BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS

MICHAŁ KISIELEWICZ

Faculty of Mathematics, Computer Sciences and Econometrics, University of Zielona Góra, Podgórna 50, 65–246 Zielona Góra, Poland

ABSTRACT. Existence of solutions to backward stochastic differential inclusions is considered. The paper contains the basic notions dealing with backward stochastic differential inclusions.

AMS (MOS) Subject Classification. 47H04, 49J53, 60H05.

1. INTRODUCTION

Given measurable set-valued mappings $F : [0,T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ by a backward stochastic differential inclusion BSDI(F, H) we mean relations

(1.1)
$$\begin{cases} x_s \in E\left[x_t + \int_s^t F(\tau, x_\tau) d\tau | \mathcal{F}_s\right] \\ x_T \in H(x_T) \end{cases}$$

that have to be satisfied a.s. for every $0 \leq s \leq t \leq T$ by a cádlág process $x = (x_t)_{0 \leq t \leq T}$ defined on a complete filtered probability space $\mathcal{P}_{\mathbb{F}} = (\Omega, \mathcal{F}, P, \mathbb{F})$ with a filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$ satisfying the usual hypothesis (see [14]). $E[x_t + \int_s^t F(\tau, x_\tau) d\tau | \mathcal{F}_s]$ denotes the set-valued conditional expectation (see [4], [5]) of the set-valued mapping $\Omega \ni \omega \longrightarrow x_t(\omega) + \int_s^t F(\tau, x_\tau(\omega)) d\tau \subset \mathbb{R}^m$ with respect to the sub- σ -algebra $\mathcal{F}_s \subset \mathcal{F}$. If $\mathcal{P}_{\mathbb{F}}$ is given then x, satisfying conditions presented above, is said to be a strong solution to BSDI(F, H). In a general case we can look for systems ($\mathcal{P}_{\mathbb{F}}, x$) satisfying conditions (1). Such systems are said to be weak solutions to BSDI(F, H). It is clear that if x is a strong solution to BSDI(F, H) on $\mathcal{P}_{\mathbb{F}}$, then a pair ($\mathcal{P}_{\mathbb{F}}, x$) is its weak solution. Backward stochastic differential inclusions can be treated as some generalizations of backward stochastic differential equations of the form

(1.2)
$$x_t = E\left[h(x) + \int_t^T f(\tau, x_\tau, z_\tau) d\tau | \mathcal{F}_t\right] \quad a.s.$$

where the tripet (h, f, z) is called the data set of such equation (see [2], [3], [7], [13]). Usually, if we consider strong solutions to (1.2) apart from (h, f, z), a probability space $\mathcal{P} = (\Omega, \mathcal{F}, P)$ is also given and a filtration \mathbb{F} is defined by a process z by taking $\mathbb{F}^z = (\mathcal{F}_t^z)_{0 \le t \le T}$, where $(\mathcal{F}_t^z)_{0 \le t \le T}$ is the smallest filtration satisfying the usual

Received August 30, 2006

1056-2176 \$15.00 ©Dynamic Publishers, Inc.

conditions and such that z is \mathbb{F}^{z} -adapted. Process z is called the driving process. In practical applications the driving process z is taken as a d-dimensional Brownian motion or it is a strong solution to a forward stochastic differential equation. In the case of weak solutions to (1.2) apart from h and f a probability measure μ on the space $D(\mathbb{R}^{d})$ of d-dimensional cádlág functions on [0,T] is given and its weak solution with an initial distribution μ is defined as a system ($\mathcal{P}_{\mathbb{F}}, x, z$) satisfying (1.2) and such that $Pz^{-1} = \mu$ and every \mathbb{F}^{z} -martingale is also \mathbb{F} - martingale. Let us observe that in particular for a given weak solution ($\mathcal{P}_{\mathbb{F}}, x$) to BSDI(F, H) with $H(x) = \{h(x)\}$ and $F(t, x) = \{f(t, x, z) : z \in \mathbb{Z}\}$ for $(t, x) \in [0, T] \times \mathbb{R}^{m}$, where f and h are given measurable functions and \mathbb{Z} is a nonempty compact subset of the space $D(\mathbb{R}^{d})$, there exists (see [8], Th. II.3.12) a measurable \mathbb{F} -adapted stochastic process $(z_{t})_{0 \le t \le T}$ with values in \mathbb{Z} such that

(1.3)
$$x_t = E\left[h(x) + \int_t^T f(\tau, x_\tau, z_\tau) d\tau | \mathcal{F}_t\right] \text{ a.s}$$

For given probability masures μ_0 and μ_T on \mathbb{R}^m , we can look for a weak solution $(\mathcal{P}_{\mathbb{F}}, x)$ to BSDI(F, H) such that $Px_0^{-1} = \mu_0$ and $Px_T^{-1} = \mu_T$. If F and H are such as above then there exists a measurable and \mathbb{F} -adapted stochastic process $(z_t)_{0 \le t \le T}$ such that (1.3) is satisfied and such that $E[h(x) + \int_0^T f(\tau, x_\tau, z_\tau) d\tau] = \int_{\mathbb{R}^m} u d\mu_0$. If f(t, x, z) = f(t, x) + g(z), with $g \in C(D(\mathbb{R}^d), \mathbb{R}^m)$, then

$$\int_0^T \int_{D(\mathbb{R}^d)} g(v) d\lambda_\tau d\tau = \int_{\mathbb{R}^m} u d\mu_0 - \int_{\mathbb{R}^m} h(u) d\mu_T - E \int_0^T f(\tau, x_\tau) d\tau$$

where $\lambda_t = Pz_t^{-1}$ for $t \in [0, T]$. In some special case weak solutions to BSDI(F, H)describe a class of recursive utilities under uncertainty (see [7]). To verify that suppose $(\mathcal{P}_{\mathbb{F}}, x)$ is a weak solution to BSDI(F, H) with $H(x) = \{h(x)\}$ and $F(t, x) = \{f(t, x, c, z) : (c, z) \in \mathcal{C} \times \mathcal{Z}\}$, where h and f are measurable functions and \mathcal{C}, \mathcal{Z} are nonempty compact subsets of $C([0, T], \mathbb{R}^+)$ and $D(\mathbb{R}^m)$, respectively. Similarly as above we can select a pair of measurable \mathbb{F} -adapted stochastic processes $(c_t)_{0 \leq t \leq T}$ and $(z_t)_{0 \leq t \leq T}$ with values at \mathcal{C} and \mathcal{Z} , respectively and such that

(1.4)
$$x_t = E\left[h(x) + \int_t^T f(\tau, x_\tau, c_\tau, z_\tau) d\tau | \mathcal{F}_t\right] \text{ a.s}$$

for $0 \leq t \leq T$. In such a case (1.4) describes some class of recursive utilities under uncertainty, where $(c_t(s, \cdot))_{0 \leq s \leq T}$ denotes for fixed $t \in [0, T]$ the future consumption. Let us observe that in some special case a strong solution x to BSDI(F, H) on a filtered probability space $\mathcal{P}_{\mathbb{I}}$ with the "constant" filtration $\mathbb{F} = (\mathcal{F})$ is a solution to a backward random inclusion $-x'_t \in \operatorname{co}F(t, x_t)$ with a terminal condition $x_T \in H(x_T)$ a.s. for a.e. $t \in [0, T]$. As usual $\operatorname{co}F(t, x_t)$ denotes the convex hull of the set $F(t, x_t)$. Throughout the paper we assume that $\mathcal{P}_{\mathbb{F}} = (\Omega, \mathcal{F} P, \mathbb{F})$ is a complete filtered probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$ satisfying the usual hypotheses. Given $\mathcal{P}_{\mathbb{F}}$ we denote by $\mathbb{D}(\mathbb{F}, \mathbb{R}^m)$ the space of all *m*-dimensional \mathbb{F} -adapted cádlág presses on $\mathcal{P}_{\mathbb{F}}$ and by $\mathcal{S}^2(\mathbb{F}, \mathbb{R}^m)$ the set of all *m*-dimensional \mathbb{F} -semimartingales x such that $\|x\|_{\mathcal{S}^2} = E[\sup_{s \in [0,T]} |x_s|^2] < \infty$. We have $\mathcal{S}^2(\mathbb{F}, \mathbb{R}^m) \subset \mathbb{D}(\mathbb{F}, \mathbb{R}^m)$. It can be proved (see [14], Th. IV2.1, Th. V.2.2) that $(\mathcal{S}^2(\mathbb{F}, \mathbb{R}^m), \|\cdot\|_{\mathcal{S}^2})$ is a Banach space. The present paper is mainly devoted to properties of solutions set of weak continuous solutions to BSDI(F, H). It is organized as follows. Section 2 contains some properties of the set-valued conditional expectations of set-valued integrals. In Section 3 some measurable selection theorems are given. Existence theorems to BSDI(F, H)are given in Section 4 and Section 5. Finally, in Section 6 a weak compactness of the set $\mathcal{X}(F, H)$ of all continuous weak solutions to BSDI(F, H) is proved.

2. CONDITIONAL EXPECTION OF SET-VALUED INTEGRALS

Let (Ω, \mathcal{F}, P) be a probability space and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} . Given an \mathcal{F} -measurable set-valued mapping $\Phi : \Omega \to Cl(\mathbb{R}^m)$ with a nonempty set $S(\Phi)$ of all its \mathcal{F} -measurable and integrable selectors there exists (see [4]) an unique (in the a.s. sense) \mathcal{G} -measurable set-valued mapping $E[\Phi|\mathcal{G}]$ satisfying

(2.1)
$$S(E[\Phi|\mathcal{G}]) = cl_L \{ E[\varphi|\mathcal{G}] : \varphi \in S(\Phi) \}$$

where cl_L denotes the closure operation in $L(\Omega, \mathcal{G}, \mathbb{R}^m)$. We call $E[\Phi|\mathcal{G}]$ the multivalued conditional expectation of Φ relative to \mathcal{G} . This conditional expectation has properties similar to those of the usual ones. For example, we have $\int_A E[\Phi|\mathcal{G}]dP = \int_A \Phi dP$ for every $A \in \mathcal{G}$, where integrals are understood in the Aumann's sense (see [5], Prop. 6.8). It can be proved (see [5], Prop. 6.2) that for given measurable and integrably bounded set-valued mappings $\Phi, \Psi : [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ one has $Eh(E[\Phi|\mathcal{G}], E[\Psi|\mathcal{G}]) \leq Eh(\Phi, \Psi)$, where h is the Hausdorff metric on $Cl(\mathbb{R}^m)$. Let $G: [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ be measurable and integrably bounded, i.e. there is $m \in L([0,T] \times \Omega, \mathbb{R}_+)$ such that $||G(t,x)|| \leq m(t,\omega)$, a.e., where $\mathbb{R}_+ = [0,\infty)$ and $||G(t,\omega)|| = \sup\{|g| : g \in G(t,\omega)\}$. As usual we denote by S(G) a set of all integrable selectors for G. We have $S(G) = \{g \in L([0,T] \times \Omega, \mathbb{R}^m) : g(t,\omega) \in G(t,\omega) \text{ a.e.}\}$. It is easy to verify (see [8]) that S(G) is nonempty and decomposable, i.e. that for every $f, g \in S(G)$ and $E \in \beta_T \otimes \mathcal{F}$ one has $\mathbb{1}_E f + \mathbb{1}_{E^{\sim}} g \in S(G)$, where β_T denotes the Borel σ -algebra of [0,T] and E^{\sim} is the complement of E. In particular, if $G(t,\omega)$ are convex subsets of \mathbb{R}^m for $(t, \omega) \in [0, T] \times \Omega$, the set S(G) is a convex weakly compact subset of $L([0,T] \times \Omega, \mathbb{R}^m)$. Then it is also a closed subset of this space. For the given above G we can define an Aumann integral $\Phi(\omega) = \int_0^T G(t,\omega) dt$ depending on a parameter $\omega \in \Omega$. By Aumann's theorem (see [8], Th. II.3.20) $\int_0^T G(t,\omega) dt$ is a nonempty, convex compact subset of \mathbb{R}^m for every $\omega \in \Omega$. Furthermore, $\int_0^T G(t,\omega)dt = \int_0^T \cos G(t,\omega)dt$ for $\omega \in \Omega$. Hence and ([8], Th. II.3.21) we obtain the following result.

Proposition 2.1. Let $G : [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ be measurable and integrably bounded. Then a set-valued mapping $\Phi : \Omega \to Conv(\mathbb{R}^m)$ defined by $\Phi(\omega) = \int_0^T G(t,\omega) dt$ for $\omega \in \Omega$ is measurable.

Proof. By virtue of ([8],Th. II.3.8) it is enough only to verify that the function $\Omega \ni \omega \to s(p, \Phi(\omega)) \in \mathbb{R}$ is measurable for every $p \in \mathbb{R}^n$, where $s(\cdot, A)$ denotes a support function of $A \in Cl(\mathbb{R}^m)$. By the measurability of G and its integrably boundedness a function $[0,T] \times \Omega \ni (t,\omega) \to s(p,G(t,\omega)) \subset \mathbb{R}$ is measurable for every $p \in \mathbb{R}^m$ (see [8], Remark II.3.5). By virtue of ([8], Th. II.3.21) for every $p \in \mathbb{R}^m$ one has $s(p,\Phi(\omega)) = \int_0^T s(p,G(t,\omega)) dt$ for $\omega \in \Omega$. Hence the measurability of the function $\Omega \ni \omega \to s(p,\Phi(\omega)) \in \mathbb{R}$ follows for every $p \in \mathbb{R}^m$. Therefore Φ is \mathcal{F} -measurable. \Box

Proposition 2.2. Let $G : [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ be measurable and integrably bounded and let $\Phi(\omega) = \int_0^T G(t,\omega) dt$ for $\omega \in \Omega$. Then $S(\Phi)$ is a nonempty convex weakly compact subset of $L(\Omega, \mathcal{F}, \mathbb{R}^m)$. Furthermore, $\varphi \in S(\Phi)$ if and only if there is $g \in$ S(co G) such that $\varphi(\omega) = \int_0^T g(t,\omega) dt$ for a.e. $\omega \in \Omega$.

Proof. By Proposition 2.1, Φ is \mathcal{F} -measurable. It is also integrably bounded, because $\|\Phi(\omega)\| \leq \int_0^T m(t,\omega) dt$ for a.e. $\omega \in \Omega$. Therefore (see [8], Th. III.2.3) $S(\Phi)$ is a nonempty convex weakly compact subset of $L(\Omega, \mathcal{F}, \mathbb{R}^m)$. For every $g \in S(co G)$ a function $\varphi(\omega) = \int_0^T g(t,\omega) dt$ is a measurable selector for Φ , because of ([8], Th. II.3.20) we have $\Phi(\omega) = \int_0^T co \ G(t,\omega) dt$ for $\omega \in \Omega$. It is also integrably bounded, because $|\varphi(\omega)| \leq \int_0^T m(t,\omega) dt$ for a.e. $\omega \in \Omega$. Then $\varphi \in S(\Phi)$ for every $g \in S(co G)$. Assume now $\varphi \in S(\Phi)$. Then for every $A \in \mathcal{F}$ one has $E_A \varphi \in E_A \Phi$, where $E_A \varphi = \int_A \varphi dP$ and $E_A \Phi = \int_A \Phi dP$. Let $\varepsilon > 0$ be given and select a measurable partition $(A_n^{\varepsilon})_{n=1}^{N_{\varepsilon}}$ of Ω such that $E_{A_n^{\varepsilon}} \int_0^T m(t, \cdot) dt < \varepsilon/2^{n+1}$. For every $n = 1, \ldots, N_{\varepsilon}$ there is a $g_n^{\varepsilon} \in S(G)$ such that $E_{A_n^{\varepsilon}}\varphi = E_{A_n^{\varepsilon}}\int_0^T g_n^{\varepsilon}(t,\cdot)dt$. Let $g^{\varepsilon} = \sum_{n=1}^{N_{\varepsilon}} \mathbb{1}_{A_n^{\varepsilon}}g_n^{\varepsilon}$. By the decomposability of S(G) one has $g^{\varepsilon} \in S(G)$. We have $g^{\varepsilon} \in S(co \ G)$ because $S(G) \subset S(co \ G)$. Taking a sequence $(\varepsilon_k)_{k=1}^{\infty}$ of positive numbers $\varepsilon_k > 0$ such that $\varepsilon_k \to 0$ as $k \to \infty$ we can select $g \in S(co G)$ and a subsequence, denoted again by $(g^{\varepsilon_k})_{k=1}^{\infty}$, of $(g^{\varepsilon_k})_{k=1}^{\infty}$ weakly converging to g in $L([0,T] \times \Omega, \mathbb{R}^n)$, because S(co G) is a weakly compact subset of $L([0,T] \times \Omega, \mathbb{R}^n)$. For every $A \in \mathcal{F}$ and $k = 1, 2, \ldots$ there is a subset $\{n_1,\ldots,n_p\}$ of $\{1,\ldots,N_{\varepsilon_k}\}$ such that $A \cap A_{n_i}^{\varepsilon_k} \neq \emptyset$ for $i=1,2,\ldots,p$ and $A \cap A_r = \emptyset$ for $r \in \{1, 2, \ldots, N_{\varepsilon_k}\} \setminus \{n_1, \ldots, n_p\}$. Therefore

$$\left| E_A \varphi - E_A \int_0^T g^{\varepsilon_k}(t, \cdot) dt \right| \leq \sum_{n=1}^{N_{\varepsilon_k}} \left| E_{A \cap A_n^{\varepsilon_k}} \varphi - E_{A \cap A_n^{\varepsilon_k}} \int_0^T g_n^{\varepsilon_k}(t, \cdot) dt \right|$$
$$= \sum_{i=1}^p \left| E_{A \cap A_{n_i}^{\varepsilon_k}} \varphi - E_{A \cap A_{n_i}^{\varepsilon_k}} \int_0^T g_n^{\varepsilon_k}(t, \cdot) dt \right|$$
$$\leq 2 \sum_{i=1}^p E_{A_{n_i}^{\varepsilon_k}} \int_0^T m(t, \cdot) dt \leq \varepsilon_k$$

for every $k = 1, 2, \ldots$ On the other hand for every $A \in \mathcal{F}$ we also have

$$\left| E_A \varphi - E_A \int_0^T g(t, \cdot) dt \right| \leq \\ \leq \left| E_A \varphi - E_A \int_0^T g^{\varepsilon_k}(t, \cdot) dt \right| + \left| E_A \int_0^T g^{\varepsilon_k}(t, \cdot) dt - E_A \int_0^T g(t, \cdot) dt \right| \\ \leq \varepsilon_k + \left| E_A \int_0^T g^{\varepsilon_k}(t, \cdot) dt - E_A \int_0^T g(t, \cdot) dt \right|$$

for $k = 1, 2, \ldots$ Hence it follows that $E_A \varphi = E_A \int_0^T g(t, \cdot) dt$ for every $A \in \mathcal{F}$, because $\varepsilon_k \to 0$ and $|E_A \int_0^T g^{\varepsilon_k}(t, \cdot) dt - E_A \int_0^T g(t, \cdot) dt| \to 0$ as $k \to \infty$. Therefore $\varphi(\omega) = \int_0^T g(t, \cdot) dt$ for a.e. $\omega \in \Omega$.

Corollary 2.3. If $G : [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ is measurable and integrably bounded then

$$S\left(\int_0^T G(t,\cdot)dt\right) = \left\{\int_0^T g(t,\cdot)dt : g \in S(co\ G)\right\}.$$

Corollary 2.4. If $G : [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ is measurable and integrably bounded and \mathcal{G} is a sub- σ -algebra of \mathcal{F} then

$$S\left(E\left[\int_0^T G(t,\cdot)dt|\mathcal{G}\right]\right) = \left\{E\left[\int_0^T g(t,\cdot)dt|\mathcal{G}\right] : g \in S(co \ G)\right\}.$$

Proof. It is enough only to see that the set $\mathcal{H} = \{E[\int_0^T g(t, \cdot)dt | \mathcal{G}] : g \in S(co G)\}$ is a closed subset of $L(\Omega, \mathcal{G}, \mathbb{R}^m)$. By the properties of conditional expectations and the properties of the set S(co G) it follows that \mathcal{H} is a convex weakly compact subset of $L(\Omega, \mathcal{G}, \mathbb{R}^m)$. Therefore \mathcal{H} is a closed subset of $L(\Omega, \mathcal{G}, \mathbb{R}^m)$. \Box

3. MEASURABLE SELECTION THEOREMS

Let $x = (x_t)_{0 \le t \le T}$ be an \mathbb{F} -adapted *m*-dimensional cádlág process on $\mathcal{P}_{\mathbb{F}}$. Given a measurable and uniformly integrably bounded multivalued mapping $F : [0, T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ we denote by $F \circ x$ a set-valued mapping defined on $[0, T] \times \Omega$ by setting $(F \circ x)(t, \omega) = F(t, x_t(\omega))$ for $(t, \omega) \in [0, T] \times \Omega$. It is clear that $F \circ x$ is measurable and \mathbb{F} -adapted, i.e., it is $\beta_T \otimes \mathcal{F}$ -measurable and such that for every fixed $t \in [0, T]$ a mapping $\Omega \ni \omega \to (F \circ x)(t, \omega) \subset \mathbb{R}^m$ is \mathcal{F}_t -measurable. In what follows we shall denote by $S_{\mathbb{F}}(F \circ x)$ a set of all measurable and \mathbb{F} -adapted selectors for $F \circ x$. Let us observe that $F \circ x$ is measurable and \mathbb{F} -adapted if and only if it is $\Sigma_{\mathbb{F}}$ -measurable, where $\Sigma_{\mathbb{F}} = \{A \in \beta_T \otimes \mathcal{F} : A_t \in \mathcal{F}_t \text{ for } 0 \le t \le T\}$ and A_t denotes a section of a set $A \in \beta_T \otimes \mathcal{F}$ at $t \in [0, T]$. Therefore, immediately from Kuratowski and Ryll-Nardzewski measurable selection theorem (see [8], Th. II.3.10) it follows that for the given above F and x the set $S_{\mathbb{F}}(F \circ x)$ is nonempty. In the general case we shall also denote by $S_{\mathbb{F}}(G)$ the set of all measurable and \mathbb{F} -adapted selectors for a given measurable \mathbb{F} -adapted and integrably bounded set-valued mapping $G : [0, T] \times \Omega \to Cl(\mathbb{R}^m)$. Similarly as above we can verify that $S_{\mathbb{F}}(co \ G)$ is a nonempty convex and weakly compact subset of $L([0, T] \times \Omega, \Sigma_{\mathbb{F}}, \mathbb{R}^m)$. We shall prove the following measurable selection theorem.

Theorem 3.1. Let $G : [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ be a measurable \mathbb{F} -adapted and integrably bounded set-valued mapping. Assume $x = (x_t)_{0 \le t \le T}$ is an m-dimensional measurable process on $\mathcal{P}_{\mathbb{F}}$ such that $E|x_T| < \infty$. Then

(3.1)
$$x_s \in E\left[x_t + \int_s^t G(\tau, \cdot)d\tau | \mathcal{F}_s\right] \qquad a.s$$

for every $0 \leq s \leq t \leq T$ if and only if there is $g \in S_{\mathbb{F}}(co G)$ such that

(3.2)
$$x_t = E\left[x_T + \int_t^T g(\tau, \cdot)d\tau | \mathcal{F}_t\right] \qquad a.s$$

for every $0 \le t \le T$.

Proof. Suppose there is $g \in S_{\mathbb{F}}(co \ G)$ such that (3.2) is satisfied. Then for every $0 \le s \le t \le T$ one has

$$x_{s} = E\left[x_{T} + \int_{s}^{T} g(\tau, \cdot)d\tau | \mathcal{F}_{s}\right] = E\left[\int_{s}^{t} g(\tau, \cdot)d\tau | \mathcal{F}_{s}\right]$$
$$+ E\left[x_{T} + \int_{t}^{T} g(\tau, \cdot)d\tau | \mathcal{F}_{s}\right]$$

and

$$E[x_t|\mathcal{F}_s] = E\left[x_T + \int_t^T g(\tau, \cdot)d\tau |\mathcal{F}_s\right] \quad \text{a.s}$$

Therefore

$$x_s = E\left[x_t + \int_s^t g(\tau, \cdot)d\tau | \mathcal{F}_s\right]$$
 a.s.

for $0 \le s \le t \le T$. Hence by Corollary 2.4 it follows that

$$x_s \in S\left(E\left[x_t + \int_s^t G(\tau, \cdot)d\tau | \mathcal{F}_s\right]\right)$$

for $0 \leq s \leq t \leq T$. Therefore, (3.1) is satisfied a.s. for $0 \leq s \leq t \leq T$. Assume that (3.1) is satisfied for every $0 \leq s \leq t \leq T$ a.s. and let $m \in L([0,T] \times \Omega, \mathbb{R}_+)$ be such that $||G(t,\omega)|| \leq m(t,\omega)$ for a.e. $(t,\omega) \in [0,T] \times \Omega$. For every $0 \leq t \leq T$ one has $E|x_t| \leq E|x_T| + E \int_0^T m(t,\cdot)dt < \infty$. By virtue of Corollary 2.4 x is IF-adapted. Let $\eta > 0$ be arbitrarily fixed and select $\delta > 0$ such that $\delta < T$ and $\sup_{0 \leq t \leq T-\delta} E \int_t^{t+\delta} m(\tau,\cdot)d\tau < \eta/2$. For fixed $t \in [0,T-\delta]$ and $t \leq \tau \leq t+\delta$ we have $x_t \in E[x_\tau + \int_t^\tau G(s,\cdot)ds|\mathcal{F}_t]$ a.s. Therefore, for every $A \in \mathcal{F}_t$ we get $E_A(x_t - x_\tau) \in E_A \int_t^\tau G(s,\cdot)ds$. Then $|E_A(x_t - x_\tau)| \leq E_A \int_t^\tau ||G(s,\cdot)|| ds \leq E \int_t^{t+\delta} m(s,\cdot)ds < \eta/2$ for every $0 \leq t \leq T - \delta$ and $A \in \mathcal{F}_t$. Therefore, $\sup_{t \leq \tau \leq t+\delta} |E_A(x_t - x_\tau)| \leq \eta/2$ for every $A \in \mathcal{F}_t$ and fixed $0 \leq t \leq T - \delta$. Let $\tau_0 = 0$, $\tau_1 = \delta, \ldots, \tau_{N-1} = (N-1)\delta < T \leq N\delta$.

Immediately from (3.1) and Corollary 2.4 it follows that for every i = 1, 2, ..., N - 1there is $g_i^{\eta} \in S_{\mathbb{F}}(co G)$ such that

$$E\left|x_{\tau_{i-1}} - E\left[x_{\tau_i} + \int_{\tau_{i-1}}^{\tau_i} g_i^{\eta}(s, \cdot) ds | \mathcal{F}_{\tau_{i-1}}\right]\right| = 0.$$

Furthermore, there is $g_N^{\eta} \in S_{\mathbb{F}}(co \ G)$ such that

$$E\left|x_{\tau_{N-1}} - E\left[x_T + \int_{\tau_{N-1}}^T g_N^{\eta}(s, \cdot)ds | \mathcal{F}_{\tau_{N-1}}\right]\right| = 0.$$

Define $g^{\eta} = \sum_{i=1}^{N-1} \mathbb{1}_{[\tau_{i-1},\tau_i)} g_i^{\eta} + \mathbb{1}_{[\tau_{N-1},T]} g_N^{\eta}$. By the decomposability of $S_{\mathbb{I}\!F}(co\ G)$ we have $g^{\eta} \in S_{\mathbb{F}}(co\ G)$. For fixed $t \in [0,T]$ there is $p \in \{1,2,\ldots,N-1\}$ or p = N such that $t \in [\tau_{p-1},\tau_p)$ or $t \in [\tau_{N-1},T]$. Let $t \in [\tau_{p-1},\tau_p)$ with $1 \leq p \leq N-1$. For every $A \in \mathcal{F}_t$ one has

$$\begin{split} & \left| E_A \left(x_t - E \left[x_T + \int_t^T g^\eta(s, \cdot) ds \mathcal{F}_t \right] \right) \right| \leq \\ & \leq |E_A(x_t - x_{\tau_p})| + E \left| x_{\tau_p} - E \left[x_{\tau_{p+1}} + \int_{\tau_p}^{\tau_{p+1}} g^\eta(s, \cdot) d\tau | \mathcal{F}_{\tau_p} \right] \right| \\ & + |E_A(E[x_{\tau_{p+1}} | \mathcal{F}_{\tau_p}] - x_{\tau_{p+1}})| + E \left| \int_t^{\tau_p} g^\eta(s, \cdot) ds \right| + \\ & + \left| E_A \left(E \left[\int_{\tau_p}^{\tau_{p+1}} g^\eta(s, \cdot) ds | \mathcal{F}_{\tau_p} \right] - E \left[\int_{\tau_p}^{\tau_{p+1}} g^\eta(s, \cdot) d\tau | \mathcal{F}_t \right] \right) \right| + \dots + \\ & + E \left| x_{\tau_{N-1}} - E \left[x_T + \int_{\tau_{N-1}}^T g^\eta(s, \cdot) d\tau | \mathcal{F}_{\tau_{N-1}} \right] \right| \\ & + |E_A(E[x_{\tau_{N-1}} | \mathcal{F}_{\tau_{N-1}}] - x_{\tau_{N-1}})| + E_A \left(E \left[\int_{\tau_{N-1}}^T g^\eta(s, \cdot) ds | \mathcal{F}_{\tau_{N-1}} \right] - \\ & - E \left[\int_{\tau_{N-1}}^T g^\eta(s, \cdot) ds | \mathcal{F}_t \right] \right) \right| \leq \sup_{t \leq \tau \leq t+\delta} |E_A(x_t - x_\tau)| + E \int_t^{t+\delta} m(s, \cdot) ds + \\ & + \sum_{i=p}^{N-2} E \left| x_{\tau_i} - E \left[x_T + \int_{\tau_{N-1}}^T g^\eta(s, \cdot) d\tau | \mathcal{F}_{\tau_{N-1}} \right] \right| \\ & + E \left| x_{\tau_{N-1}} - E \left[x_T + \int_{\tau_{N-1}}^T g^\eta(s, \cdot) d\tau | \mathcal{F}_{\tau_{N-1}} \right] \right| \\ & + \sum_{i=p}^{N-2} |E_A(E[x_{\tau_{i+1}} | \mathcal{F}_{\tau_i}] - x_{\tau_{i+1}})| + \sum_{i=p}^{N-2} \left| E_A \left(E \left[\int_{\tau_i}^{\tau_{i+1}} g^\eta(s, \cdot) ds | \mathcal{F}_{\tau_i} \right] - \\ & - E \left[\int_{\tau_i}^{\tau_{i+1}} g^\eta(s, \cdot) ds | \mathcal{F}_t \right] \right) \right| \\ & + \left| E_A \left(E \left[\int_{\tau_{n-1}}^T g^\eta(s, \cdot) ds | \mathcal{F}_{\tau_{n-1}} \right] - E \left[\int_{\tau_{n-1}}^T g^\eta(s, \cdot) ds | \mathcal{F}_t \right] \right) \right|. \end{split}$$

But $\mathcal{F}_t \subset \mathcal{F}_{\tau_i}$ for $i = p, p + 1, \dots, N - 1$. Then for $A \in \mathcal{F}_t$ one has

$$\sum_{i=p}^{N-2} |E_A(E[x_{\tau_{i+1}}|\mathcal{F}_{\tau_i}] - x_{\tau_{i+1}})| = 0,$$

$$\sum_{i=p}^{N-2} \left| E_A\left(E\left[\int_{\tau_i}^{\tau_{i+1}} g^{\eta}(s, \cdot)ds|\mathcal{F}_{\tau_i}\right] - E\left[\int_{\tau_i}^{\tau_{i+1}} g^{\eta}(s, \cdot)ds|\mathcal{F}_t\right]\right) \right| = 0$$

and

$$E_A\left(E\left[\int_{\tau_{N-1}}^T g^\eta(s,\cdot)ds|\mathcal{F}_{\tau_{N-1}}\right] - E\left[\int_{\tau_{N-1}}^T g^\eta(s,\cdot)ds|\mathcal{F}_t\right]\right)\right| = 0$$

Hence it follows

$$\left| E_A \left(x_t - E \left[x_T + \int_t^T g^{\eta}(s, \cdot) ds | \mathcal{F}_t \right] \right) \right| \le \eta$$

for fixed $0 \leq t \leq T$ and $A \in \mathcal{F}_t$. Let $(\eta_j)_{j=1}^{\infty}$ be a sequence of positive numbers converging to zero. For every $j = 1, 2, \ldots$ we can select $g^{\eta_j} \in S_{\mathbb{F}}(co \ G)$ such that (3.2) is satisfied with $\eta = \eta_j$. By the weak compactness of $S_{\mathbb{F}}(co \ G)$ there are $g \in S_{\mathbb{F}}(co \ G)$ and a subsequence $(g^{\eta_k})_{k=1}^{\infty}$ of $g^{\eta_j})_{j=1}^{\infty}$ weakly converging to g in $L([0,T] \times \Omega, \Sigma_{\mathbb{F}}, \mathbb{R})$. Then for every $A \in \mathcal{F}_t \subset \mathcal{F}$ one has $\lim_{k\to\infty} E_A \int_t^T g^{\eta_k}(s, \cdot) ds = E_A \int_t^T g(s, \cdot) ds$. On the other hand for every fixed $t \in [0,T]$ and $A \in \mathcal{F}_t$ we have

$$\begin{aligned} \left| E_A \left(x_t - E \left[x_T + \int_t^T g(s, \cdot) ds | \mathcal{F}_t \right] \right) \right| &\leq \\ &\leq \left| E_A \left(x_t - E \left[x_T + \int_t^T g^{\eta_k}(s, \cdot) ds | \mathcal{F}_t \right] \right) \right| + \\ &+ \left| E_A \left(E \left[\int_t^T g^{\eta_k}(s, \cdot) ds | \mathcal{F}_t \right] - E \left[+ \int_t^T g(s, \cdot) ds | \mathcal{F}_t \right] \right) \right| &\leq \\ &\leq \eta_k + \left| E_A \int_t^T g^{\eta_k}(s, \cdot) ds - E_A \int_t^T g(s, \cdot) ds \right| \end{aligned}$$

for $k = 1, 2, \ldots$ Therefore

$$E_A\left(x_t - E\left[x_T + \int_t^T g(s, \cdot)ds | \mathcal{F}_t\right]\right) = 0$$

for every $A \in \mathcal{F}_t$ and fixed $0 \leq t \leq T$. But x_t and $E[x_T + \int_t^T g(s, \cdot)ds|\mathcal{F}_t]$ are \mathcal{F}_t -measurable. Then $x_t = E[x_T + \int_t^T g(s, \cdot)ds|\mathcal{F}_t]$ for $0 \leq t \leq T$ with (P.1).

Corollary 3.2. Let $G: [0,T] \times \Omega \to Cl(\mathbb{R}^m)$ be measurable \mathbb{F} -adapted and square integrably bounded. If $x = (x_t)_{0 \le t \le T}$ is mesurable, satisfies (3.1) a.s. for every $0 \le s \le t \le T$ and $E|x_T|^2 < \infty$ then $x \in S^2(\mathbb{F}, \mathbb{R}^m)$ and $x_t = x_0 + M_t + A_t$, where $M_t = E[x_T + \int_0^T g_\tau d\tau | \mathcal{F}_t] - E[x_T + \int_0^T g_\tau d\tau | \mathcal{F}_0]$ and $A_t = -\int_0^t g_\tau d\tau$ for $0 \le t \le T$ with $g \in S_{\mathbb{F}}(coG)$ such that $x_t = E[x_T + \int_t^T g_\tau d\tau | \mathcal{F}_t]$ a.s. for $0 \le t \le T$. *Proof.* The result follows immediately from the representation $x_t = E[x_T + \int_t^T g_\tau d\tau | \mathcal{F}_t]$ given in Theorem 3.1 (see [3], Lemma 1.1).

In what follows we shall assume that $F : [0, T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ satisfy the following conditions (A):

- (i) F is measurable and uniformly square integrably bounded by a function $m \in L^2([0,T], \mathbb{R}_+)$,
- (ii) H is measurable and bounded by a number L > 0,
- (iii) $F(t, \cdot)$ is Lipschitz continuous, i.e. there is $k \in L^2([0, T], \mathbb{R}_+)$ such that $h(F(t, x_1), F(t, x_2)) \leq k(t)|x_1 x_2|$ for a.e. $t \in [0, T]$ and $x_1, x_2 \in \mathbb{R}^m$, where h is the Hausdorff metric on $Cl(\mathbb{R}^m)$,
- (iv) there is a random variable $\xi \in L^2(\Omega, \mathcal{F}_T, \mathbb{R}^m)$ such that $\xi \in H(\xi)$ a.s.

We shall prove now that conditions (A) imply the existence of some special sequence of successive approximations for BSDI(F,H).

Theorem 3.3. Let $F : [0,T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ satisfy conditions (A). There exists a sequence $(x^n)_{n=1}^{\infty}$ of $\mathcal{S}^2(\mathbb{F}, \mathbb{R}^m)$ defined by $x_t^n = E[\xi + \int_t^T f_\tau^{n-1} d\tau | \mathcal{F}_t]$ a.s. with $f^{n-1} \in S_{\mathbb{F}}(F \circ x^{n-1})$ for n = 1, 2, ... and $0 \le t \le T$ such that $x_s^n \in E[x_t^n + \int_s^t F(\tau, x_\tau^{n-1}) d\tau | \mathcal{F}_s]$ a.s. and $E \sup_{t \le u \le T} |x_u^{n+1} - x_u^n|^2 \le 4E(\int_t^T k(\tau) \sup_{\tau \le s \le T} |x_s^n - x_s^{n-1}| d\tau)^2$ for n = 1, 2... and $0 \le s \le t \le T$.

Proof. Let us observe (see [8], Th. II.3.13) that for every *m*-dimensional measurable and **F**-adapted processes *x* and *y* on $\mathcal{P}_{\mathbb{F}}$ and every $f^{x} \in S_{\mathbb{F}}(F \circ x)$ there is $f^{y} \in S_{\mathbb{F}}(F \circ y)$ such that $|f_{t}^{x}(\omega) - f_{t}^{y}(\omega)| = \operatorname{dist}(f_{t}^{x}(\omega), F(t, y_{t}(\omega)) \leq h(F(t, x_{t}(\omega)), F(t, y_{t}(\omega)) \leq k(t)|x_{t}(\omega) - y_{t}(\omega)|$ for a.e. $t \in [0, T]$ and $\omega \in \Omega$. Furthermore, by properties of *H* there is $\xi \in L^{2}(\Omega, \mathcal{F}_{T}, \mathbb{R}^{m})$ such that $\xi \in H(\xi)$ a.s. Let $(x_{t}^{0})_{0 \leq t \leq T}$ be an *m*-dimensional measurable **F**-adapted process on $\mathcal{P}_{\mathbb{F}}$ such that $x_{T}^{0} = \xi$ a.s. and let $f^{0} \in S_{\mathbb{F}}(F \circ x^{0})$. Define $x_{t}^{1} = E[\xi + \int_{t}^{T} f_{\tau}^{0} d\tau | \mathcal{F}_{t}]$ a.s. for $0 \leq t \leq T$. By Corollary 3.2 we have $x^{1} \in \mathcal{S}^{2}(\mathbb{F}, \mathbb{R}^{m})$. Select now $f^{1} \in S_{\mathbb{F}}(F \circ x^{1})$ such that $|f_{t}^{1} - f_{t}^{0}| = \operatorname{dist}(f_{t}^{1}, F(t, x_{t}^{0}))$ for a.e. $0 \leq t \leq T$ with (P.1). Then $|f_{t}^{1} - f_{t}^{0}| \leq k(t)|x_{t}^{1} - x_{t}^{0}|$ a.s. for $a.e. 0 \leq t \leq T$. Define $x_{t}^{2} = E[\xi + \int_{t}^{T} f_{\tau}^{1} d\tau | \mathcal{F}_{t}]$ a.s. for $0 \leq t \leq T$. We have $x^{2} \in \mathcal{S}^{2}(\mathbb{F}, \mathbb{R}^{m})$. Continuing the above procedure we can define $x_{t}^{n+1} = E[\xi + \int_{t}^{T} f_{\tau}^{n} d\tau | \mathcal{F}_{t}]$ a.s. for $0 \leq t \leq T$ with $f^{n} \in S_{\mathbb{F}}(F \circ x^{n})$ such that $|f_{t}^{n} - f_{t}^{n-1}| \leq k(t)|x_{t}^{n} - x_{t}^{n-1}|$ a.s. for $a.e. 0 \leq t \leq T$ with $f^{n} \in S_{\mathbb{F}}(F \circ x^{n})$ such that $|f_{t}^{n} - f_{t}^{n-1}| \leq k(t)|x_{t}^{n} - x_{t}^{n-1}|$ a.s. for $a.e. 0 \leq t \leq T$ and $n = 2, 3, \ldots$ By Corollary 3.2 we also have $x^{n} \in \mathcal{S}^{2}(\mathbb{F}, \mathbb{R}^{m})$. Hence it follows

$$\begin{aligned} x_t^{n+1} - x_t^n | &\leq E\left[\int_t^T |f_\tau^n - f_\tau^{n-1}| d\tau |\mathcal{F}_t\right] \\ &\leq E\left[\int_t^T k(\tau) \sup_{\tau \leq s \leq T} |x_s^n - x_s^{n-1}| |\mathcal{F}_t\right] \end{aligned}$$

a.s. for $0 \le t \le T$. Therefore,

$$\sup_{t \le u \le T} |x_u^{n+1} - x_u^n|$$

$$\le \sup_{t \le u \le T} E\left[\int_u^T k(\tau) \sup_{\tau \le s \le T} |x_s^n - x_s^{n-1}| d\tau |\mathcal{F}_u\right] \le$$

$$\le \sup_{t \le u \le T} E\left[\int_t^T k(\tau) \sup_{\tau \le s \le T} |x_s^n - x_s^{n-1}| d\tau |\mathcal{F}_u\right]$$

a.s. for $0 \le t \le T$ and $n = 1, 2, \ldots$ By Doob's inequality, we obtain

$$E\left(\sup_{t\leq u\leq T} E\left[\int_{t}^{T} k(\tau) \sup_{\tau\leq s\leq T} |x_{s}^{n} - x_{s}^{n-1}| d\tau |\mathcal{F}_{u}\right]\right)^{2} \leq \\ \leq 4E\left(\int_{t}^{T} k(\tau) \sup_{\tau\leq s\leq T} |x_{s}^{n} - x_{s}^{n-1}| d\tau\right)^{2}$$

for $0 \le t \le T$. Therefore, for every $n = 1, 2, \ldots$ and $0 \le t \le T$ we have

$$E \sup_{t \le u \le T} |x_u^{n+1} - x_u^n|^2 \le 4E \left(\int_t^T k(\tau) \sup_{\tau \le t \le T} |x_s^n - x_s^{n-1}| d\tau \right)^2.$$

4. EXISTENCE OF STRONG SOLUTIONS

We shall prove that if F and H satisfy conditions (A) then BSDI(F,H) possesses at least one strong solution. Let us observe that immediately from Corollary 3.2 it follows that every strong solution to BSDI(F,H) on $\mathcal{P}_{\mathbb{F}}$ belongs to $\mathcal{S}^2(\mathbb{F}, \mathbb{R}^m)$. Immediately from the properties of multivalued conditional expections (see [5], Prop. 6.2.) the following result follows.

Proposition 4.1. Let F satisfies conditions (A). Then for every $x, y \in S^2(\mathbb{F}, \mathbb{R}^m)$ one has

$$Eh\left(E\left[\int_{s}^{t}F\left(\tau,x_{\tau}\right)d\tau|\mathcal{F}_{s}\right],E\left[\int_{s}^{t}F(\tau,y_{\tau})d\tau|\mathcal{F}_{s}\right]\right)\leq\int_{s}^{t}k(\tau)E|x_{\tau}-y_{\tau}|d\tau$$

for every $0 \leq s \leq t \leq T$, where h is the Hausdorff metric on $Cl(\mathbb{R}^m)$.

We can prove now the following existence theorem.

Theorem 4.2. Let $\mathcal{P}_{\mathbb{F}}$ be given. If $F : [0,T] \times \mathbb{R}^n \to Cl(\mathbb{R}^n)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ satisfy conditions (A) then BSDI(F, H) possesses a strong solution on $\mathcal{P}_{\mathbb{F}}$.

Proof. By virtue Theorem 3.3 there is a sequence $(x^n)_{n=1}^{\infty}$ of $\mathcal{S}^2(\mathbb{F}, \mathbb{R}^m)$ such that $x_T^n = \xi, x_s^n \in E[x_t^n + \int_s^t F(\tau, x_\tau^{n-1} d\tau | \mathcal{F}_t]$ a.s. for $0 \le s \le t \le T$ and

$$E \sup_{t \le u \le T} |x_u^{n+1} - x_u^n|^2 \le 4E \left(\int_t^T k(\tau) \sup_{\tau \le s \le T} |x_s^n - x_s^{n-1}| d\tau \right)^2,$$

where $\xi \in L^2(\Omega, \mathcal{F}_T, \mathbb{R}^m)$ is such that $\xi \in H(\xi)$ a.s. Hence it follows

$$E \sup_{t \le u \le T} |x_u^{n+1} - x_u^n|^2 \le 4T \int_t^T k^2(\tau) E \sup_{\tau \le u \le T} |x_u^n - x_u^{n-1}|^2 d\tau$$

for $n = 1, 2, \ldots$ and $0 \le t \le T$. By the properties of F and H one has $E \sup_{t \le u \le T} |x_u^1 - x_u^0|^2 \le \mathbb{L}$, where $\mathbb{L} = 4(E|\xi|^2 + \int_0^T m^2(\tau)d\tau) + 2E \sup_{0 \le t \le T} |x_t^0|^2$. Therefore,

$$E \sup_{t \le u \le T} |x_u^2 - x_u^1|^2 \le 4T \mathbb{I} \int_t^T k^2(\tau) d\tau.$$

Hence it follows

By the induction procedure for every n = 1, 2, ... and $0 \le t \le T$ we get

$$E \sup_{t \le u \le T} |x_u^{n+1} - x_u^n|^2 \le \frac{(4T)^n \mathbb{L}^{n-1}}{n!} \left(\int_t^T k^2(\tau) d\tau \right)^n.$$

Then $E \sup_{0 \le t \le T} |x_t^n - x_t^m|^2 \to 0$ as $n, m \to \infty$. Therefore, there is a process $(x_t)_{0 \le t \le T} \in \mathcal{S}^2(\mathbb{F}, \mathbb{R}^m)$ such that $E \sup_{0 \le t \le T} |x_t^n - x_t|^2 \to 0$ as $n \to \infty$. Hence and Proposition 4.1 it follows

$$E \operatorname{dist}\left(x_{s}, E\left[x_{t}+\int_{s}^{t}F(\tau, x_{\tau})d\tau|\mathcal{F}_{s}\right]\right)$$

$$\leq E|x_{s}-x_{s}^{n}|+E \operatorname{dist}\left(x_{s}^{n}, E\left[x_{t}^{n}+\int_{s}^{t}F(\tau, x_{\tau}^{n-1})d\tau|\mathcal{F}_{s}\right]\right)+$$

$$+Eh\left(E\left[x_{t}^{n}+\int_{s}^{t}F(\tau, x_{\tau}^{n-1})d\tau|\mathcal{F}_{s}\right], E\left[x_{t}+\int_{s}^{t}F(\tau, x_{\tau})d\tau|\mathcal{F}_{s}\right]\right)$$

$$\leq E|x_{s}^{n}-x_{s}|+E|x_{t}^{n}-x_{t}|+\int_{s}^{t}k(\tau)E|x_{\tau}^{n-1}-x_{\tau}|d\tau$$

$$\leq 2||x^{n}-x||_{\mathcal{S}^{2}}+\left(\int_{0}^{T}k^{2}(\tau)d\tau\right)^{\frac{1}{2}}||x^{n-1}-x||_{\mathcal{S}^{2}}$$

for every $0 \leq s \leq t \leq T$ and n = 1, 2, ... Therefore, $\operatorname{dist}(x_s, E[x_t + \int_s^t F(\tau, x_\tau) d\tau | \mathcal{F}_s]) = 0$ a.s. for every $0 \leq s \leq t \leq T$. Then $x_s \in E\left[x_t + \int_s^t F(\tau, x_\tau) d\tau | \mathcal{F}_s\right]$ a.s. for every $0 \leq s \leq t \leq T$. By the definition of $(x_t^n)_{0 \leq t \leq T}$ we have $x_T^n = \xi \in H(\xi)$ a.s. for every n = 1, 2, ... Therefore, we also have $x_T = \xi$ a.s. Then $x_T \in H(x_T)$ a.s.

5. EXISTENCE OF WEAK SOLUTIONS

Asume that $F : [0,T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ satisfy the following conditions (B).

- (i) F is measurable and uniformly square integrably bound by a function $m \in L^2([0,T], \mathbb{R}_+)$,
- ii) H takes on convex values is measurable and bounded by a number L > 0,
- (iii) $F(t, \cdot)$ and H are lower semicontinuous for a.e. fixed $0 \le t \le T$.

We shall prove that for F and H satisfying conditions (B) there exists a continuous weak solution to BSDI(F,H), i.e. there exists a pair $(\mathcal{P}_{\mathbb{F}}, x)$, with x having a.a. continuous trajectories and satisfying BSDI(F,H). The result is obtained by the construction of the Tonelli's type approximations for a backward stochastic differential equation defined by some special selectors of F and H on a filtered probability space $\mathcal{P}_{\mathbb{F}} = (\Omega, \mathcal{F}, P, \mathbb{F}^B)$ with (Ω, \mathcal{F}, P) supporting an d-dimensional Browninan motion B and $\mathbb{F}^B = (\mathcal{F}^B_t)_{0 \le t \le T}$ beeing a natural augmented filtration of B. The tightness of such approximation sequence will follow from the following extension of the classical tightness criterion (see [1], Th. 2.12.3).

Theorem 5.1 ([9], Th. 3). A sequence $(x^n)_{n=1}^{\infty}$ of continuous *m*-dimensional stochastic processes $x^n = (x^n(t))_{0 \le t \le T}$ on a probability space (Ω, \mathcal{F}, P) is tight if for every $\varepsilon > 0$ there is a number a > 0 such that $P(\{|x^n(0)| > a\}) \le \varepsilon$ for $n \ge 1$ and there are $\gamma \ge 0$, an integer $\alpha > 1$ and a continuous nondecreasing bounded stochastic process $(\Gamma(t))_{0 \le t \le T}$ on (Ω, \mathcal{F}, P) such that

$$P\left(\{|x^n(t) - x^n(s)| \ge \eta\}\right) \le \frac{1}{\eta^{\gamma}} E \left|\Gamma(t) - \Gamma(s)\right|^{\alpha}$$

for every $n \ge 1$, $\eta > 0$ and $s, t \in [0, T]$.

We shall also need the following results.

Proposition 5.2. Let $F : [0,T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ be measurable and uniformly square integrably bounded and bounded, respectively. A pair $(\mathcal{P}_{\mathbf{F}}, x)$ is a continuous weak solution to BSDI(F,H) if and only if there exist $\xi \in S(H \circ x_T)$ and $f \in S_{\mathbf{F}}(coF \circ x)$ such that $x_t = E[\xi + \int_t^T f_\tau d\tau | \mathcal{F}_t]$ a.s. for $0 \leq t \leq T$ and such that a martingale $M = (M_t)_{0 \leq t \leq T}$ defined by $M_t = E[\xi + \int_0^T f_\tau d\tau | \mathcal{F}_t] - E[\xi + \int_0^T f_\tau d\tau | \mathcal{F}_0]$ is continuous.

Proof. By virtue of Theorem 3.1 a pair $(\mathcal{P}_{\mathbb{F}}, x)$ is a weak solution to BSDI(F,H) if and only if there are $\xi \in S(H \circ x_T)$ and $f \in S_{\mathbb{F}}(coF \circ x)$ such that $x_t = E[\xi + \int_t^T f_\tau d\tau | \mathcal{F}_t]$ a.s. for $0 \le t \le T$. By Corollary 3.2 we have $x_t = x_0 + M_t - \int_0^t f_\tau d\tau$ a.s. for $0 \le t \le T$. Hence it follows that x is continuous if and only if M is continuous. **Proposition 5.3.** Let $F : [0,T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ be measurable and uniformly square integrably bounded and bounded, respectively. Assume $F(t, \cdot)$ and H are continuous and let $(x^n)_{n=1}^{\infty}$ be a sequence of continuous solutions to BSDI(F,H) on a filtered probability space $\mathcal{P}_{\mathbb{F}}$. Then $(x^n)_{n=1}^{\infty}$ is tight.

Proof. By virtue of Corollary 3.2 we have $x_t^n = x_0^n + M_t^n - \int_0^t f_\tau^n d\tau$ a.s. for $0 \le t \le T$, where $f^n \in S_{\mathbb{F}}(coF \circ x^n)$ and M^n is an \mathbb{F} -martingale defined above for $n = 1, 2, \ldots$ By properties of F and Proposition 5.2, M^n is for every $n = 1, 2, \ldots$ a square integrable continuous martingale such that $M_0^n = 0$ for $n \ge 1$. Furthermore $|M_t^n| \le 2\lambda$ a.s. for $0 \le t \le T$, where $\lambda = L + \int_0^T m(t)dt$. Denote by N_i^n for $n \ge 1$ and $i = 1, 2, \ldots, m$ a real-valued \mathbb{F} -martingale such that $M_t^n = (N_1^n(t), \ldots, N_m^n(t))$ for $0 \le t \le T$. For every $i = 1, \ldots, m$ and every partition $\Delta = \{0 = t_0 < t_1 < \cdots < t_r = T\}$ of [0, T] one gets

$$\langle N_i^n \rangle_t^{\Delta} \doteq \sum_{k=0}^{r-1} \left(N_i^n (t \wedge t_{k+1}) - N_i^n (t \wedge t_k) \right)^2 \le$$

$$\leq \sum_{j=1}^{r-1} \left| N_i^n (t \wedge t_{j+1}) - N_i^n (t \wedge t_j) \right| \max_k \left| N_i^n (t \wedge t_{k+1}) - N_i^n (t \wedge t_k) \right|$$

$$\leq \left| N_i^n (t) \right| \max_k \left| N_i^n (t \wedge t_{k+1}) - N_i^n (t \wedge t_k) \right| \le 8\lambda^2$$

a.s. for $0 \leq t \leq T$. Moreover, by ([10], Th. 2.2.2) we have $\sup_{0 \leq t \leq T} E|\langle N_i^n \rangle_t^{\Delta_r} - \langle N_i^n \rangle_t|^2 \to 0$ as $|\Delta_r| \to 0$, where $|\Delta_r| = \max_{0 \leq k \leq r-1} (t_{k+1} - t_k)$. Then there is a subsequence $(\Delta_{r_j})_{j=1}^{\infty}$ of $(\Delta_r)_{r=1}^{\infty}$ such that $\sup_{0 \leq t \leq T} |\langle N_i^n \rangle_t^{\Delta_{r_j}} - \langle N_i^n \rangle_t| \to 0$ a.s. as $j \to 0$. Hence it follows

$$\sup_{0 \le t \le T} |\langle N_i^n \rangle| \le \sup_{0 \le t \le T} \left| \langle N_i^n \rangle_t - \langle N_i^n \rangle_t^{\Delta_{r_j}} \right| + \left| \langle N_i^n \rangle_t^{\Delta_{r_j}} \right|$$
$$\le \sup_{0 < t < T} \left| \langle N_i^n \rangle_t - \langle N_i^n \rangle_t^{\Delta_{r_j}} \right| + 8\lambda^2$$

a.s. for every $n \geq 1$ and i = 1, ..., m. Then $\sup_{0 \leq t \leq T} |\langle N_i^n \rangle_t| \leq 8\lambda^2$ a.s. for every $n \geq 1$ and i = 1, ..., m. Let us observe that quadratic variational process $(\langle N_i^n \rangle_t)_{0 \leq t \leq T}$ is increasing in t a.s. for every $n \geq 1$ and i = 1, ..., m. Then for every $n \geq 1$, i = 1, ..., m and P-a.e. $\omega \in \Omega$ it generates a measure $\mu_i^n(\omega)$ on $\beta_T = \beta([0,T)$ such that $\mu_i^n(\omega)((s,t]) = \langle N_i^n \rangle_t - \langle N_i^n \rangle_s$ and $\mu_i^n(\omega)(\{0\}) = 0$. Let $\mu^n(\omega)(A) = \max_{0 \leq i \leq m} \mu_i^n(\omega)(A)$ and $\mu(\omega)(A) = \sup_{n\geq 1} \mu^n(\omega)(A)$ for $A \in \beta_T$ and Pa.e. $\omega \in \Omega$. Similarly as in the proof of ([5], Prop. 8.5.17) it can be verified that $\mu(\omega)$ is a measure on β_T for P-a.e. $\omega \in \Omega$. It can be also verified that for every $A \in \beta_T$ a mapping $\Omega \ni \to \mu(\omega)(A) \in \mathbb{R}^+$ is a random variable such that $\mu(\omega)((0,T]) \leq 8\lambda^2$ for P-a.e $\omega \in \Omega$. By Itô's formula and Doob's inequality one obtains

$$E\left(N_i^n(t) - N_i^n(s)\right)^{2k} =$$

$$E\left(\int_{s}^{t} dN_{i}^{n}(u)\right)^{2k} = k(k-1)E\int_{s}^{t} \left(\int_{s}^{\tau} dN_{i}^{n}(u)\right)^{2(k-1)} d\langle N_{i}^{n}\rangle_{\tau}$$

$$\leq k(k-1)\left[E\sup_{s\leq\tau\leq t} \left(\int_{s}^{\tau} dN_{i}^{n}(u)\right)^{4(k-1)}\right]^{\frac{1}{2}}\left[E\left(\int_{s}^{t} d\langle N_{i}^{n}\rangle_{\tau}\right)^{2}\right]^{\frac{1}{2}} \leq$$

$$\leq C_{k}\left[E\left(\int_{s}^{t} dN_{i}^{n}(u)\right)^{4(k-1)}\right]^{\frac{1}{2}}\left[E\left(\int_{s}^{t} d\langle N_{i}^{n}\rangle_{\tau}\right)^{2}\right]^{\frac{1}{2}},$$

$$(4k-1)\frac{4(k-1)}{2}$$

where $C_k = k(k-1) \left(\frac{4(k-1)}{4k-3}\right)^{4(k-1)}$ for $0 \le s < t \le T$, $n \ge 1$ and $i = 1, \ldots, m$. Hence, in particular for k = 2 it follows

$$E\left(\mathbf{1}_{A_{i}^{n}(s,t)}\left(N_{i}^{n}(t)-N_{i}^{n}(s)\right)^{4}\right) = \\ \leq C_{2}\left[E\left(\mathbf{1}_{A_{i}^{n}(s,t)}\left(N_{i}^{n}(t)-N_{i}^{n}(s)\right)^{4}\right)\right]^{\frac{1}{2}}\left[E\left(\int_{s}^{t}d\mu\right)^{2}\right]^{\frac{1}{2}},$$

where $A_i^n(s,t) = \{\omega \in \Omega : N_i^n(t) - N_i^n(s) > 0\}$ for fixed $0 \le s < t \le T$, $n \ge 1$ and $i = 1, \ldots, m$. Then

$$\left[E\mathbf{1}_{A_{i}^{n}(s,t)}\left(N_{i}^{n}(t)-N_{i}^{n}(s)\right)^{4}\right]^{\frac{1}{2}} \leq C_{2}\left[E\left(\int_{s}^{t}d\mu\right)^{2}\right]^{\frac{1}{2}},$$

which implies that

$$E\left(N_i^n(t) - N_i^n(s)\right)^4 \le C_2^2 E\left(\int_s^t d\mu\right)^2$$

for $0 \le s < t \le T$, $n \ge 1$ and $i = 1, \ldots, m$. Hence it follows

$$E |M_t^n - M_s^n|^4 = E \left(\sum_{i=1}^m |N_i^n(t) - N_i^n(s)| \right)^4 \le C_m \sum_{i=1}^m E \left(N_i^n(t) - N_i^n(s) \right)^4 \le C_m m C_2^2 E \left(\int_s^t d\mu \right)^2$$

for $0 \leq s < t \leq T$ and $n \geq 1$, where C_m is a positive number depending on m. Finally, there is a positive number $C = \int_0^T m^2(t) dt$ such that

$$E |x_t^n - x_s^n|^4 \le 4E |M_t^n - M_s^n|^4 + 4E \left| \int_s^t f_\tau^n d\tau \right|^4$$
$$\le 4C_m m C_2^2 E \left(\int_s^t d\mu \right)^2 + 4C^2 (t-s)^2 \le E \left[2C_2 \sqrt{mC_m} \int_s^t d\mu + 2C(t-s) \right]^2$$
$$= E |\Gamma(t) - \Gamma(s)|^2,$$

for $0 \le s < t \le T$ and $n \ge 1$, where $\Gamma(t) = 2C_2\sqrt{mC_m}\int_0^t d\mu + 2Ct$. Hence, by Doob's inequality it follows

$$P(\{|x_t^n - x_s^n| \ge \eta\}) \le \frac{1}{\eta^4} E|x_t^n - x_s^n|^4 \le \frac{1}{\eta^4} E|\Gamma(t) - \Gamma(s)|^2$$

134

for $\eta > 0, \ 0 \le s < t \le T$ and $n \ge 1$. Finally, let us recall that $|x_t^n| \le \lambda$ a.s. for $0 \le t \le T$ and $n \ge 1$ with $\lambda = L + \int_0^T m(t)dt$. Therefore, for every $N \ge 1$ one has $P(\{|x_0^n| > N\}) \le \lambda/N$ for $n \ge 1$. Then $\sup_{n\ge 1} P(\{|x_0^n| > N\}) \to 0$ as $N \to \infty$. Therefore, for every $\varepsilon > 0$ there is a > 0 such that $P(\{|x_0^n| > n\}) \le \varepsilon$ for $n \ge 1$. Then by virtue of Theorem 5.1 a sequence $(x^n)_{n=1}^\infty$ is tight. \Box

We can prove now the existence of continuous weak solutions to BSDI(F,H).

Theorem 5.4. Let $F : [0,T] \times \mathbb{R}^m \to Cl(\mathbb{R}^m)$ and $H : \mathbb{R}^m \to Cl(\mathbb{R}^m)$ satisfy conditions (B). Then BSDI(F,H) possesses a continuous weak solution.

Proof. By Michael's and Rybinski's continuous selection theorems (see [8], Th. II.4.1 and [15], Th. 2) there exist a continuous selector h of H and a Carathéodory type selector $f:[0,T] \times \mathbb{R}^m \to \mathbb{R}^m$ of coF. Let $\mathcal{P} = (\Omega, \mathcal{F}, P)$ be a probability space such that there is a d-dimensional Brownian motion B defined on this space. Let $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ be a natural augmented filtration of B. Let $\xi \in \mathcal{B}_\lambda$ be a fixed point of h, where \mathcal{B}_λ is a closed ball of \mathbb{R}^m centered at the origin with the radius $\lambda = L + \int_0^T m(t)dt$. Define on $\mathcal{P}_{\mathbb{F}} = (\Omega, \mathcal{F}, P, \mathbb{F})$ a sequence $(x^n)_{n=1}^{\infty}$ of stochastic processes $x^n = (x_t^n)_{0\leq t\leq 2T}$ such that $x_t^n = \xi$ a.s. for $t \in [T, 2T]$ and $x_t^n = E[h(\xi) + \int_t^T f(\tau, x_{\tau+T/n}^n d\tau |\mathcal{F}_t]$ a.s. for $0 \leq t \leq T$ and n = 1, 2... Let us observe that for every $n \geq 1$ a process x^n is defined step by step begining with the interval [T - T/n, T]. For example, for $t \in [T - T/n, T]$ we have $x_t^n = E[h(\xi) + \int_t^T f(\tau, \tilde{x}_{\tau+T/n}^n d\tau |\mathcal{F}_t]$ a.s. with $\tilde{x}_{\tau+T/n}^n = E[h(\xi) + \int_{\tau+T/n}^T f(u, \xi)du |\mathcal{F}_{\tau+T/n}]$ because $\tau + T/n \in [T - T/n, T]$. Let us observe that x^n is for every $n \geq 1$ a continuous process because of ([14], Corollary IV.1) a process $M^n = (M_t^n)_{0\leq t\leq T}$ defined by

$$M_t^n = E\left[h(\xi) + \int_0^T f(\tau, x_{\tau+T/n}^n d\tau | \mathcal{F}_t\right] - E\left[h(\xi) + \int_0^T f(\tau, x_{\tau+T/n}^n d\tau | \mathcal{F}_0\right]$$

is a continuous \mathbb{F} -martingale for every $n \geq 1$. Similarly as in the proof of Proposition 5.3 we can verify that the sequence $(x^n)_{n=1}^{\infty}$ is tight. Then by ([6], Th. I.2.7) there are a probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$, a sequence $(\tilde{x}^{n_k})_{k=1}^{\infty}$ of continuous *m*-dimensional stochastic processe $(\tilde{x}_t^{n_k})_{0\leq t\leq 2T}$ and a continuous stochastic process $\tilde{x} = (\tilde{x}_t)_{0\leq t\leq 2T}$ such that $P(x^{n_k})^{-1} = P(\tilde{x}^{n_k})^{-1}$ for $k \geq 1$ and $\sup_{0\leq t\leq 2T} |\tilde{x}_t^{n_k} - \tilde{x}_t| \to 0$ a.s. as $k \to \infty$. Let $\tilde{\mathcal{F}}_t = \bigcap_{\varepsilon>0} \sigma[\tilde{x}_u : u \leq t+\varepsilon]$ and let $\phi : C_T \to \mathbb{R}$ be a continuous and bounded function such that ϕ is $\beta_s(C_T)$ -measurable, where $\beta_s(C_T) = \rho_s^{-1}(\beta(C_T))$ with $\rho_s(x) = x(s \land u)$ for $x \in C_T$ and $u \in [0, T]$. Similarly as in the proof of Proposition 5.3 we can verify that $|x_t^n| \leq \lambda$ a.s. for $0 \leq t \leq T$ and $n \geq 1$, where $\lambda = L + \int_0^T m(t) dt$. Hence by the properties of \tilde{x}^n we also have $|\tilde{x}_t^n| \leq \lambda$ a.s. for $0 \leq t \leq T$ and $n \geq 1$. Let \mathcal{B}_{λ} be a closed ball of \mathbb{R}^m such as above and let $g : \mathbb{R}^m \to \mathbb{R}^m$ be a continuous extension of a mapping $I : \mathcal{B}_{\lambda} \to \mathbb{R}^m$ defined by I(x) = x for $x \in \mathcal{B}_{\lambda}$. We have $|g(x)| \leq \lambda$ for $x \in \mathbb{R}^m$, $g(x_t^n) = x_t^n$ and $g(\tilde{x}_t^n) = \tilde{x}_t^n$ a.s. for $0 \leq t \leq T$ and $n \geq 1$. Therefore,

$$0 = E\left\{\phi(x^{n})\left(x_{s}^{n} - E[x_{t}^{n} + \int_{s}^{t} f(\tau, x_{\tau+T/n}^{n})d\tau|\mathcal{F}_{s}]\right)\right\}$$
$$= E\left\{E[\phi(x^{n})\left(x_{s}^{n} - x_{t}^{n} - \int_{s}^{t} f(\tau, x_{\tau+T/n}^{n})d\tau|\mathcal{F}_{s}]\right)\right\}$$
$$= E\left\{\phi(x^{n})\left(g(x_{s}^{n}) - g(x_{t}^{n}) - \int_{s}^{t} f(\tau, x_{\tau+T/n}^{n})d\tau\right)\right\}$$
$$= \tilde{E}\left\{\phi(\tilde{x}^{n})\left(g(\tilde{x}_{s}^{n}) - g(\tilde{x}_{t}^{n}) - \int_{s}^{t} f(\tau, \tilde{x}_{\tau+T/n}^{n})d\tau\right)\right\}$$
$$= \tilde{E}\left\{\phi(\tilde{x}^{n})\left(x_{s}^{n} - \tilde{x}_{t}^{n} - \int_{s}^{t} f(\tau, \tilde{x}_{\tau+T/n}^{n})d\tau\right)\right\}$$

for $0 \le s \le t \le T$ and $n \ge 1$. Hence, it follows

$$\begin{split} \tilde{E} \left\{ \phi(\tilde{x}) \left(\tilde{x}_s - \tilde{x}_t - \int_s^t f(\tau, \tilde{x}_\tau) d\tau \right) \right\} \\ &= \lim_{n \to \infty} \tilde{E} \left\{ \phi(\tilde{x}) \int_s^t [f(\tau, \tilde{x}_\tau) - f(\tau, \tilde{x}_{\tau+T/n})] d\tau \right\} \\ &+ \lim_{n \to \infty} \tilde{E} \left\{ \phi(\tilde{x}) \left[(\tilde{x}_t - \tilde{x}_t^n) - ((\tilde{x}_s - \tilde{x}_s^n)] \right\} + \\ &\lim_{n \to \infty} \tilde{E} \left\{ \phi(\tilde{x}) \left(\int_s^t [f(\tau, \tilde{x}_{\tau+T/n}) - f(\tau, \tilde{x}_{\tau+T/n}^n)] d\tau \right) \right\} \\ &+ \lim_{n \to \infty} \tilde{E} \left\{ (\phi(\tilde{x}) - \phi(\tilde{x}^n)) \left(\tilde{x}_s^n - \tilde{x}_t^n - \int_s^t f(\tau, \tilde{x}_{\tau+T/n}^n) d\tau \right) \right\} = 0 \end{split}$$

for $0 \leq s \leq t \leq T$, because $\sup_{0 \leq t \leq T} |\tilde{x}_t^n - \tilde{x}_t| \to 0$ a.s. as $n \to \infty$, ϕ and a mapping $C_T \ni x \to \int_s^t f(\tau, x_\tau) d\tau \in \mathbb{R}^m$ are continuous on C_T and $|\tilde{x}_s^n - \tilde{x}_t^n - \int_s^t f(\tau, \tilde{x}_{\tau+T/n}^n) d\tau| \leq 2\lambda + \int_0^T m(t) dt < \infty$ a.s. By the Monotone Class Theorem ([14], Th. I.1.8) it follows that

$$\tilde{E}\left\{\psi(\tilde{x})\left(\tilde{E}[\tilde{x}_s-\tilde{x}_t-\int_s^t f(\tau,\tilde{x}_\tau)d\tau|\tilde{\mathcal{F}}_s]\right)\right\}=0$$

for $0 \leq s \leq t \leq T$ and every \mathcal{F}_s -measurable bounded function ψ on C_T , which implies that $\tilde{E}[\tilde{x}_s - \tilde{x}_t - \int_s^t f(\tau, \tilde{x}_\tau) d\tau | \tilde{\mathcal{F}}_s] = 0$ a.s. for every $0 \leq s \leq t \leq T$. Hence by the properties of f, it follows that $\tilde{x}_s \in \tilde{E}[\tilde{x}_t + \int_s^t F(\tau, \tilde{x}_\tau) d\tau | \tilde{\mathcal{F}}_s]$ a.s. for $0 \leq s \leq t \leq T$. Finally, let us observe that $\operatorname{dist}(g(x_T^n), H(x_T^n)) = 0$ a.s. for $n \geq 1$ and a function $\mathbb{R}^m \ni x \to \operatorname{dist}(g(x), H(x)) \in \mathbb{R}$ is continuous. Therefore, we also have $\operatorname{dist}(g(\tilde{x}_T^n), H(\tilde{x}_T^n)) = 0$ a.s. for $n \geq 1$, which implies that $\tilde{x}_T \in H(\tilde{x}_T)$ a.s. \Box

6. WEAK COMPACTNESS OF SOLUTIONS SET

We shall consider here measurable set-valued mappings F and H satisfying conditions (B) and such that H and $F(t, \cdot)$ are continuous for a.e. fixed $t \in [0, T]$. In what follows we shall say that such F and H satisfy conditions (C). Denote by $\mathcal{X}(F, H)$ the set of all continuous weak solutions to BSDI(F,H). We shall show that if F and H satisfy conditions (C) then the set $\mathcal{X}(F, H)$ is weakly compact with respect to the Prohorov's topology. We begin with the following result.

Proposition 6.1. If F and H satisfy conditions (C) and $\{(\mathcal{P}_{\mathbb{F}^n}^n, x^n)\}_{n=1}^{\infty}$ is a sequence of $\mathcal{X}(F, H)$ then there are a complete probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ and a sequence $(\tilde{x}^n)_{n=1}^{\infty}$ of m-dimensional continuous stochastic processes $\tilde{x}^n = (\tilde{x}_t^n)_{0 \leq t \leq T}$ on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ such that $P^n(x^n)^{-1} = \tilde{P}(\tilde{x}^n)^{-1}$ and such that

$$\begin{cases} \tilde{x}_s^n \in \tilde{E}\left[\tilde{x}_t^n + \int_s^t F(\tau, \tilde{x}_\tau^n) d\tau | \tilde{\mathcal{F}}_s^n \right] \\ \tilde{x}_T^n \in H(\tilde{x}_T^n) \end{cases}$$

for $n \ge 1$, where $\tilde{\mathcal{F}}_t^n = \bigcap_{\varepsilon > 0} \sigma[\tilde{x}_u^n : u \le t + \varepsilon]$ for $n \ge 1$ and $t \in [0, T]$.

Proof. Similarly as in the proof of ([6], Th. I.2.7) we define $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ by taking $\tilde{\Omega} = [0, 1)$, $\tilde{\mathcal{F}} = \beta([0, 1))$ and $\tilde{P} = \mu$, where μ is a Lebesgue'a measure on $\tilde{\mathcal{F}}$. Similarly, we define a sequence $(\tilde{x}^n)_{n=1}^{\infty}$ of random variables $\tilde{x}^n : \tilde{\Omega} \to C_T$ such that $P^n(x^n)^{-1} = \tilde{P}(\tilde{x}^n)^{-1}$ for $n \geq 1$. By virtue of Theorem 3.1 for every $n \geq 1$ there are $f^n \in S_{\mathbb{F}^n}(coF \circ x^n)$ and $\xi^n \in S(H \circ x_T^n)$ such that $x_t^n = E^n[\xi^n + \int_t^T f_\tau^n d\tau | \mathcal{F}_t^n]$ a.s. for $0 \leq t \leq T$. Hence it follows that $|x_t^n| \leq \lambda$ a.s. for $n \geq 1$ and $0 \leq t \leq T$, where λ is such as above. Let g and ϕ be such as in the proof of Theorem 5.4. Hence and the properties of Aumann's integral (see [8], Th. II.3.20) we obtain

$$E^{n}\sigma(p,\phi(x^{n})g(x^{n}_{s})) \leq E^{n}\left\{\sigma\left(p,E^{n}[\phi(x^{n})(g(x^{n}_{t})+\int_{s}^{t}F(\tau,x^{n}_{\tau})d\tau|\mathcal{F}^{n}_{s}])\right)\right\}$$
$$=E^{n}\left\{\sigma\left(p,\phi(x^{n})(g(x^{n}_{t})+\int_{s}^{t}F(\tau,x^{n}_{\tau})d\tau)\right)\right\}$$

for $p \in \mathbb{R}^m$, $n \geq 1$ and $0 \leq s \leq t \leq T$, where $\sigma(p, \cdot)$ is a support function on \mathbb{R}^m . But x^n and \tilde{x}^n have the same distributions and a function defined by superpositions of $\sigma(p, \cdot)$, ϕ , g and $F(t, \cdot)$ is continuous and bounded on C_T . Then the last inequality implies

$$\tilde{E}\sigma(p,\phi(\tilde{x}^n)g(\tilde{x}^n_s)) \le \tilde{E}\left\{\sigma\left(p,\phi(\tilde{x}^n)(g(\tilde{x}^n_t) + \int_s^t F(\tau,\tilde{x}^n_\tau)d\tau)\right)\right\}$$

for $p \in \mathbb{R}^m$, $n \ge 1$ and $0 \le s \le t \le T$. Therefore, for $n \ge 1$ and $0 \le s \le t \le T$ one has $\tilde{E}[\Phi(\tilde{x}^n)\tilde{x}^n_s] \in \tilde{E}\left\{\Phi(\tilde{x}^n)\left(\tilde{E}[\tilde{x}^n_t + \int_s^t F(\tau, \tilde{x}^n_\tau)d\tau\right)\right\}$. Let $\tilde{f}^n \in S_{\tilde{\mathbf{F}}^n}(coF \circ \tilde{x}^n)$ be such that

$$\tilde{E}\left\{\phi(\tilde{x}^n)\left(\tilde{x}^n_s-\tilde{x}^n_t-\int_s^t\tilde{f}^n_\tau)d\tau\right)\right\}=0$$

for $n \geq 1$ and $0 \leq s \leq t \leq T$. Hence, similarly as in the proof of Theorem 5.4, it follows that $\tilde{x}_s^n = \tilde{E}[\tilde{x}_t^n + \int_s^t \tilde{f}_\tau^n d\tau | \tilde{\mathcal{F}}_s^n]$ for $n \geq 1$ and $0 \leq s \leq t \leq T$. Therefore \tilde{x}^n satisfies the first condition of (9). Similarly as in the proof of Theorem 5.4 we also get $\tilde{x}_T^n \in H(\tilde{x}_T^n)$ a.s. for $n \geq 1$.

We can prove now the main result of the section.

Theorem 6.2. If F and H satisfy conditions (C) then $\mathcal{X}(F, H)$ is nonempty weakly compact with respect to the convergence in distributions.

Proof. By virtue of Theorem 5.4 we have $\mathcal{X}(F, H) \neq \emptyset$. By virtue of Proposition 6.1 for every sequence $\{(\mathcal{P}_{\mathbb{F}^n}^n, x^n)\}_{n=1}^{\infty}$ of $\mathcal{X}(F, H)$ there are a complete probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ and a sequence $(\tilde{x}^n)_{n=1}^{\infty}$ of *m*-dimensional continuous stochastic processes $\tilde{x}^n = (\tilde{x}_t^n)_{0 \leq t \leq T}$ on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ such that $P^n(x^n)^{-1} = \tilde{P}(\tilde{x}^n)^{-1}$ and such that conditions (9) are satisfied. By virtue of Proposition 5.3 a sequence $(\tilde{x}^n)_{n=1}^{\infty}$ is tight, which implies the tightness of a given sequence $(x^n)_{n=1}^{\infty}$. Then there is a subsequence $(x^{n_k})_{k=1}^{\infty}$ converging in distributions to a probability measure \mathcal{P} on $\beta(C_T)$ as $k \to \infty$. By virtue of ([6], Th. I.2.7) there are a complete probability space, denoted again by $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ and a sequence $(\tilde{x}^{n_k})_{k=1}^{\infty}$ of *m*-dimensional continuous stochastic processes $\tilde{x}^{n_k} = (\tilde{x}_t^{n_k})_{0 \leq t \leq T}$ and a continuous process $\tilde{x} = (\tilde{x}_t)_{0 \leq t \leq T}$ on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ such that $P(x^{n_k})^{-1} = P(\tilde{x}^{n_k})^{-1}$ for $k \geq 1$, $P(\tilde{x})^{-1} = \mathcal{P}$ and $\sup_{0 \leq t \leq T} |\tilde{x}_t^{n_k} - \tilde{x}_t| \to 0$ a.s. as $k \to \infty$. Let $\tilde{\mathcal{F}}_t = \bigcap_{\varepsilon > 0} \sigma[\tilde{x}_u : u \leq t + \varepsilon]$ and let $\phi : C_T \to \mathbb{R}$ be a continuous and bounded function such that ϕ is $\beta_s(C_T)$ -measurable, where $\beta_s(C_T)$ is such as above. Similarly as in the proofs of Theorem 5.4 and Proposition 6.1 we get

$$\tilde{E}(\phi(\tilde{x})\tilde{x}_s) \in \tilde{E}\left(\phi(\tilde{x})\tilde{E}[\tilde{x}_t + \int_s^t F(\tau, \tilde{x}_\tau)d\tau | \tilde{\mathcal{F}}_s]\right)$$

for $0 \leq s \leq t \leq T$. Hence by virtue of Theorem 3.1 there is $\tilde{f} \in S_{\tilde{\mathbf{I}}}(coF \circ \tilde{x})$ such that

$$\tilde{E}\left(\tilde{E}\left[\phi(\tilde{x})(\tilde{x}_s - \tilde{x}_t - \int_s^t \tilde{f}_\tau d\tau)|\tilde{\mathcal{F}}_s\right]\right) = 0$$

for $0 \le s \le t \le T$, which implies that

$$\tilde{E}\left(\phi(\tilde{x})(\tilde{x}_s - \tilde{x}_t - \int_s^t \tilde{f}_\tau d\tau)\right) = 0$$

for $0 \leq s \leq t \leq T$. Hence, similarly as in the proof of Theorem 5.4 it follows that $\tilde{x}_s = \tilde{E}[\tilde{x}_t + \int_s^t \tilde{f}_\tau d\tau)|\tilde{\mathcal{F}}_s]$ a.s. for every $0 \leq s \leq t \leq T$. Then $\tilde{x}_s \in \tilde{E}[\tilde{x}_t + \int_s^t F(\tau, \tilde{x}_\tau) d\tau)|\tilde{\mathcal{F}}_s]$ a.s. for $0 \leq s \leq t \leq T$. Similarly as in the proof of Proposition 5.3 we also get $\tilde{x}_T \in H(\tilde{x}_T)$ a.s. Then there is a subsequence $(x^{n_k})_{k=1}^{\infty}$ of a sequence $(x^n)_{n=1}^{\infty}$ converging in distributions to a solution \tilde{x} to BSDI(F,H) on a complete filtered probability space $\mathcal{P}_{\tilde{\mathbf{F}}} = (\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P}, \tilde{\mathbf{F}})$ with a filtration $\tilde{\mathbf{F}} = (\tilde{\mathcal{F}}_t)_{0 \leq t \leq T}$. Thus $\mathcal{X}(F, H)$ is weakly compact with respect to the convergence in distributions.

REFERENCES

- P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York Toronto, 1976.
- J.M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44: 384–404, 1973.
- [3] R. Buckdahn, H.J. Engelbert and A. Răşcanu, On weak solutions of backward stochastic differential equations, *Theory Probab. Appl.*, 49: 16–50,2000.
- [4] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingale of multivalued functions, J. Math. Anal., 7:149–182, 1977.
- [5] Sh. Hu and N.S. Papageourgiou, Handbook of Multivalued Analysis I, Kluwer Acad. Publ. Dordrecht-Boston, 1997.
- [6] N.Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holand Publ., Amsterdam, 1981.
- [7] N.E. Kaoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7(1):1–71, 1977.
- [8] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., New York, 1991.
- [9] M. Kisielewicz, Tightness of continuous stochastic processes, Disc. Math. Probability and Statistics, 27(1)), 2007(in press).
- [10] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Univ. Press, New York, 1990
- [11] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Polon. Acad. Sci., 13:397–403, 1965.
- [12] E. Michael, Continuous selections I, Ann. Math., 63:361 382, 1956.
- [13] E. Pardoux and S. Peng, Adapted solutions of a backward stochastic differential equation, System Control Lett., 14:55–61, 1990.
- [14] PH. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin Heildelberg, 1990.
- [15] L. Rybiński, On Carathéodory type selections, Fund. Math., 125:187–193, 1985.