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ABSTRACT. We study a nonlinear elliptic problem driven by the p-Laplacian and with a non-

smooth potential function (hemivariational inequality). On the nonsmooth potential we impose

conditions of strong resonance. Following a variational approach based on the nonsmooth criti-

cal point theory and the second deformation theorem, we establish the existence of at least two

nontrivial smooth solutions.
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1. PRELIMINARIES

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. We consider the

following nonlinear elliptic problem with a nonmooth potential (hemivariational in-

equality):

(1.1)











−div(‖Dx(z)‖p−2Dx(z))

−λ1|x(z)|p−2x(z) ∈ ∂j(z, x(z)) a.e. on Z,

x|∂Z = 0, 1 < p < ∞.











Here λ1 > 0 is the principal eigenvalue of (−∆p, W
1,p
0 (Z)) and j(z, x) is a mea-

surable potential function which is locally Lipschitz and in general nonsmooth in the

x ∈ R variable. By ∂j(z, x) we denote the generalized subdifferential of the locally

Lipschitz function x → j(z, x) (see Section 2). Our goal is to prove a multiplicity

result for problem (1.1) under conditions of strong resonance.

To better motivate the work of this paper, let us momentarily restrict ourselves

to the semilinear, smooth framework of the seminal work of Landesman-Lazer [15].

So let f : R → R be a continuous function and consider the following semilinear

elliptic problem

(1.2)

{

−∆x(z) = f(x(z)) a.e. on Z,

x|∂Z = 0.

}
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It is well-known that in order to produce existence and multiplicity results for

problem (1.2), we need to know the asymptotic behavior of the right hand side non-

linearity f . Suppose that f is asymptotically linear at infinity and interacts with the

principal eigenvalue λ1 > 0 of (−∆p, H
1
0 (Z)). So we have

f(x) = λ1x + g(x)

with lim
|x|→∞

g(x)
x

= 0. Then such a problem is called “resonant” (at the first eigenvalue

λ1 > 0). These problems were first studied by Landesman-Lazer [15], who introduced

a sufficient condition for their solvability. Resonant problems arise frequently in me-

chanics. Landesman-Lazer [15] also introduced a classification of resonant problems,

according to the rate of growth of the nonlinearity g as |x| → ∞. So they considered

the following three distinct cases:

(a): lim
x→±∞

g(x) = g± ∈ R and (g+, g−) 6= (0, 0).

(b): lim
x→±∞

g(x) = 0 and lim
x→±∞

G(x) = ±∞, where G(x) =
∫ x

0
g(s)ds.

(c): lim
x→±∞

g(x) = 0 and lim
x→±∞

G(x) ∈ R.

Case (c) is the strongly resonant at infinity case. The term “strongly resonant”

was coined by Bartolo-Benci-Fortunato [5] and of the three cases, this is the most

difficult, because as we will also see in the sequel, in the strongly resonant case, the

Euler functional exhibits a partial lack of compactness.

Resonant problems, were studied in the past primarily within the framework of

semilinear (i.e. p = 2) problems with a smooth potential (i.e. x → F (x) =
∫ x

0
f(s)ds

belongs in C1(R)). We mention the works of Ahmad-Lazer-Paul [1] (they treat case

(b)) and Ambrosetti-Mancini [2], Hess [14], Rabinowitz [18] (who consider cases (a)

and (b)). The strongly resonant case was investigated by Thews [21], Bartolo-Benci-

Fortunato [5], Ward [23], Solimini [19], Lupo-Solimini [16] and more recently by

Costa-Silva [9], Arcoya-Costa [3] and Goncalves-Miyagaki [13], who prove multiplic-

ity results. The study of the corresponding problem for the p-Laplacian differen-

tial operator, is lagging behind. The work of Arcoya-Orsina [4] employs classical

Landesman-Lazer conditions, which preclude strong resonance as this was described

earlier. Similarly the recent work of Bouchala-Drabek [6], extends to a nonlinear

setting a generalized Landesman-Lazer condition first introduced by Tang [20], which

does not incorporate the strongly resonant situation. In addition, both works deal

with the problem of existence of solutions and do not address the question of multi-

plicity of solutions. Finally, there is also the very recent work of Filippakis-Gasinski-

Papageorgiou [10], who treat the strongly resonant case using a different set of hy-

potheses and a different solution method based on an extended version of the Ekeland

variational principle due to Zhong [24]. In contrast here, we use a nonsmooth version

of the second deformation theorem due to Corvellec [8].
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We should mention that hemivariational inequalities provide the right framework

to study several problems in mechanics and engineering. For several such applications,

we refer to the book of Naniewicz-Panagiotopoulos [17].

2. MATHEMATICAL BACKGROUND

Our approach is variational, based on the nonsmooth critical point theory which

uses the subdifferential theory of locally Lipschitz functions. For easy reference, we

recall some basic definitions and facts from these theories, which we will need in the

sequel. Details can be found in Clarke [7] and Gasinski-Papageorgiou [11].

So let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the

duality brackets for the pair (X∗, X). Given a locally Lipschitz function ϕ : X → R,

the generalized directional derivative ϕ0(x; h) of ϕ at x ∈ X in the direction h ∈ X,

is defined by

ϕ0(x; h) = lim sup
x′→x

λ↓0

ϕ(x′ + λh) − ϕ(x′)

λ
,

whereas the generalized subdifferential ∂ϕ(x) of ϕ at x ∈ X, is defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) for all h ∈ X}.

If ϕ ∈ C1(X), then ϕ is locally Lipshitz and ∂ϕ(x) = {ϕ′(x)}. Also, if ϕ : X → R is

continuous, convex, then ϕ is locally Lipschitz and the generalized subdifferential of

ϕ coincides with the subdifferential in the sense of convex analysis, defined by

∂cϕ(x) = {x∗ ∈ X∗ :< x∗, h >≤ ϕ(x + h) − ϕ(x) for all h ∈ X}.

Given a locally Lipschitz function ϕ : X → R, we say that x ∈ X is a critical point

of ϕ, if 0 ∈ ∂ϕ(x). We say that ϕ satisfies the nonsmooth Palais-Smale condition at

level c ∈ R (the nonsmooth PSc-condition for short), if every sequence {xn}n≥1 ⊆ X

such that ϕ(xn) → c and m(xn) = inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)} → 0 as n → ∞, has a

strongly convergent subsequence.

Definition 2.1. If Y is a subset of the Banach space X, a “deformation of Y ” is a

continuous map h : [0, 1]×Y → Y such that h(0, ·) = idY . If V ⊆ Y , then we say that

V is a “weak deformation retract of Y ”, if there exists a deformation h : [0, 1]×Y → Y

such that h(1, Y ) ⊆ V and h(t, V ) ⊆ V for all t ∈ [0, 1].

Given a locally Lipschitz function ϕ : X → R and c ∈ R, we set

ϕ0c
= {x ∈ X : ϕ(x) < c}

and Kc = {x ∈ X : 0 ∈ ∂ϕ(x), ϕ(x) = c}.

The next theorem is a partial extension to a nonsmooth setting of the so-called

“second deformation theorem” (see for example Gasinski-Papageorgiou [12], p. 628)
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and it is due to Corvellec [8]. In fact the result of Corvelle is formulated in the more

general context of metric spaces, for continuous functions, using the so-called weak

slope. For our purposes, it suffices the particular form of the result stated next.

Theorem 2.2. If X is a Banach space, a, b ∈ R, a < b, ϕ : X → R is a locally

Lipschitz function which satisfies the nonsmooth PSc-condition for every c ∈ (a, b),

ϕ has no critical points in ϕ−1(a, b) and the set Ka is discrete or empty then there

exists a deformation h : [0, 1] × ϕ0b
→ ϕ0b

such that

(a): h(t, ·)|Ka
= id|Ka

for all t ∈ [0, 1];

(b): h(1, ϕ0b
) ⊆ ϕ0a

∪ Ka;

(c): ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ0b
.

Finally we recall some basic facts about the spectrum of the negative p-Laplacian

with Dirichlet boundary condition. So we consider the following nonlinear eigenvalue

problem:

(2.1)

{

−div(‖Dx(z)‖p−2Dx(z)) = λ|x(z)|p−2x(z) a.e on Z,

x|∂Z = 0, λ ∈ R, 1 < p < ∞.

}

The least real number λ, denoted by λ1, for which problem (2.1) has a nontriv-

ial solution in W
1,p
0 (Z), is called the principal eigenvalue of (−∆p, W

1,p
0 (Z)) . We

know that λ1 is positive, isolated and simple (i.e. the corresponding eigenspace in

one-dimensional). Moreover, it has a variational characterization using the Rayleigh

quotient, namely

(2.2) λ1 = inf{
‖Dx‖p

p

‖x‖p
p

: x ∈ W
1,p
0 (Z), x 6= 0}.

The infimum is actually realized at the normalized eigenfunction u1. From non-

linear regularity theory (see Gasinski-Papageorgiou [12], p. 737–738), we have that

u1 ∈ C
1,β
0 (Z̄) with 0 < β < 1 and moreover, u1 does not change sign, hence we may

assume that u1(z) ≥ 0 for all z ∈ Z̄. In fact the nonlinear strict maximum principle

of Vazquez [22] implies that u1(z) > 0 for all z ∈ Z. Note that if u ∈ C1
0(Z̄) is an

eigenfunction for any eigenvalue λ 6= λ1, then u much change sign.

If V is a topological complement of Ru1 (i.e. W
1,p
0 (Z) = Ru1 ⊕ V , note that Ru1

is the eigenspace corresponding to λ1 > 0), then because λ1 > 0 is isolated

(2.3) λV = inf[‖Dv‖p
p : v ∈ V, ‖v‖p = 1] > λ1

In our case V = {v ∈ W
1,p
0 (Z) :

∫

Z
vu

p−1
1 dz = 0}. When p = 2, then λV =

λ2 =the second eigenvalue of (−∆, H1
0 (Z))
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3. AUXILIARY RESULTS

The hypotheses on the nonsmooth potential j(z, x) are the following:

H(j) j : Z × R → R is a function such that j(z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z → j(z, x) is measurable;

(ii) for almost all z ∈ Z, x → j(z, x) is locally Lipschitz;

(iii) for every r > 0, there exists ar ∈ L∞(Z)+ such that for almost all z ∈ Z, all

|x| ≤ r and all u ∈ ∂j(z, x), we have

|u| ≤ ar(z);

(iv) there exist functions j± ∈ L1(Z) such that
∫

Z
j±(z)dz ≤ 0 and

lim
x→±∞

j(z, x) = j±(z) uniformly for a.a. z ∈ Z

while lim
|x|→∞

u
|x|p−2x

= 0 uniformly for a.a. z ∈ Z and all u ∈ ∂j(z, x);

(v) there exists t∗ > 0 such that
∫

Z

j(z,±t∗u1(z))dz > 0;

(vi) for almost all z ∈ Z and all x ∈ R, we have

j(z, x) ≤
1

p
(λV − λ1)|x|

p.

Remark 3.1. Because of hypothesis H(j)(iv), problem (1.1) is classified as a strongly

resonant problem. The following nonsmooth locally Lipschitz function satisfies hy-

potheses H(j) but not those of Filippakis-Gasinski-Papageorgiou [10] (for simplicity

we drop the z-dependence):

j(x) =

{

1
p
(λV − λ1)|x|

p if |x| ≤ 1
c
p

1
|x|

− c
p

+ 1
p
(λV − λ1) if |x| > 1,

with c ≥ λV − λ1 > 0. Another possibility is the function

j(x) =

{

1
p
(λV − λ1)|x|

p if |x| ≤ 1

(λV − λ1)
1

p|x|
if |x| > 1.

The Euler functional ϕ : W
1,p
0 (Z) → R for problem (1.1), is defined by

ϕ(x) =
1

p
‖Dx‖p

p −
λ1

p
‖x‖p

p −

∫

Z

j(z, x(z))dz for all x ∈ W
1,p
0 (Z).

We know that ϕ is locally Lipschitz on bounded sets, hence locally Lipschitz. More-

over, if by 〈·, ·〉 we denote the duality brackets for the pair (W−1,p′(Z) = W
1,p
0 (Z)∗,

W
1,p
0 (Z)) (1

p
+ 1

p′
= 1), A : W

1,p
0 (Z) → W−1,p′(Z) is the nonlinear operator defined by

〈A(x), y〉 =

∫

Z

‖Dx‖p−2(Dx, Dy)RNdz for all x, y ∈ W
1,p
0 (Z),
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K : Lp(Z) → Lp′(Z) is defined by

K(x)(·) = |x(·)|p−2x(·) for all x ∈ Lp(Z)

and N : Lp(Z) → 2Lp′ (Z)\{∅} is the multifunction defined by

N(x) = {u ∈ Lp′(Z) : u(z) ∈ ∂j(z, x(z)) a.e. on Z}

then we have

(3.1) ∂ϕ(x) = A(x) − λ1K(x) − N(x) for all x ∈ W
1,p
0 (Z)

(see Clarke [7], p. 83). Recall that by the Sobolev embedding theorem, the Sobolev

space W
1,p
0 (Z) is embedded compactly in Lp(Z).

The next proposition illustrates the partial lack of compactness characterizing

strongly resonant problems, namely the nonsmooth Palais-Smale condition is satisfied

only for a certain range of levels.

Proposition 3.1. If hypotheses H(j) hold, then ϕ satisfies the PSc-condition for

every c < min{−
∫

Z
j+dz,−

∫

Z
j−dz}.

Proof. Let {xn}n≥1 ⊆ W
1,p
0 (Z) be a sequence such that for c < min {−

∫

Z
j+dz,

−
∫

Z
j−dz}, we have

ϕ(xn) → c and m(xn) → c.

Exploiting the fact that the norm functional in a Banach space is weakly lower

semicontinuous and the set ∂ϕ(xn) ⊆ W−1,p′(Z) is weakly compact, by the Weierstrass

theorem, we can find x∗
n ∈ ∂ϕ(xn) such that

m(xn) = inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)} = ‖x∗
n‖, n ≥ 1.

From (3.1), we have that

x∗
n = A(xn) − λ1K(xn) − un

with un ∈ N(xn), n ≥ 1.

We claim that {xn}n≥1 ⊆ W
1,p
0 (Z) is bounded. We argue indirectly. So suppose

that {xn}n≥1 ⊆ W
1,p
0 (Z) is unbounded. We may assume that ‖xn‖ → ∞. We set

yn = xn

‖xn‖
, n ≥ 1. By passing to a suitable subsequence if necessary, we may assume

that

yn
w
−→ y in W

1,p
0 (Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z

and |yn(z)| ≤ k(z) for a.a z ∈ Z, all n ≥ 1, with k ∈ Lp(Z)+.

From the choice of the sequence {xn}n≥1 ⊆ W
1,p
0 (Z), we have

| < x∗
n, xn > | ≤ εn‖xn‖ with εn ↓ 0,

⇒|‖Dxn‖
p
p − λ1‖xn‖

p
p −

∫

Z

unxndz| ≤ εn‖xn‖.
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We divide with ‖xn‖
p and obtain

(3.2) |‖Dyn‖
p
p − λ1‖yn‖

p
p −

1

‖xn‖p

∫

Z

unxndz| ≤
εn

‖xn‖p−1

By virtue of hypothesis H(j)(iv), we have

1

‖xn‖p

∫

Z

unxndz → 0 as n → ∞.

Therefore, if we pass to the limit as n → ∞ in (3.2), we obtain

‖Dy‖p
p = λ1‖y‖

p
p (see also (2.2))

⇒ y = 0 or y = ±u1.

If y = 0, then we have ‖Dyn‖p → 0 as n → ∞ and this by virtue of Poincare’s

inequality implies that yn → 0 in W
1,p
0 (Z), a contradiction to the fact that ‖yn‖ = 1

for all n ≥ 1.

So y = ±u1. To fix things we assume y = u1 (the reasoning is similar if y = −u1).

Then we have

xn(z) → +∞ for a.a z ∈ Z,

⇒ j(z, xn(z)) → j+(z) for a.a z ∈ Z (see hypothesis H(j)(iv)).

Note that by virtue of hypotheses H(j)(iii), (iv) and the mean value theorem for

locally Lipschitz functions (see Clarke [7], p. 41), we have that

|j(z, x)| ≤ h(z) for a.a z ∈ Z and all x ∈ R, with h ∈ L1(Z)+.

Therefore an application of the Lebesgue dominated convergence theorem implies

(3.3)

∫

Z

j(z, xn(z))dz →

∫

Z

j+(z)dz as n → ∞.

By hypothesis ϕ(xn) → c as n → ∞. So given ε > 0, we can find n0 = n0(ε) ≥ 1

such that

ϕ(xn) ≤ c + ε for all n ≥ n0,

⇒
1

p
‖Dxn‖

p
p −

λ1

p
‖xn‖

p
p −

∫

Z

j(z, xn(z))dz ≤ c + ε for all n ≥ n0,

⇒−

∫

Z

j(z, xn(z))dz ≤ c + ε for all n ≥ n0 (see (2.2)),

⇒−

∫

Z

j+(z)dz ≤ c + ε (see (3.3)).

Since ε > 0 was arbitrary, we let ε ↓ 0 to obtain

−

∫

Z

j+(z)dz ≤ c,
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a contradiction to the choice of the level c. This means that {xn}n≥1 ⊆ W
1,p
0 (Z) is

bounded. Therefore we may assume that

xn
w
−→ x in W

1,p
0 (Z) and xn → x in Lp(Z).

We have

(3.4) |〈A(xn), xn − x〉 − λ1

∫

Z

|xn|
p−2xn(xn − x)dz −

∫

Z

un(xn − x)dz| ≤ εn‖xn − x‖.

Evidently
∫

Z

|xn|
p−2xn(xn − x)dz → 0 and

∫

Z

un(xn − x)dz → 0

(see hypotheses H(j)(iii), (iv)).

So from (3.4), we have

(3.5) lim
n→∞

< A(xn), xn − x >= 0.

But it is easy to see that A is bounded, continuous, monotone, hence it is maxi-

mal monotone. A maximal monotone operator is generalized pseudomonotone (see

Gasinski-Papageorgiou [12], p. 330). Therefore from (3.5) it follows that

‖Dxn‖
p
p =< A(xn), xn >→ 〈A(x), x〉 = ‖Dx‖p

p.

We already know that Dxn
w
−→ Dx in Lp(Z, RN). Since Lp(Z, RN) is uniformly con-

vex, from the Kadec-Klee property, we deduce that Dxn → Dx in Lp(Z, RN). This

convergence by Poincare’s inequality implies xn → x in W
1,p
0 (Z).

Now we are ready to produce the first nontrivial solution for problem (1.1).

Proposition 3.2. If hypotheses H(j) hold, then there exists x0 ∈ C1
0 (Z̄), x0 6= 0,

solution of problem (1.1).

Proof. Recall that there exists h ∈ L1(Z)+ such that

|j(z, x)| ≤ h(z) for all a.a z ∈ Z and all x ∈ R.

This combined with (2.2), implies that

−‖h‖1 ≤ ϕ(x) for all x ∈ W
1,p
0 (Z).

Therefore ϕ is bounded below. Hence

−∞ < m̂ = inf[ϕ(x) : x ∈ W
1,p
0 (Z)].

Because of hypothesis H(j)(v) and since ‖Du1‖
p
p = λ1‖u1‖

p
p, we have

m̂ ≤ ϕ(t∗u1) = −

∫

Z

j(z, t∗u1(z))dz < 0 = ϕ(0),

⇒ m̂ < 0 ≤ min{−

∫

Z

j+dz,−

∫

Z

j−dz} (see hypothesis H(j)(iv)).

By Proposition 3.1, ϕ satisfies the PSm̂-condition.
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Invoking the Ekeland variational principle (see for example Gasinski-Papageorgiou

[12], p. 582), we can find a minimizing sequence {xn}n≥1 ⊆ W
1,p
0 (Z) for ϕ, i.e.

ϕ(xn) ↓ m̂, such that

ϕ(xn) ≤ ϕ(x) +
1

n
‖x − xn‖ for all n ≥ 1 and all x ∈ W

1,p
0 (Z).

Let x = xn + λh, with λ > 0 and h ∈ W
1,p
0 (Z) arbitrary. We obtain

−
1

n
‖h‖ ≤

ϕ(xn + λh) − ϕ(xn)

λ
,

⇒ −
1

n
‖h‖ ≤ ϕ0(xn; h) for all n ≥ 1 and all h ∈ W

1,p
0 (Z).

Because ϕ0(xn; ·) is sublinear continuous, we can apply Lemma 1.3.2, p. 66, of

Gasinski-Papageorgiou [11] and obtain x∗
n ∈ X∗ with ‖x∗

n‖ ≤ 1 such that

1

n
< x∗

n, h >≤ ϕ0(xn; h) for all h ∈ W
1,p
0 (Z).

This then from the definition of the generalized subdifferential of ϕ at xn (see Section

2) implies that
1

n
x∗

n ∈ ∂ϕ(xn) for all n ≥ 1.

Hence we have

m(xn) = inf[‖x∗‖ : x∗ ∈ ∂ϕ(xn)] ≤
1

n
‖x∗‖ ≤

1

n
→ 0 as n → ∞.

This means that {xn}n≥1 ⊆ W
1,p
0 (Z) is a PSm̂-sequence and so by virtue of Proposi-

tion 3.1, we can say (at least for a subsequence), that xn → x0 in W
1,p
0 (Z). Then

ϕ(xn) → ϕ(x0) = m̂ < 0 = ϕ(0),

⇒x0 6= 0 and 0 ∈ ∂ϕ(x0).

From the last inclusion, it follows that

A(x0) − λ1K(x0) = u0 with u0 ∈ N(x0),

⇒

{

−div(‖Dx0(z)‖p−2Dx0(z)) − λ1|x0(z)|p−2x0(z) = u0(z) a.e on Z,

x0|∂Z = 0.

}

So x0 ∈ W
1,p
0 (Z) is a nontrivial solution of problem (1.1) and in addition from non-

linear regularity theory (see for example Gasinski-Papageorgiou [12], p. 738), we have

x0 ∈ C1
0(Z̄).

Let Ru1 be the eigenspace corresponding to the principal eigenvalue λ1 > 0 of

(−∆p, W
1,p
0 (Z)) (recall that λ1 > 0 is simple). Let

V = {v ∈ W
1,p
0 (Z) :

∫

Z

vu
p−1
1 dz = 0}.

This is a topological complement of Ru1, i.e. we have

W
1,p
0 (Z) = Ru1 ⊕ V.
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Proposition 3.3. If hypotheses H(j) hold, then ϕ|V ≥ 0.

Proof. Because of hypothesis H(j)(vi), for all v ∈ V , we have

ϕ(v) =
1

p
‖Dv‖p

p −
λ1

p
‖v‖p

p −

∫

Z

j(z, v(z))dz

≥
1

p
‖Dv‖p

p −
λ1

p
‖v‖p

p −
λV − λ1

p
‖v‖p

p

=
1

p
‖Dv‖p

p −
λV

p
‖v‖p

p ≥ 0 (see (2.3)).

4. MULTIPLICITY THEOREM

In this section using the auxiliary results of the previous section and Theorem

2.1, we prove a multiplicity theorem for problem (1.1).

Theorem 4.1. If hypotheses H(j) hold, then problem (1.1) has at least two nontrivial

solutions x0, y0 ∈ C1
0(Z̄).

Proof. From Proposition 3.2, we already have one nontrivial solution x0 ∈ C1
0(Z̄).

Suppose that {x0} is the only critical point of ϕ. Then we can apply Theorem

2.1 and obtain a deformation η : [0, 1] × ϕ00
→ ϕ00

such that

η(t, ·)|Km̂
is the identity for all t ∈ [0, 1](4.1)

ϕ(η(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ00
(4.2)

and η(1, ϕ00
) ⊆ ϕ0m̂

∪ Km̂.(4.3)

Since we have assumed that {x0} is the only critical point of ϕ and m̂ < 0 = ϕ(0),

it follows that Km̂ = {x0}. Hence

η(1, y) = x0 for all y ∈ ϕ00
= {y ∈ W

1,p
0 (Z) : ϕ(y) < 0} (see (4.3)).

For r > 0,we set Br = {x ∈ W
1,p
0 (Z) : ‖x‖ < r} and ∂Br = {x ∈ W

1,p
0 (Z) : ‖x‖ = r}.

If we take r = t∗ with t∗ ∈ R+ \ {0} as in hypothesis H(j)(v), we have

(4.4) µ = sup[ϕ(x) : x ∈ ∂Br ∩ Ru1] < 0.

We consider the set

Γ = {γ ∈ C(B̄r ∩ Ru1, W
1,p
0 (Z)) : γ |∂Br∩Ru1

= identity}.

Then we introduce γ0 : B̄r ∩ Ru1 → W
1,p
0 (Z), defined by

(4.5) γ0(x) =

{

x0 if ‖x‖ < r
2

η(2(r−‖x‖)
r

, rx
‖x‖

) if ‖x‖ ≥ r
2

.
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If x ∈ B̄r ∩ Ru1 and ‖x‖ = r
2
, then

γ0(x) = η(1, 2x).

Since ‖2x‖ = r, from (4.4) and (4.3) we have

γ0(x) = η(1, 2x) = x0.

Therefore γ0 is continuous, i.e. γ0 ∈ C(B̄r ∩ Ru1, W
1,p
0 (Z)). Moreover, since η is a

deformation, we have

η(0, ·) = identity,

⇒γ0|∂Br∩Ru1
= identity (see(4.5)),

⇒γ0 ∈ Γ.

Then from (4.2), we have

ϕ(η(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ B̄r ∩ Ru1,

⇒ ϕ(γ0(x)) < 0 and all x ∈ B̄r ∩ Ru1 (see (4.4) and (4.5)).(4.6)

The pair of sets {∂Br ∩ Ru1, B̄r ∩ Ru1} is linking with V in W
1,p
0 (Z) (see for

example Gasinski-Papageorgiou [12], p. 642). Therefore

γ0(B̄r ∩ Ru1) ∩ V 6= ∅,

⇒ sup[ϕ(γ0(x)) : x ∈ B̄r ∩ Ru1] ≥ 0 (see Proposition 3.3).(4.7)

Comparing (4.6) and (4.7), we reach a contradiction. This means that ϕ must

have a third critical point y0 ∈ W
1,p
0 (Z), distinct from {x0, 0}. Then

0 ∈ ∂ϕ(y0)

⇒A(y0) − λ1K(y0) = û0 with û0 ∈ N(y0),

⇒

{

−div(‖Dy0(z)‖p−2Dy0(z)) − λ1|y0(z)|p−2y0(z) = û0(z) a.e. on Z,

y0|∂Z = 0.

}

So y0 ∈ W
1,p
0 (Z) is a nontrivial solution of (1.1) and as before from nonlinear

regularity theory we have y0 ∈ C1
0(Z̄).
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New York (1978), 161–177.

[19] S. Solimini: On the solvability of some elliptic partial differential equations with linear part at

resonance, J. Math. Anal. Appl. 117 (1986), 138–152.

[20] C-L. Tang: Solvabilty of the forced Duffing equation at resonance, J. Math. Anal. Appl. 219

(1998), 110–124.

[21] K. Thews: Nontrivial solutions of elliptic equations at resonance, Proc. Royal Soc. Edinburgh

85A (1980), 119–129.

[22] J. Vazquez: A strong maximum principle for some quasilinear elliptic equations Appl. Math.

Optim. 12 (1984), 191–202.

[23] J. Ward: Applications of critical point theory to weakly nonlinear boundary value problems at

resonance, Houston J. Math. 10 (1984), 291–305.

[24] C-K. Zhang: On Ekeland’s variational principle and a minimax theorem, J. Math. Anal. Appl.

205 (1997), 239–250.


