(R") and H : R™ — CI(R™)
satisfy conditions (A) then BSDI(F, H) possesses a strong solution on Pr.

Proof. By virtue Theorem 3.3 there is a sequence (z")°; of S*(IF,R™) such that

n=1

o =& 2 € Ela} + f;F(T, 2 dr|F] as. for 0 < s <t < T and

T 2
E sup |o"T —2"|? < 4E (/ k(t) sup |z7 — a:?_1|d7) :
t

t<u<T T7<s<T
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where £ € L*(Q, Fr,R™) is such that £ € H(£) a.s. Hence it follows

T
E sup |zt — 2" §4T/ E*(T)E sup |27 — 2" '2dr
¢

t<u<T T<u<lT

forn=1,2,....and0 <t <T. By the properties of F'and H one has F'sup,<,<r |zt —
22)? < 1L, where IL = 4(E|¢]* + fo 7)d7) + 2E supg,<p |2{|*. Therefore,

T
E sup |22 —zl]* < 4T]L/ k*(7)dr.
¢

t<u<T

Hence it follows

T T
E sup |23 — 22> < (4T) IL/ (k)Q(T)/ kQ(s)ds) dr
t<u<T ¢ .

_ @(/j k?(f)dT)Z.

By the induction procedure for every n = 1,2,... and 0 <t < T we get

4T n]Ln—l T
E sup |zt —2]? < —( ) (/ k’Q(T)dT)
¢

t<u<T n!

n

Then Esupgc,<p |z} — 2"|> — 0 as n,m — oo. Therefore, there is a process
(z)o<i<r € S*(IF,R™) such that Esupyc,<p |2} — 4[> — 0 as n — oco. Hence and

Proposition 4.1 it follows

t
Edist <:c E [:r:t + / F(r, :cT)dT|st

< Elxs — 27| + Edist (x?, E [mg + fst F(r, xﬁfl)dﬂ}—s}) +

t t
+Eh (E {x? +/ F(r, mﬁl)dﬂfs] B {:L‘t —i—/ F(r, wf)dﬂ}—s])

¢
< Elx} — x| + Elxy — 4 +/ k(T)E|z" ™t — 2. |dr

) x"_l — sz

for every 0 < s < < T and n = 1,2,... Therefore, dist(xs, E[x; +
ftF (1,2.)dr|Fs]) = 0 as. for every 0 < s < t < T. Then z, €
E [mt + f F(r,x, dT|.7:] a.s. for every 0 < s < ¢ < T. By the definition of (z})o<i<r
we have zf = £ € H(§) a.s. for every n = 1,2,.... Therefore, we also have xp = ¢

a.s. Then xp € H(xT) a.s. O

< 20" — 2|2 + (

\
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5. EXISTENCE OF WEAK SOLUTIONS

Asume that F' : [0,7] x R™ — CI(R™) and H : R™ — CIl(R™) satisfy the

following conditions (B).

(i) F is measurable and uniformly square integrably bouned by a function m €
LA(0. T, R,),
i) H takes on convexr values is measurable and bounded by a number L > 0,
(iii) F(t,-) and H are lower semicontinuous for a.e. fired 0 <t <T.

We shall prove that for F' and H satisfying conditions (B) there exists a continu-
ous weak solution to BSDI(F,H), i.e. there exists a pair (P, x), with = having a.a.
continuous trajectories and satisfying BSDI(F,H). The result is obtained by the con-
struction of the Tonelli’s type approximations for a backward stochastic differential
equation defined by some special selectors of F' and H on a filtered probability space
Pr = (Q,F, P, IFB) with (Q, F, P) supporting an d-dimensional Browninan motion
B and IF? = (FP)o<,<r beeing a natural augmented filtration of B. The tightness of
such approximation sequence will follow from the following extension of the classical
tightness criterion (see [1], Th. 2.12.3).

Theorem 5.1 ([9], Th. 3). A sequence (x™)°, of continuous m-dimensional stochas-
tic processes x™ = (x™(t))o<t<r on a probability space (2, F, P) is tight if for every
e > 0 there is a number a > 0 such that P({|z"(0)| > a}) < e forn > 1 and there are
v > 0, an integer a > 1 and a continuous nondecreasing bounded stochastic process

(L'(t))o<t<r on (2, F, P) such that

P ({Ja"(t) — 2"(s)] > n}) < niE I0(t) — T(s)|"

for every n>1,1n>0 and s,t € [0,T].

We shall also need the following results.

Proposition 5.2. Let F' : [0,7] x R™ — CI(R™) and H : R™ — CI(R™) be
measurable and uniformly square integrably bounded and bounded, respectively. A
pair (P, x) is a continuous weak solution to BSDI(F,H) if and only if there ex-
ist ¢ € S(H oxr) and f € Sg(coF o x) such that xy = E[§ + ftT frdr|F] a.s.
for 0 < t < T and such that a martingale M = (M;)o<t<r defined by M; =
E[¢+ fOT frdr|F] — E[§ + fOT frdT|Fo] is continuous.

Proof. By virtue of Theorem 3.1 a pair (P, =) is a weak solution to BSDI(F,H) if and
only if there are £ € S(H oxr) and f € Sg(coF ox) such that z; = E[{ + ftT frdr|F]
a.s. for 0 <t <T'. By Corollary 3.2 we have z; = xo—i—Mt—fg frdras for0 <t <T.

Hence it follows that x is continuous if and only if M is continuous. O
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Proposition 5.3. Let F : [0,7] x R™ — CI(R™) and H : R™ — CI(R™) be mea-
surable and uniformly square integrably bounded and bounded, respectively. Assume
F(t,-) and H are continuos and let (™), be a sequence of continuous solutions to

BSDI(F,H) on a filtered probability space Pg. Then (z™)5° is tight.

n=1

Proof. By virtue of Corollary 3.2 we have z} = zj + M]" — fot frdr as. for 0 <
t < T, where f* € Sgp(coF o z") and M™ is an IF-martingale defined above for
n=1,2,.... By properties of F' and Proposition 5.2, M™ is for every n =1,2,... a
square integrable continuous martingale such that M} = 0 for n > 1. Furthermore
M| <2X\as. for 0 <t < T, where A = L + fOT m(t)dt. Denote by N for n > 1
and ¢ = 1,2,...,m a real-valued IF-martingale such that M = (NJ'(¢),..., N} (t))
for 0 <t <T. For every i = 1,...,m and every partition A={0=ty<t; <---<
t, =T} of [0,7] one gets

r—1
(NI =Y (NIt Atpr) = NP(EA L)) <
k=0
r—1
<D INP(EAt4n) = N(EA L) max NP (A tier) = NP (EA L)
j=1

< [N () max [NJ' (A tigr) = N (8 A t)] < 8A

a.s. for 0 < ¢t < T. Moreover, by ([10], Th. 2.2.2) we have supy<;<r E| <NZ~")tAT —

(NM, 2 =0 as |A;] — 0, where |A,| = maxo<p<,—1(tk+1 — tx). Then there is a
A

subsequence (A,;)22, of (A,)2, such that supge,<r | (V') 7 — (N'),| — 0 as. as

7 — 0. Hence it follows

+ (e

A,
sup [(N7)] < sup (N7, — (N7,
0<t<T 0<t<T

< sup |(V7), — (N, + 82

0<t<T

a.s. for every n > 1 and @ = 1,...,m. Then supyc,<p [(N/"),] < 8\ as. for
every n > 1 and i = 1,...,m. Let us observe that quadratic variational process
((N]"),)o<i<r is increasing in ¢ a.s. for every n > 1 and ¢ = 1,...,m. Then for
every n > 1, ¢ = 1,...,m and P-a.e. w € € it generates a measure pu!'(w) on
Br = B(0,T) such that 1 (@)((s,#]) = (NF), — (N7}, and u?(w)({0}) = 0. Let
1 (w)(A) = maxo<icm pf (w)(A) and p(w)(A) = sup,», p"(w)(A) for A € Br and P-
a.e. w € €. Similarly as in the proof of ([5], Prop. 8.5.17) it can be verified that p(w)
is a measure on Or for P-a.e. w € Q. It can be also verified that for every A € 7 a
mapping Q 53— u(w)(A) € RT is a random variable such that u(w)((0,7]) < 8\? for

P-a.e w € Q. By Ito’s formula and Doob’s inequality one obtains

E(NP(t) = NF(s)™ =
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E (/t dN{‘(u))Qk (k- 1)E/: (/ de@))Q(kl) d(NT).
s, ([ o) o[ 00 )] <
e(f de(u))M_l) ik <Ni">f)2] :

4(k—1) 4(k—1) .
where Cy, = k(k—1) (m) for0<s<t<T,n>1landi=1,...,m. Hence,

in particular for k£ = 2 it follows

E (Lan(sp) (N]'(t) = N/'(s))") =

o([w)]

where A?(s,t) = {w € Q: NI'(t) — N'(s) > 0} for fixed 0 < s <t <T,n>1and

1=1,...,m. Then
t 2%
()]

2

< k(k—1)

1
2

< C

< Cy [E (Lagen (N2() — N2(s))Y)]

[ELar(ss (NI(t) — NP (s))']? < Cy

which implies that

v - N < e ( [ an)

for0<s<t<T,n>1andi=1,...,m. Hence it follows

=1

E|M - M|'=E (ZIN?(t)—NZ-"(S)I) <

2

Con i E (N™(t) — N*(s))" < C,,mC2E (/t d,u>

for 0 < s <t <T and n > 1, where C,, is a positive number depending on m.
Finally, there is a positive number C' = fOT m?(t)dt such that

t
[ rar

t 2 t
<4C,mC3E </ d,u) +4C*(t—s)* < E {Qng/mC'm/ dp+2C(t — s)}

— E[T(t) - T(s),

for 0 <s <t <Tandn > 1, where ['(t) = 2Cy/mC,, fot du+2Ct. Hence, by Doob’s
inequality it follows

4
Ela? — z"|* <4E |M? — M"|* + 4E

2

P ({|z} — 3] = n}) < FE\% —aylt < ¥E\F(t) —T(s)*
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forn >0,0<s<t<Tandn > 1 Finally, let us recall that |[z}| < A a.s. for
0<t<Tandn>1with A\=1L+ fo t)dt. Therefore, for every N > 1 one has

P({|zg| > N}) < A/N for n > 1. Then supn21P({|x0| > N}) — 0as N — oo.
Therefore, for every € > 0 there is a > 0 such that P({|zf| > a}) < e for n > 1.
Then by virtue of Theorem 5.1 a sequence (z™)2°, is tight. O

We can prove now the existence of continuous weak solutions to BSDI(F,H).

Theorem 5.4. Let F : [0,T] x R™ — CI(R™) and H : R™ — CI(R™) satisfy

conditions (B). Then BSDI(F,H) possesses a continuous weak solution.

Proof. By Michael’s and Rybinski’s continuous selection theorems (see [8], Th. I11.4.1
and [15], Th. 2) there exist a continuous selector h of H and a Carathéodory type se-
lector f : [0, T|xR™ — R™ of coF'. Let P = (2, F, P) be a probability space such that
there is a d-dimensional Brownian motion B defined on this space. Let IF = (F})i>0

be a natural augmented filtration of B. Let £ € B) be a fixed point of A, where B) is

a closed ball of R™ centered at the origin with the radius A\ = L + fo t)dt. Define
on Pr = (,F,P,IF) a sequence ("), of stochastic processes z" = (ZL’t)0<t<2T
such that af = ¢ as. for t € [T,2T] and 2z} = E[h() + ftTf 7,27 o dT| T
as. for 0 <t < T and n = 1,2.... Let us observe that for every n > 1 a
process z" is defined step by step begining with the interval [T" — T'/n,T]. For
example, for ¢t € [T — T/n,T] we have z}' = ) + ft (1,€)dr|F] as. For
t € [T —=2T/n, T — T/n] we have z} = E[h(§ + ft T, 20 1, d7|F] as. with
iy, = E[WE) + fTZT/n f(u, §)du|F-17/n] because T + T/n € [T —T/n,T]. Let

us observe that z” is for every n > 1 a continuous process because of ([14], Corol-
lary IV.1) a process M"™ = (M]")o<t<7 defined by

T T
My =8 |0+ [ fratairlz| - B[+ [ 0tz

is a continuous IF-martingale for every n > 1. Similarly as in the proof of Proposi-
tion 5.3 we can verify that the sequence (2")9°; is tight. Then by ([6], Th. .2.7) there
are a probability space (Q, F, P), a sequence ("), of continuous m-dimensional
stochastic processe (Z;*)p<t<or and a continuous stochastic process T = (Z;)o<t<or
such that P(a™)~' = P(&™)~" for k > 1 and supgc<op |Z/* — ] — 0 as. as
k — o0. Let F; = (.og0l#u : u < t+¢] and let ¢ : Cr — R be a continuous and
bounded function such that ¢ is 3,(Cr)-measurable, where 3,(Cr) = p; ' (8(Cr)) with
ps(z) = z(sAu) for x € Cr and u € [0,7]. Similarly as in the proof of Proposition 5.3
we can verify that [z}'| < X a.s. for 0 <¢ < T and n > 1, where A = L+f0 t)dt.
Hence by the properties of 2" we also have |Z}| < X a.s. for 0 < ¢ < T and n 2 1.
Let By be a closed ball of R™ such as above and let g : R™ — R™ be a continuous

extension of a mapping I : By — R™ defined by I(x) = x for x € By. We have
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lg(x)] < X for z € R™, g(z}) = 2} and ¢(2}) = 7} as. for 0 <t < T and n > 1.

Therefore,
0=F {q&(ﬂ‘) (m? — Elz} + / f(r, :L‘Z+T/n)d7|.7:s]> }

E[p(x™) (x -y — / f(7 20 )T | ] }

{ )
= £ {6t (ste) - atet) - [ st dar )}
{ )

:E¢@w@@> 9(7) /fﬂ%mn }

_ B {¢<az"> (x — &7 - / e fﬁT/")dT) }

for 0 < s <t <T and n > 1. Hence, it follows

o a0

—mm&mbm&>mmwmﬁ

n—o0

+ lim E{(2)[(z; — &}) — (25 — &)} +

n—oo

lim E {¢(i') (/:[f(T’ Trir/m) = f(7, ﬁ*T/")]dT)}

n—oo

+ 1 8 {00 o) (31 - a7 - [ fr i) | =0

for 0 < s <t < T, because supycicy |27 — &y — 0 a.s. as n — 00, ¢ and a
mapping Cr > = — | "1 ZL’T)dT € R™ are continuous on Cr and |77 — &} —
f f(r, Tt m Ydr| < 2X 4+ fo t)dt < oo a.s. By the Monotone Class Theorem
([14], Th. 1.1.8)it follows that

E{M@<Eﬁfﬂh—liﬂﬂﬁwﬂéo}=

for 0 < s <t < T and every F,-measurable bounded function ¥ on C7p, which
implies that E[Z, — & — fstf(T, i.)dr|F,) = 0 as. for every 0 < s <t < T. Hence
by the properties of f, it follows that #, € E[# + f:F(T, i, )dr|F,] as. for 0 <
s <t < T. Finally, let us observe that dist(g(z%) H(«})) = 0 a.s. for n > 1 and
a function R™ 3 = — dist(g(z), H(x)) € R is continuous. Therefore, we also have
dist(g(27h) H(Z})) = 0 a.s. for n > 1, which implies that Zr € H(Zr) a.s. O
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6. WEAK COMPACTNESS OF SOLUTIONS SET

We shall consider here measurable set-valued mappings F' and H satisfying con-
ditions (B) and such that H and F(t,-) are continuous for a.e. fixed t € [0,7]. In
what follows we shall say that such F' and H satisfy conditions (C'). Denote by
X (F, H) the set of all continuous weak solutions to BSDI(F,H). We shall show that if
F and H satisfy conditions (C) then the set X(F, H) is weakly compact with respect
to the Prohorov’s topology. We begin with the following result.

Proposition 6.1. If F and H satisfy conditions (C) and {(Pp.,x")}>2, is a se-
quence of X(F,H) then there are a complete probability space (Q, F,P) and a se-

quence ("), of m-dimensional continuous stochastic processes T = (I} )o<i<r ON

(Q, F, P) such that P™(z")~' = P(z")~" and such that
i€ B |3+ [! F(r,)dr| 7y
forn > 1, where Fj'=(\opol# :u<t+e] forn>1 and t€0,T).

Proof. Similarly as in the proof of ([6], Th. 1.2.7) we define (Q, F, P) by taking Q =
0,1), F = 3([0,1)) and P = p, where p is a Lebesgue’a measure on F. Similarly,
we define a sequence ()2, of random variables " : Q — C such that P™(z")~" =
]5(:17")*1 for n > 1. By virtue of Theorem 3.1 for every n > 1 there are f" €
Sgn(coF o 2™) and £" € S(H o x%) such that 2z = E"[¢" + ];T frdr|F] as. for
0 <t <T. Hence it follows that |z}'| < A a.s. forn > 1and 0 <t < T, where A is
such as above. Let g and ¢ be such as in the proof of Theorem 5.4. Hence and the

properties of Aumann’s integral (see [8],Th. I1.3.20) we obtain

ot e tet) < 8" {o (n B0 o) + [ Ferazianz) ) |

e {0 (p, oaatat) + [ e f”d”) }

forp e R™", n>1and 0 < s <t <T, where o(p,-) is a support function on R™.
But 2™ and 2" have the same distributions and a function defined by superpositions
of o(p,-), ¢, g and F(t,-) is continuous and bounded on C7. Then the last inequality

implies

Eo(p,¢(i")g(32)) < E {o (p, (") (g(F") + / t F(r, :zﬁ)dr)) }

forpeR™ n>1and 0 < s <t <T. Therefore, forn > 1 and 0 < s <t < T one
has B[®(i")i"] € E{cb(gz") (E[ﬁ:g acs f?)dT)}. Let f* € Sgn(coF o ") be

such that .
£fo (a2 -ar- [ mar) b =0
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forn > 1and 0 < s <t <T. Hence, similarly as in the proof of Theorem 5.4, it
follows that &7 = E[Z} + f; frdr|Fr] forn >1and 0 < s <t < T. Therefore 7"
satisfies the first condition of (9). Similarly as in the proof of Theorem 5.4 we also
get o € H(z}) a.s. for n > 1. O

We can prove now the main result of the section.

Theorem 6.2. If F' and H satisfy conditions (C') then X(F, H) is nonempty weakly

compact with respect to the convergence in distributions.

Proof. By virtue of Theorem 5.4 we have X (F, H) # (). By virtue of Proposition 6.1
for every sequence {(Pgin, ™)}, of X (F, H) there are a complete probability space
(Q,F, P) and a sequence ("), of m-dimensional continuous stochastic processes

" = (&) o<i<r on (Q, F, P) such that P"(z")~' = P(i")~" and such that conditions

(9) are satisfied. By virtue of Proposition 5.3 a sequence (Z")%°; is tight, which implies

9]
n=1"*

Then there is a subsequence (z"#)32,

the tightness of a given sequence (z")
converging in distributions to a probability measure P on 3(Cr) as k — oo. By
virtue of ([6], Th. 1.2.7) there are a complete probability space, denoted again by
(Q, F, P) and a sequence (™), of m-dimensional continuous stochastic processes
i = (Z/)o<i<r and a continuous process & = (i;)o<i<r on (Q,F, P) such that
P(z™)~t = P(z™)~! for k > 1, P(Z)"" = P and supy<,<p [Z;* — Z;] — 0 a.s. as
k — oo. Let Fy = (\.op0[#u : u < t+¢e] and let ¢ : Cr — R be a continuous and
bounded function such that ¢ is 5,(Cr)-measurable, where (3,(C7) is such as above.

Similarly as in the proofs of Theorem 5.4 and Proposition 6.1 we get
t
Blo(@)s.) € B (@ B+ [ FrainiF])

for 0 < s <t <T. Hence by virtue of Theorem 3.1 there is f € Sg(coF o &) such

that .
B (E [as(af)(afs ~a- | deT>|ﬁSD 0

for 0 < s <t < T, which implies that
t
E ((b(a})(a}s — Xy — / deT)) =0

for 0 < s <t <T. Hence, similarly as in the proof of Theorem 5.4 it follows that z, =
El#, + fst frdr)|F,] as. for every 0 < s <t < T. Then Z, € E[i:t+fst F(7,%,)d7)|Fy)
a.s. for 0 < s <t <7T. Similarily as in the proof of Proposition 5.3 we also get Zr €

o0

H(z7) a.s. Then there is a subsequence (z" )%, of a sequence (z™)%°

oo, converging

in distributions to a solution Z to BSDI(F,H) on a complete filtered probability space
Pi = (Q, F, P,F) with a filtration IF = (F,)o<<p. Thus X (F, H) is weakly compact

with respect to the convergence in distributions. ]
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