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ABSTRACT. In this paper we consider strongly nonlinear second order impulsive evolution inclu-

sions. We provide the existence results for the Cauchy problems with convex and nonconvex valued

right hand sides. The compactness of the solution set in the convex case is proved. Applications to

a distributed parameter control system with a priori feedback and to a hyperbolic hemivariational

inequality with impulses are provided.
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1. INTRODUCTION

In this paper we study second order evolution inclusions with impulses considered

in the framework of an infinite dimensional evolution triple of spaces. The inclusions

are governed by pseudomonotone coercive damping operator and linear continuous

operator depending on solution. Our purpose is to provide results on the existence of

solutions to the Cauchy problems for such inclusions with convex and nonconvex va-

lued right hand sides. We also demonstrate the compactness of the solution set to the

convex problem. As an application we present two examples which lead to impulsive

evolution inclusions of second order. In the first example we deal with a distributed

parameter system governed by a nonlinear hyperbolic equation with a priori feedback.

The second example concerns a dynamical hemivariational inequality arising from a

contact problem in viscoelasticity. The main feature of the hemivariational inequality

is a nonmonotone multivalued term which is expressed by the Clarke subdifferential

of a nonsmooth and nonconvex superpotential. For more information on models

described by hemivariational inequalities and on mathematical results, we refer to

Panagiotopoulos [20], Naniewicz and Panagiotopoulos [18], Migórski and Ochal [16],

[17] and Ochal [19].

Recently the impulsive differential equations and inclusions have been studied by

several authors. This is due to the fact that many real phenomena and processes in
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mechanics, biology, physics, chemistry, biotechnology, etc. are characterized by the

situation that at certain instants in time, the system parameters (e.g. displacement,

velocities) undergo rapid changes. The duration of these changes is often neglected

and it is assumed that the changes are represented by parameter jumps. One of

natural tools for mathematical modeling and simulation of such phenomena is the

theory of impulsive differential equations. This theory has started in the 1990s (cf.

[11]) and today it covers various kind of problems which are motivated by numerous

applications.

The impulsive evolution equations and inclusions for the first order problems have

been studied recently by Liu [12] by using the semigroup approach, by Ahmed in a

series of papers [1, 2, 3] and by Sattayatham [22] in the framework of evolution triple

with applications to optimal control. The results for the second order impulsive

systems can be found e.g. in Hernandez [10] who used the cosine function theory

via semigroup method, in Benchohra et al. [4] for inclusions in finite dimensional

spaces, in Benchohra and Ouahab [5] and Yong-Kui and Wang-Tong [23] for functional

differential inclusions by a fixed point approach. In all papers mentioned above the

jumps sizes were single-valued. Multivalued jump operators for problems described

by functional differential inclusions of first order were considered by Benedetti [6].

For related results on second order inclusions without impulses we refer, among other

papers, to Denkowski et al. [9], Papageorgiou and Yannakakis [21] and Migórski

[13, 14].

To our knowledge the impulsive second order evolution inclusions with multi-

valued jump operators treated in the present paper have not been considered in the

literature. We mention that the model with multivalued jump sizes may arise in a

control problem where we want to control the jump sizes in order to achieve given

objectives. Further properties of the solution set of second order impulsive inclusion

and the corresponding optimal control problems will be studied elsewhere.

The paper is organized as follows. In Section 2 we recall definitions which will

be used later. In Section 3 we deliver the existence results for impulsive evolution

inclusions of second order and, under an additional assumption on the closedness

of the graphs of jump operators, we establish the compactness of the solution set.

Finally, in Section 4 we present two examples where our results can be applied.

2. PRELIMINARIES

In this section we introduce the notation and recall some definitions needed in

the sequel.

Let H be a separable Hilbert space and let V be a dense subspace of H carrying

the structure of a separable reflexive Banach space with continuous embedding V ⊂
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H. Identifying H with its dual, the triple of spaces (V,H, V ∗) is called an evolution

triple (cf. [9]). Moreover, we assume that the embedding V ⊂ H is compact (hence

also H ⊂ V ∗ compactly).

Given I = [0, T ], 0 < T < +∞, 0 ≤ τ1 < τ2 ≤ T and an evolution triple

(V,H, V ∗), we define

W (τ1, τ2) = {v ∈ L2(τ1, τ2;V ) : v̇ ∈ L2(τ1, τ2;V
∗)},

where the time derivative is understood in the sense of vector-valued distributions.

Endowed with the norm ‖v‖W (τ1,τ2) = ‖v‖L2(τ1 ,τ2;V )+‖v̇‖L2(τ1,τ2;V ∗), the space W (τ1, τ2)

becomes a separable, reflexive Banach space. It is well known (cf. [9]) that the

space W (τ1, τ2) is embedded continuously in C(τ1, τ2;H) (the space of continuous

functions on [τ1, τ2] with values in H), i.e. every element of W (τ1, τ2), after a possible

modification on a set of measure zero, has a unique continuous representative in

C(τ1, τ2;H). Moreover, since V is embedded compactly in H, then so does W (τ1, τ2)

into L2(τ1, τ2;H) (cf. [9]). We denote by ‖ · ‖, | · | and ‖ · ‖V ∗ the norms in V , H and

V ∗, respectively. The duality brackets for the pair (V, V ∗) is denoted by 〈·, ·〉.

Let D = {t1, . . . , tm} be a finite set of points such that

0 = t0 < t1 < t2 < . . . < tm < tm+1 = T.

The elements of D are called impulsive points. In what follows, we need the following

space of piecewise continuous functions

PC(I;V ) = {v : I → V such that v is continuous at t ∈ I \D, v is left

continuous at t ∈ D, the right limits v(t+i ) exist for i = 1, . . . , m}.

Evidently, PC(I;V ) is a Banach space with norm ‖v‖PC(I;V ) = supt∈I ‖v(t)‖. Anal-

ogously we define the space PC(I;H) furnished with the supremum norm.

Let σi = (ti, ti+1) for i = 0, 1, . . . , m. We define

PW (I) = {v : I → V such that v|σi
∈ W (σi) for i = 1, . . . , m}

which becomes a Banach space with norm ‖v‖PW (I) =
m∑

i=0

‖v|σi
‖W (σi).

Let (Ω,Σ) be a measure space, X be a separable Banach space and let 2X be a

family of all subsets of X. A multifunction F : Ω → 2X is called graph measurable

if Gr F = {(ω, x) ∈ Ω × Y : x ∈ F (ω)} ∈ Σ × B(X) with B(X) being the Borel

σ-field of X. It is said to be measurable if for each closed set C ⊂ X, the set

F−(C) = {ω ∈ Ω ; F (ω) ∩ C 6= ∅} ∈ Σ (cf. Section 4.2 of [8]).

Let X and Y be Banach spaces. A multifunction F : X → 2Y \ {∅} is lsc (usc,

respectively) if for C ⊂ Y closed, the set F+(C) = {x ∈ X : F (x) ⊂ C} (F−(C) =
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{x ∈ X : F (x)∩C 6= ∅}, respectively) is closed in X. F is bounded on bounded sets

if F (B) = ∪x∈BF (x) is a bounded subset of Y for all bounded sets B in X.

Let Y be a reflexive Banach space. An operator T : Y → Y ∗ is pseudomonotone

if yn → y0 weakly in Y and lim sup〈Tyn, yn − y0〉 ≤ 0 imply that 〈Ty0, y0 − y〉 ≤

lim inf〈Tyn, yn − y〉 for all y ∈ Y . It is said to be demicontinuous if yn → y0 in Y

implies Tyn → Ty0 weakly in Y ∗.

Given a Banach space (X, ‖ · ‖X), the symbol w-X is always used to denote the

space X endowed with the weak topology. By L(X,X∗) we denote the class of linear

and bounded operators from X to X∗. If U ⊂ X, then we write ‖U‖X = sup{‖x‖X :

x ∈ U}.

Finally, we recall the definitions of the generalized directional derivative and the

generalized gradient of Clarke for a locally Lipschitz function h : X → R, where X is

a Banach space (see [7]). The generalized directional derivative of h at x ∈ X in the

direction v ∈ X, denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x, t↓0

h(y + tv) − h(y)

t
.

The generalized gradient of h at x, denoted by ∂h(x), is a subset of a dual space X ∗

given by ∂h(x) = {ζ ∈ X∗ : h0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X}.

3. IMPULSIVE INCLUSIONS

In this section we provide main results of the paper on existence of solutions to

the Cauchy problems for evolution inclusions considered in a framework of evolution

triple (V,H, V ∗).

Let us consider the following impulsive second order evolution inclusion

(3.1)





ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) for t ∈ I \D

u(0) = u0, u̇(0) = v0

u(t+i ) ∈ u(t−i ) +Gi(u(t
−
i ), u̇(t−i ))

u̇(t+i ) ∈ u̇(t−i ) +Hi(u(t
−
i ), u̇(t−i )) for i = 1, . . . , m.

Here A : I × V → V ∗ is a nonlinear operator, B : V → V ∗ is linear and continuous,

F : I ×H ×H → 2H \ {∅} is a multivalued function, u0 ∈ V , v0 ∈ H, Gi : V ×H →

2V \{∅}, Hi : V ×H → 2H \{∅}, i = 1, . . . , m, are multivalued maps and u(t+i ), u(t−i )

(and u̇(t+i ), u̇(t−i ), respectively) denote the right and left limits of u(t) (and of u̇(t),

respectively) at t = ti. The difference u(t+i )− u(t−i ) (and u̇(t+i )− u̇(t−i ), respectively)

represents the jump in the state u (and its derivative u̇, respectively) at time t = ti

with Gi (and Hi, respectively) determining the size of the jump at time ti.
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Definition 3.1. A function u ∈ PC(I;V ) is called a solution to (3.1) if u̇ ∈ PW (I)∩

PC(I;H) and there exists f ∈ L2(I;H) such that

ü(t) + A(t, u̇(t)) +Bu(t) = f(t)

f(t) ∈ F (t, u(t), u̇(t))

}
for a.e. t ∈ σi, i = 0, 1, . . . , m,

u(0) = u0, u̇(0) = v0 and u(t+i ) = u(t−i ) + ζi, u̇(t
+
i ) ∈ u̇(t−i ) + ηi with ζi ∈

Gi(u(t
−
i ), u̇(t−i )) and ηi ∈ Hi(u(t

−
i ), u̇(t−i )) for all i = 1, . . . , m.

Remark 3.2. If u is a solution to problem (3.1), then (u, u̇) ∈ PC(I;V )×PC(I;H)

and we write u(t−) = u(t) and u̇(t−) = u̇(t) at every point t = ti, i = 1, . . . , m.

We need the following hypotheses on the data.

H(A) : A : I × V → V ∗ is an operator such that

(i) A(·, v) is measurable on I, for every v ∈ V ;

(ii) A(t, ·) is pseudomonotone and demicontinuous, for a.e. t ∈ I;

(iii) ‖A(t, v)‖V ∗ ≤ a(t) + c‖v‖ for a.e. t ∈ I, for all v ∈ V with a ∈ L2
+(I) and c > 0;

(iv) 〈A(t, v), v〉 ≥ c1‖v‖
2 − a1(t) for a.e. t ∈ I, for all v ∈ V with c1 > 0 and

a1 ∈ L1(I).

H(B) : B ∈ L(V, V ∗) is nonnegative and symmetric operator.

H(F ) : F : I ×H ×H → 2H \ {∅} is a multifunction with convex and closed values

such that

(i) F (·, u, v) is measurable on I for all u, v ∈ H;

(ii) Gr F (t, ·, ·) is sequentially closed in H ×H × (w-H) topology for a.e. t ∈ I;

(iii) |F (t, u, v)| ≤ a2(t) + c2(|u|+ |v|) for a.e. t ∈ I, for all u, v ∈ H with a2 ∈ L2
+(I)

and c2 > 0.

H(G,H) : the multifunctions Gi : V × H → 2V \ {∅} and Hi : V ×H → 2H \ {∅}

are bounded on bounded sets, for i = 1, . . . , m.

(H0) : u0 ∈ V , v0 ∈ H.

The following result is a consequence of Theorem 1 of [21] and it will be used in

proving the main result of the paper.

Theorem 3.3. Let 0 ≤ τ1 < τ2 ≤ T . Under hypotheses H(A), H(B), H(F ) and

(H0), the solution set of the problem

(3.2)




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ (τ1, τ2)

u(τ1) = u0, u̇(τ1) = v0

is nonempty, weakly compact in H1(τ1, τ2;V ) and compact in C1(τ1, τ2;H).
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Recall that a function u ∈ L2(τ1, τ2;V ) is a solution to (3.2), if u̇ ∈ W (τ1, τ2) and

there exists f ∈ L2(τ1, τ2;H) such that





ü(t) + A(t, u̇(t)) +Bu(t) = f(t) a.e. t ∈ (τ1, τ2)

f(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ (τ1, τ2)

u(0) = u0, u̇(0) = v0.

We also remark that the statement: u ∈ L2(τ1, τ2;V ) such that u̇ ∈ W (τ1, τ2) is

equivalent to: u ∈ C(τ1, τ2;V ) such that u̇ ∈ W (τ1, τ2).

Theorem 3.4. If hypotheses H(A), H(B), H(F ), H(G,H) and (H0) hold, then

problem (3.1) has a solution.

Proof. We divide the construction of the solution to (3.1) into steps. We solve the

problem in the interval σ0 = (0, t1), then in the interval σ1 = (t1, t2) and so on until

the final interval σm = (tm, T ). More precisely, we proceed in the following way.

1) Consider the following problem without impulses

(3.3)




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ σ0

u(0) = u0, u̇(0) = v0.

¿From Theorem 3.3, applied to the above problem, it follows that (3.3) admits a

solution u(0) ∈ L2(σ0;V ) such that u̇(0) ∈ W (σ0). Hence u(0) ∈ C(σ0;V ) and u̇(0) ∈

C(σ0;H). Thus, the left limits u(0)(t−1 ) and u̇(0)(t−1 ) exist in V and H, respectively

and we define u(0)(t1) = u(0)(t−1 ) ∈ V and u̇(0)(t1) = u̇(0)(t−1 ) ∈ H. By assumption

H(G,H), u(0)(t+1 ) and u̇(0)(t+1 ) are well defined and they are given by

u1 := u(0)(t+1 ) = u(0)(t1) + ζ1, u1 ∈ V,

v1 := u̇(0)(t+1 ) = u̇(0)(t1) + η1, v1 ∈ H,

where ζ1 ∈ G1(u
(0)(t1), u̇

(0)(t1)) and η1 ∈ H1(u
(0)(t1), u̇

(0)(t1)).

2) Consider the following problem without impulses

(3.4)




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ σ1

u(t1) = u1, u̇(t1) = v1.

Using Theorem 3.3 we obtain a solution u(1) to (3.4) such that u(1) ∈ L2(σ1;V ) and

u̇(1) ∈ W (σ1). Therefore u(1) ∈ C(σ1;V ) with u̇(1) ∈ C(σ1;H). Analogously as in

Step 1, we set

u2 := u(1)(t+2 ) = u(1)(t2) + ζ2, u2 ∈ V,

v2 := u̇(1)(t+2 ) = u̇(1)(t2) + η2, v2 ∈ H,

where ζ2 ∈ G2(u
(1)(t2), u̇

(1)(t2)) and η2 ∈ H2(u
(1)(t2), u̇

(1)(t2)).
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3) Further we continue the process and for k = 0, 1, . . . , m, we obtain u(k) ∈

L2(σk;V ) such that u̇(k) ∈ W (σk) and it is a solution to the problem



ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ σk

u(tk) = uk, u̇(tk) = vk,

where

uk = u(k−1)(tk) + ζk, uk ∈ V,

vk = u̇(k−1)(tk) + ηk, vk ∈ H,

with ζk ∈ Gk(u
(k−1)(tk), u̇

(k−1)(tk)) and ηk ∈ Hk(u
(k−1)(tk), u̇

(k−1)(tk)) for k = 1, . . . , m.

Now we define the function u : I → V by

u(t) =





u(0), t ∈ [0, t1]

u(1), t ∈ (t1, t2]

... ...

u(m), t ∈ (tm, T ].

It is easy to see that u ∈ PC(I;V ) with u̇ ∈ PW (I)∩PC(I;H) is a solution to (3.1).

The proof is complete.

In what follows we establish the compactness of the solution map to (3.1). We

need to strengthen the conditions on the multifunctions defining the jumps sizes.

H(G,H)1 : the multifunctions Gi : V × H → 2V \ {∅}, Hi : V × H → 2H \ {∅}

satisfy H(G,H), GrGi is closed in H ×H × (w-V ) topology and GrHi is closed in

H ×H × (w-H) topology, for i = 1, . . . , m.

Let S : V ×H → 2PC1(I;H) be a solution map to (3.1), i.e. the multifunction defined

by

S(u0, v0) = {u : u is a solution to (3.1)},

where PC1(I;H) = {v ∈ PC(I;H) : v̇ ∈ PC(I;H)}.

Proposition 3.5. Under hypotheses H(A), H(B), H(F ), H(G,H)1 and (H0), the

solution set S(u0, v0) is a nonempty compact subset of PC1(I;H).

Proof. Let (u0, v0) ∈ V × H and {un} ⊂ S(u0, v0). The nonemptiness follows from

Theorem 4. In the following steps we find a subsequence of {un} and constract its

limit.
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1) Define u
(0)
n = un|σ0

. Then u
(0)
n ∈ C(σ0;V ) with u̇

(0)
n ∈ W (σ0) solves the

problem without impulses

(3.5)




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ σ0

u(0) = u0, u̇(0) = v0.

¿From Theorem 3.3, applied to (3.5), there exist a subsequence {u
(0)
nk } of {u

(0)
n } and

u(0) ∈ C(σ0;V ) with u̇(0) ∈ W (σ0) ⊂ C(σ0;H) such that

u(0)
nk

→ u(0) in C1(σ0;H), as k → ∞

and u(0) is a solution to (3.5). For simplicity of notation, we denote the subsequence

{unk
} of {un} ⊂ S(u0, v0) by the same symbol {un}. Subsequently, we define {un1} ⊂

V and {vn1} ⊂ H by

un1 = u(0)
n (t1) + ζn1, vn1 = u̇(0)

n (t1) + ηn1,

where

(3.6) ζn1 ∈ G1(u
(0)
n (t1), u̇

(0)
n (t1)), ηn1 ∈ H1(u

(0)
n (t1), u̇

(0)
n (t1)).

Since G1 and H1 are bounded-valued multifunctions, {ζn1} and {ηn1} are bounded

in V and H, respectively, uniformly with respect to n. Passing to a subsequence, if

necessary, we may assume

ζn1 → ζ1 weakly in V,

ηn1 → η1 weakly in H

with ζ1 ∈ V and η1 ∈ H. Using the convergences

u(0)
n (t1) → u(0)(t1), u̇(0)

n (t1) → u̇(0)(t1) both in H

and the closedness of the graphs of G1 and H1 in suitable topologies (cf. H(G,H)1),

from (3.6) we deduce

ζ1 ∈ G1(u
(0)(t1), u̇

(0)(t1)), η1 ∈ H1(u
(0)(t1), u̇

(0)(t1)).

Hence, putting

u1 = u(0)(t1) + ζ1, v1 = u̇(0)(t1) + η1,

we have

un1 → u1, vn1 → v1 both in H, as n→ ∞.

2) We define u
(1)
n = un|σ1

. Then u
(1)
n ∈ C(σ1;V ) is such that u̇

(1)
n ∈ W (σ1) and

it is a solution of the problem without impulses

(3.7)




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ σ1

u(t1) = u1, u̇(t1) = v1.
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Again from Theorem 3.3, there exist a subsequence {u
(1)
nk } of {u

(1)
n } and u(1) ∈

C(σ1;V ) with u̇(1) ∈ W (σ1) ⊂ C(σ1;H) such that

(3.8) u(1)
nk

→ u(1) in C1(σ1;H), as k → ∞

and u(1) is a solution to problem (3.7). We denote the subsequence {unk
} of {un} ⊂

S(u0, v0) again by {un}. Next, we define {un2} ⊂ V and {vn2} ⊂ H by

un2 = u(1)
n (t2) + ζn2, vn2 = u̇(1)

n (t2) + ηn2

with

ζn2 ∈ G2(u
(1)
n (t2), u̇

(1)
n (t2)), ηn2 ∈ H2(u

(1)
n (t2), u̇

(1)
n (t2)).

By the boundedness of values of G2 and H2 we may suppose ζn2 → ζ2 weakly in V

and ηn2 → η2 weakly in H, where ζ2 ∈ V and η2 ∈ H. Exploiting (3.8) and the

closedness of the graphs of G2 and H2, we obtain

un2 → u2, vn2 → v2 both in H,

where u2 = u(1)(t2) + ζ2, v2 = u̇(1)(t2) + η2 with ζ2 ∈ G2(u
(1)(t2), u̇

(1)(t2)) and η2 ∈

H2(u
(1)(t2), u̇

(1)(t2)).

3) Step by step, we obtain a family of functions {u(i)}m
i=0, where u(i) ∈ C(σi;V ),

u̇(i) ∈ W (σi) such that u(i) is a solution of the following problem




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) a.e. t ∈ σi

u(ti) = ui, u̇(ti) = vi,

for i = 0, 1, . . . , m. Finally, we define the function u∗ : I → V by

u∗(t) =





u(0), t ∈ [0, t1]

u(1), t ∈ (t1, t2]

... ...

u(m), t ∈ (tm, T ].

Then u∗ ∈ PC(I;V ), u̇∗ ∈ PW (I)∩PC(I;H) is a solution to (3.1), i.e. u∗ ∈ S(u0, v0).

It is easy to see that the subsequence of {un} successively chosen in m steps converges

to u∗ in PC1(I;H)-norm. This proves the proposition.

Remark 3.6. Analogously as in Theorem 3.4 and Proposition 3.5 we can prove the

nonemptiness and compactness of the solution set of the following impulsive second
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order evolution inclusion




ü(t) + A(t, u̇(t)) +Bu(t) ∈ F (t, u(t), u̇(t)) for t ∈ I \D

u(0) = u0, u̇(0) = v0

u(s+
i ) ∈ u(s−i ) +Gi(u(s

−
i ), u̇(s−i )) for si ∈ D1

u̇(t+i ) ∈ u̇(t−i ) +Hi(u(t
−
i ), u̇(t−i )) for ti ∈ D2, i = 1, . . . , m,

where D = D1 ∪D2, D1 = {s1, s2, . . . , sm} and D2 = {t1, t2, . . . , tm}.

¿From the existence result for nonconvex second order inclusions without impulses

(cf. Theorem 2 in [21]), we establish a new existence result for problem (3.1) with a

nonconvex set valued map F . The hypothesis on the nonconvex term is as follows.

H(F )1 : F : I ×H ×H → 2H \ {∅} is a multifunction with closed values such that

(i) F (·, ·, ·) is graph measurable;

(ii) F (t, ·, ·) is lsc for a.e. t ∈ I;

(iii) |F (t, u, v)| ≤ a2(t) + c2(|u|+ |v|) for a.e. t ∈ I, for all u, v ∈ H with a2 ∈ L2
+(I)

and c2 > 0.

The proof of the next theorem is analogous to that of Theorem 3.4 and it is

omitted.

Theorem 3.7. Under hypotheses H(A), H(B), H(F )1, H(G,H) and (H0), the prob-

lem (3.1) admits a solution.

We conclude this section by providing an example of the multifunction Gi which

satisfies the hypothesis H(G,H)1. An analogous example can also be given for the

multifunction Hi.

Let Y be a separable reflexive Banach space, let C : V × H → L(Y, V ) and

U : V ×H → 2Y \ {∅}. Define the multifunction G : V ×H → 2V \ {∅} by

(3.9) G(u, v) = {C(u, v)y : y ∈ U(u, v)} =
⋃

y∈U(u,v)

C(u, v)y

for u ∈ V , v ∈ H. We introduce the following hypotheses.

H(C) : C : V ×H → L(Y, V ) is such that

(i) (u, v) → C(u, v) is continuous from H ×H into L(Y, V );

(ii) ‖C(u, v)‖L(Y,V ) ≤ c0(1 + ‖u‖ + |v|) for all (u, v) ∈ V ×H with c0 > 0.

H(U) : U : V ×H → 2Y \ {∅} is such that

(i) Gr U ⊂ V ×H × Y is closed in H ×H × (w-Y );

(ii) ‖U(u, v)‖Y ≤ M for all (u, v) ∈ V ×H with M > 0.
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Lemma 3.8. Under hypotheses H(C) and H(U), the multifunction G : V × H →

2V \ {∅} defined by (3.9) is bounded on bounded sets and its graph is closed in H ×

H × (w-V ).

Proof. It is easy to observe that from H(C)(ii) and H(U)(ii) the multifunction

G is bounded on bounded sets. To show the closedness of the graph of G, let

{(un, vn, wn)} ⊂ GrG be such that un → u, vn → v both in H and wn → w weakly

in V . ¿From the definition of G, we have wn = C(un, vn)yn with yn ∈ U(un, vn). By

H(U)(ii), we may suppose that yn → y weakly in Y with y ∈ U(u, v) (cf. H(U)(i)).

Let h ∈ V ∗. We have

〈C(un, vn)yn − C(u, v)y, h〉 =

= 〈C(un, vn)yn − C(un, vn)y, h〉 + 〈C(un, vn)y − C(u, v)y, h〉 =

= 〈C(un, vn)(yn − y), h〉 + 〈(C(un, vn) − C(u, v))y, h〉 ≤

≤ 〈yn − y, C(un, vn)∗h〉 + ‖C(un, vn) − C(u, v)‖L(Y,V )‖y‖Y ‖h‖V ∗,

where C(un, vn)∗ ∈ L(V ∗, Y ∗) denotes the adjoint operator to C(un, vn). Because

‖C(un, vn)∗h− C(u, v)∗h‖Y ∗ ≤ ‖C(un, vn)∗ − C(u, v)∗‖L(V ∗,Y ∗)‖h‖V ∗ =

= ‖C(un, vn) − C(u, v)‖L(Y,V )‖h‖V ∗ → 0

(by H(C)(i)), we obtain 〈yn − y, C(un, vn)∗h〉 → 0. Thus C(un, vn)yn → C(u, v)y

weakly in V and w = C(u, v)y. Therefore w ∈ G(u, v) which means that GrG is

sequentially closed in H ×H × (w-V ) topology.

4. APPLICATIONS

In this section we present two examples of hyperbolic partial differential equations

with multivalued terms leading to impulsive evolution inclusions of second order to

which our results apply.

Example 1. We consider a distributed parameter system governed by nonlinear

hyperbolic equation with a feedback control.

Let I = [0, T ], 0 < T < ∞, let the set D = {t1, . . . , tm} be a partition of I such

that 0 = t0 < t1 < t2 < . . . < tm < tm+1 = T and let Ω be an open bounded subset of

R
d with boundary Γ = ∂Ω. Let Q = Ω× (I \D) and let BR be a ball in R. Consider
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the following system

(4.1)





∂2u

∂t2
(x, t) −

d∑

k=1

∂

∂xk
ak

(
x, t,

∂u

∂t
(x, t),∇

∂u

∂t
(x, t)

)
+

+ a0

(
x, t,

∂u

∂t
(x, t)

)
−

d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

(x, t)
)

=

= f
(
x, t, u(x, t), ∂u

∂t
(x, t)

)
ū(x, t) in Q

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x) in Ω

u = 0 on Γ × (0, T )

|ū(x, t)| ≤ %(t, ‖u(t, ·)‖L2(Ω)) a.e. in Q

u(x, t+i ) ∈ u(x, t−i ) +BR

(
0, gi

(
|u(x, t−i )|, |

∂u

∂t
(x, t−i )|

))

for i = 1, . . . , m
∂u

∂t
(x, t+i ) ∈

∂u

∂t
(x, t−i ) +BR

(
0, hi

(
|u(x, t−i )|, |

∂u

∂t
(x, t−i )|

))

for i = 1, . . . , m

The conditions on the data involved are the following.

H(a) : ak : Ω × I × R × R
d → R, k = 1, . . . , d are functions such that

(i) (x, t) → ak(x, t, r, ξ) is measurable for all r ∈ R, ξ ∈ R
d;

(ii) (r, ξ) → ak(x, t, r, ξ) is continuous for a.e. (x, t) ∈ Ω × I;

(iii) |ak(x, t, r, ξ)| ≤ a(x, t) + c(x, t)(|r|+ ‖ξ‖Rd) for a.e. (x, t) ∈ Ω× I, for all (r, ξ) ∈

R × R
d with a ∈ L2

+(Ω × I), c ∈ L∞
+ (Ω × I);

(iv)
∑d

k=1(ak(x, t, r, ξ) − ak(x, t, r, η))(ξk − ηk) ≥ 0 for a.e. (x, t) ∈ Ω × I, all r ∈ R

and all ξ, η ∈ R
d;

(v)
∑d

k=1 ak(x, t, r, ξ)ξk ≥ c1‖ξ‖
2
Rd − a1(x, t) for a.e. (x, t) ∈ Ω × I, all r ∈ R and all

ξ ∈ R
d with a1 ∈ L1(Ω × I), c1 > 0.

H(a0) : a0 : Ω × I × R → R is a function such that

(i) (x, t) → a0(x, t, r) is measurable for all r ∈ R;

(ii) r → ak(x, t, r) is continuous for a.e. (x, t) ∈ Ω × I;

(iii) |a0(x, t, r)| ≤ a2(x, t) + c|r| for a.e. (x, t) ∈ Ω × I, for all r ∈ R with a2 ∈

L1
+(Ω × I), c > 0.

H(a1) : aij ∈ L∞(Ω), aij = aji,
∑d

k=1 aij(x)ξiξj ≥ 0 for a.e. x ∈ Ω and all ξ ∈ R
d.

H(f) : f : Ω × I × R × R → R is a function such that

(i) (x, t) → f(x, t, r, s) is measurable for all r, s ∈ R;

(ii) (r, s) → f(x, t, r, s) is continuous for a.e. (x, t) ∈ Ω × I;

(iii) |f(x, t, r, s)| ≤ a3(x, t) + c(x, t)(|r| + |s|) for a.e. (x, t) ∈ Ω × I, for all r, s ∈ R

with a3 ∈ L2
+(Ω × I), c ∈ L∞

+ (Ω × I).
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H(%) : % : I × R+ → R+ is measurable in t, upper semicontinuous in s ∈ R+ and

%(t, s) ≤ β(t) a.e. on I with β ∈ L∞
+ (I).

H(g, h) : gi, hi : R+ × R+ → R+ are bounded and are upper semicontinuous with

respect to both variables, for i = 1, . . . , m.

In the problem (4.1) the evolution triple consists of the Sobolev spaces V =

H1
0 (Ω), H = L2(Ω) and V ∗ = H−1(Ω). By the Sobolev embedding theorem, we know

that the embeddings V ⊂ H ⊂ V ∗ are compact. We define A : I × V → V ∗ and

B : V → V ∗ by

〈A(t, u), v〉 =

∫

Ω

d∑

k=1

ak(x, t, u,∇v)
∂v

∂xk

dx +

∫

Ω

a0(x, t, u)v dx,

〈Bu, v〉 =

∫

Ω

d∑

i,j=1

aij(x)
∂u

∂xj

∂v

∂xi
dx

for t ∈ I and u, v ∈ V . It can be seen (cf. [21], Section 6) that these operators

satisfy H(A) and H(B), respectively. Next, let f̂ : I ×H ×H → H be the Nemitsky

(superposition) operator corresponding to f , i.e. f̂(t, u, v)(·) = f(·, t, u(·), v(·)) for

t ∈ I, u, v ∈ H. Define U : I ×H → 2L∞(Ω) by

U(t, v) = {u ∈ L∞(Ω) : ‖u‖L∞(Ω) ≤ %(t, |v|)}

for t ∈ I and v ∈ H. Let F : I ×H ×H → 2H be defined by

F (t, u, v) = f̂(t, u, v)U(t, u) =
⋃

y∈U(t,u)

f̂(t, u, v)y

for t ∈ I, u, v ∈ H. Analogously as in [21] we can show that the multifunction F

satisfies H(F ).

Finally, let the multifunctions Gi : V ×H → 2V \ {∅} and Hi : V ×H → 2H \ {∅}

be defined by

Gi(u, v)(·) = BV (0, gi (|u(·)|, |v(·)|)) ,

Hi(u, v)(·) = BH (0, hi (|u(·)|, |v(·)|))

for u ∈ V , v ∈ H, where BV and BH represent balls in V and H, respectively.

We observe that GrGi is closed in H × H × (w-V ) topology for all i = 1, . . . , m.

Indeed, let (un, vn, zn) ∈ GrGi, un → u, vn → v in H and zn → z weakly in V .

So zn ∈ Gi(un, vn) and ‖zn‖ ≤ gi(|un(x)|, |vn(x)|) for a.e. x ∈ Ω. By passing to a

subsequence, we have un(x) → u(x), vn(x) → v(x) a.e. x ∈ Ω. Exploiting the weak

lower semicontinuity of the norm and H(g, h), we have

‖z‖ ≤ lim inf
n

‖zn‖ ≤ lim sup
n

gi(|un(x)|, |vn(x)|) ≤ gi(|u(x)|, |v(x)|)
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for a.e. x ∈ Ω. Hence z ∈ Gi(u, v) which implies the closedness of Gi. Analogously,

we prove that Hi is closed in H × H × (w-H) topology, for i = 1, . . . , m. It is

straighforward to see that H(G,H)1 holds.

Applying the results of previous section, we obtain the following result for weak

solutions to the system under consideration.

Theorem 4.1. If H(a), H(a0), H(a1), H(f), H(%), H(g, h) hold and u0 ∈ H1
0 (Ω),

v0 ∈ L2(Ω), then problem (4.1) has a solution u ∈ PC(I;H1
0(Ω)) with ∂u

∂t
∈ PW (I)∩

PC(I;L2(Ω)) and the set of all solutions is compact in PC1(I;L2(Ω)).

Example 2. In this example we consider a mechanical contact problem involving

a nonmonotone multivalued term. First, we formulate this problem as a hyperbolic

hemivariational inequality with impulses. Then, we associate with the hemivariational

inequality an impulsive evolution inclusion. The existence of solutions to the latter

and, in consequence, the existence of weak solutions to the contact problem will follow

from Theorem 3.4.

Let I = [0, T ], 0 < T < ∞ and let D = {t1, . . . , tm} be such that 0 = t0 < t1 <

t2 < . . . < tm < tm+1 = T . Let Ω be an open bounded subset of R
d with Lipschitz

continuous boundary Γ = ∂Ω. Put Q = Ω × (I \D).

We consider the following problem.

(4.2)
∂2u

∂t2
(t) − div σ(t) = ϕ(t) in Q

(4.3) σ(t) = Cε
(∂u
∂t

(t)
)

+ Gε(u(t)) in Q

(4.4) ϕ(x, t) = ϕ1(x, t) + ϕ2(x, t) in Q

(4.5) u = 0 on ΓD × (I \D)

(4.6) σ(t)n = ψ(t) on ΓN × (I \D)

(4.7) −ϕ1(x, t) ∈ ∂j(x, t, u(x, t)) in Q

(4.8) u(0) = u0,
∂u

∂t
(0) = v0 in Ω

(4.9) u(x, t+i ) ∈ u(x, t−i ) +BR

(
0, gi

(
|u(x, t−i )|, |

∂u

∂t
(x, t−i )|

))

for i = 1, . . . , m

(4.10)
∂u

∂t
(x, t+i ) ∈

∂u

∂t
(x, t−i ) +BR

(
0, hi

(
|u(x, t−i )|, |

∂u

∂t
(x, t−i )|

))
,

for i = 1, . . . , m.
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The system (4.2)–(4.10) serves as a mathematical model for a contact problem in

viscoelasticity with nonmonotone and nonconvex superpotential laws. More precisely,

let us consider a viscoelastic body which occupies the reference configuration Ω ⊂ R
d,

d = 2, 3. We suppose that the boundary Γ is divided into two disjoint measurable

parts ΓD and ΓN such that meas(ΓD) > 0. The body is clamped along ΓD, so the

displacement field vanishes there. We denote by ψ the density of surface tractions

on ΓN . We suppose that the nonmonotone skin effects (e.g. skin friction, adhesive

forces etc.) appear in Ω (cf. [20, 17]). In order to describe such effects we assume

that the volume forces ϕ consist of two parts: ϕ2 is given and ϕ1 is the reaction of

the constraint introducing the skin effects. So we may write ϕ = ϕ1 + ϕ2 (cf. (4.4)),

where ϕ2 is the prescribed external loading and ϕ1 is a possibly multivalued function

of the displacement satisfying (4.7), where ∂j is the Clarke generalized gradient of a

given function j.

We denote by u = (u1, . . . , ud) the displacement vector, by σ = (σij) the stress

tensor and by ε(u) = (εij(u)), εij(u) = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
), the linearized (small) strain

tensor, where i, j = 1, . . . , d. The relation (4.2) is a dynamic equation of motion. We

suppose the viscoelastic constitutive relationship of Kelvin-Voigt type (4.3), where C

and G are given viscosity and elasticity functions, respectively. Conditions (4.5) and

(4.6) represent the displacement and traction boundary conditions, respectively while

u0 and u1 in (4.8) denote the initial displacement and the initial velocity, respectively.

Conditions (4.9) and (4.10) are the impulse constraints relations. The classical prob-

lem with impulses is to find a displacement field u : Q → R
d such that (4.2)–(4.10)

hold.

In order to set the above problem in a variational form, we consider Sd the

linear space of second order symmetric tensors on R
d with the inner product and

the corresponding norm σ : τ =
∑

ij σijτij, ‖τ‖2
Sd

= τ : τ , respectively. Let H =

L2(Ω; R d) and H = L2(Ω;Sd) be Hilbert spaces equipped with the inner products

〈u, v〉H =

∫

Ω

u · v dx, 〈σ, τ〉H =

∫

Ω

σ : τ dx.

We denote by V the closed subspace of H1(Ω; Rd) defined by V = {v ∈ H1(Ω; Rd) :

v = 0 on ΓD} and on V we consider the inner product and the corresponding norm

given by

〈u, v〉V = 〈ε(u), ε(v)〉H, ‖v‖ = ‖ε(v)‖H for u, v ∈ V.

Then the spaces (V,H, V ∗) form an evolution triple of spaces.

In the study of the problem (4.2)-(4.10) we use the following assumptions.

H(C) : the viscosity operator C : Q×Sd → Sd satisfies the Carathéodory condition

(i.e. C(·, ·, ε) is measurable on Q for all ε ∈ Sd and C(x, t, ·) is continuous on Sd for

a.e. (x, t) ∈ Q) and
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(i) ‖C(x, t, ε)‖Sd
≤ c1 (b(x, t) + ‖ε‖Sd

) for ε ∈ Sd, a.e. (x, t) ∈ Q with b ∈ L2
+(Q),

c1 > 0;

(ii) (C(x, t, ε1) − C(x, t, ε2)) : (ε1 − ε2) ≥ 0 for all ε1, ε2 ∈ Sd and a.e. (x, t) ∈ Q;

(iii) C(x, t, ε) : ε ≥ c2‖ε‖
2
Sd

for all ε ∈ Sd and a.e. (x, t) ∈ Q with c2 > 0.

H(G) : the elasticity operator G : Ω × Sd → Sd is of the form G(x, ε) = E(x)ε

(Hooke’s law) with a symmetric and positive elasticity tensor E ∈ L∞(Ω), i.e. E =

(gijkl), i, j, k, l = 1, . . . , d with gijkl = gjikl = glkij and gijkl(x)χijχkl ≥ 0 for a.e. x ∈ Ω

and for all symmetric tensors χ = {χij}.

H(j) : j : Q× R
d → R is a function such that

(i) j(·, ·, ξ) is measurable on Q for all ξ ∈ R
d;

(ii) j(x, t, ·) is locally Lipschitz for all (x, t) ∈ Q;

(iii) ‖∂j(x, t, ξ)‖R d ≤ c (1 + ‖ξ‖R d) for all (x, t) ∈ Q, ξ ∈ R
d with c > 0.

In the hypotheses H(j) the symbol ∂j denotes the Clarke subdifferential of j with

respect to the last variable.

H(g, h) : gi, hi : R+×R+ → R+ are bounded and upper semicontinuous with respect

to both variables, for i = 1, . . . , m.

The external loading, boundary tractions and the initial data have the following

regularity.

(H0) : ψ ∈ L2(I;H1/2(ΓN ; R d)), ϕ2 ∈ L2(I;H), u0 ∈ V and u1 ∈ H.

The variational formulation of the problem (4.2)–(4.10) reads as follows: find a

displacement field u : I \ D → V such that u ∈ PC(I;V ), u̇ ∈ PW (I) ∩ PC(I;H)

and

(4.11)





〈ü(t), v〉 + 〈Cε(u̇(t)) + Gε(u(t)), ε(v)〉H+

+

∫

Ω

j0(x, t, u(x, t); v(x)) dx ≥ 〈ψ̃(t), v〉H∗×H

for all v ∈ V and a.e. t ∈ I \D

u(0) = u0, u̇(0) = v0

u(t+i ) ∈ u(t−i ) +BR

(
0, gi

(
|u(t−i )|, |u̇(t−i )|

))
for i = 1, . . . , m

u̇(t+i ) ∈ u̇(t−i ) +BR

(
0, hi

(
|u(t−i )|, |u̇(t−i )|

))
for i = 1, . . . , m,

where 〈ψ̃, v〉H∗×H = 〈ϕ2(t), v〉H + 〈ψ(t), v〉Γ.

We associate with the hemivariational inequality (4.11) an evolution impulsive

inclusion. To this end, let A : I×V → V ∗, B : V → V ∗ and J : I×H → R be defined

by

(4.12) 〈A(t, u), v〉 = 〈C(x, t, ε(u)), ε(v)〉H for u, v ∈ V and t ∈ I,
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(4.13) 〈Bu, v〉 = 〈G(x, ε(u)), ε(v)〉H for u, v ∈ V,

(4.14) J(t, v) =

∫

Ω

j(x, t, v(x)) dx for v ∈ H and t ∈ I.

Lemma 4.2. Under the hypothesis H(C) the operator A : I × V → V ∗ defined by

(4.12) satisfies H(A). Under the assumption H(G) the operator B : V → V ∗ defined

by (4.13) satisfies H(B). Under the assumption H(j) the functional J defined by

(4.14) satisfies

H(J) : J : I ×H → R is a functional such that

(i) J(·, v) is measurable on I for all v ∈ H;

(ii) J(t, ·) is well defined and Lipschitz continuous on bounded subsets of H, for a.e.

t ∈ I;

(iii) |∂J(t, u)| ≤ c̃ (1 + |u|) for a.e. t ∈ I and all u ∈ H with c̃ > 0;

(iv) for a.e. t ∈ I and all u, v ∈ H, we have

J0(t, u; v) ≤

∫

Ω

j0(x, t, u(x); v(x)) dx,

where ∂J(t, u) denotes the Clarke subdifferential of J(t, ·) at a point u ∈ H and

J0(t, u; v) stands for the directional derivative of J(t, ·) at a point u ∈ H in the

direction v ∈ H.

We define the multifunctions Gi : V × H → 2V and Hi : V × H → 2H by

Gi(u, v)(·) = BV (0, gi (|u(·)|, |v(·)|)), Hi(u, v)(·) = BH (0, hi (|u(·)|, |v(·)|)) for u ∈ V ,

v ∈ H. From Example 1, we know that under the condition H(g, h) the hypothesis

H(G,H)1 holds. We also observe that if (H0) is satisfied, then ψ̃ ∈ H∗, u0 ∈ V and

v0 ∈ H.

Consider the following evolution inclusion with impulses.

(4.15)





ü(t) + A(t, u̇(t)) +Bu(t) + ∂J(t, u(t)) 3 ψ̃(t) for t ∈ I \D

u(0) = u0, u̇(0) = v0

u(t+i ) ∈ u(t−i ) +Gi(u(t
−
i ), u̇(t−i ))

u̇(t+i ) ∈ u̇(t−i ) +Hi(u(t
−
i ), u̇(t−i )) for i = 1, . . . , m.

The reason to introduce problem (4.15) is stated in the following lemma. For details

we refer to [15] (cf. also [19]).

Lemma 4.3. Under condition H(J), every solution to problem (4.15) is a solution

to the hemivariational inequality (4.11).

Now, it is clear that defining multifunction F : I ×H ×H → 2H by

(4.16) F (t, u, v) = −∂J(t, u) + ψ̃(t) for t ∈ I, u, v ∈ H
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and using the above notation, we formulate the inclusion (4.15) in the form of (3.1).

Lemma 4.4. If H(J) holds and ψ̃ ∈ H∗, then F given by (4.16) satisfies H(F ).

Proof. The condition H(F )(i) follows from H(J)(i). Since the subdifferential has

nonempty, weakly compact and convex values, the multifunction F is closed and

convex valued. It is also known (cf. Proposition 5.6.10 of [9]) that ∂J(t, ·) is usc from

H into w-H. Hence (cf. Proposition 4.1.14 of [9]) F satisfies H(F )(ii). The condition

H(F )(iii) is a consequence of H(J)(iii).

Summing up, from the result of Section 3, Lemmata 4.2, 4.3, 4.4, we obtain the

following.

Theorem 4.5. If H(C), H(G), H(j), (H0), H(g, h) hold and u0 ∈ H1
0 (Ω), v0 ∈

L2(Ω), then problem (4.2)–(4.10) has a solution u ∈ PC(I;H 1
0(Ω)) with ∂u

∂t
∈ PW (I)∩

PC(I;L2(Ω)) and the set of all solutions is compact in PC1(I;L2(Ω)).
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[13] S. Migórski, Existence and relaxation results for nonlinear second order evolution inclusions,

Discussiones Math., 15:129–148, 1995.
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