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ABSTRACT. In this paper we study the asymptotic stability of a mechanical robotics model with

damping and delay. In this paper we deal with a more realistic damping model than that considered

in a previous paper [5]. This model yields a certain linear third order delay differential equation. In

proving our results we make use of Pontryagin’s theory for quasi-polynomials.
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1. INTRODUCTION

It is well known that delay or time lag provides a source of instability in dynamical

systems. G. Stépán [1] accounts for various sources of delay in robotics and addresses

aspects of stability of the resulting differential systems. Stépán [2] considers a position

controlled elastic robot with one degree of freedom. (See Figure 1.)
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Figure 1

This mechanical system is governed by a system of delay differential equations which

interestingly evolves into a third order scalar delay differential equation. See also [3]

and [4] for further study of this model and further application of a third order delay
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differential equations. The aim of this paper is to give a complete study and extension

of Stépán’s stability results for this model. The resulting system is

(1.1) X ′(t) = CX(t) + EX(t − τ)

where

C =




0 0 0

0 0 1

α2 −α2 −2κα


 ,

E =




0 −K 0

0 0 0

0 −2Kκα 0


 ,

X(t) =




q1(t)

q2(t)

v(t)


 ,

α =
√

s/m2 is the natural frequency of the undamped, uncontrolled system, and

κ = f/(2m2α) is the relative damping factor. We write system (1.1) as a third order

delay differential equation in q2(t)

(1.2) q′′′2 (t) = −α2Kq2(t − τ) − α2q′2(t) − 2καq′′2(t) − 2αKκq′2(t − τ).

In this paper we study the asymptotic stability of the zero solution of the following

third order delay differential equation

(1.3) y′′′(t) = p1y′′(t) + q2y′(t − τ) + q1y′(t) + r2y(t − τ).

In [5], we studied

(1.4) y′′′(t) = p1y′′(t) + p2y′′(t − τ) + q1y′(t) + r2y(t − τ).

which is not equivalent to (1.2). Our paper [5] gives a thorough treatment of stability

of the equation (1.4). However, there was an error in passing from (1.2) to (1.4), and

as a result (1.4) does not correctly model damping. In the present paper, we address

the correct case of damping by studying (1.3).

Very little has been done in the study of delay differential equations of the third

order. See [5,6,7,8,9] for some results on asymptotic stability for certain third or-

der delay differential equations. See [10,11,12] for other topics dealing with third

order delay differential equations, and see [1,13,14,15,16,17,18,19] for other topics on

systems of the form (1.1). One feature of numerous studies of delay differential equa-

tions is that delay generally has an unstabilizing effect but that there are rare cases

in which delay stabilizes systems that are unstable without delay (see [5,6,18,19]). In

this note, we enquire whether delay can stabilize Stépán’s system when the damping
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is “negative” (i.e., κ < 0). The idea of “negative damping” has arisen recently in

some dynamical systems, see for example [20,21]. We consider a more general view

of “negative damping” (i.e., p1 > 0 and q2 > 0) and give an algorithmic charac-

terization of asymptotic stability of the zero solution of (1.3) in this case. In the

nondelay case (i.e., τ = 0) with general negative damping (i.e., p1 > 0 and q2 > 0),

the Routh-Hurwitz criteria yield that the zero solution cannot be stable. We will use

our characterization to produce an example where delay does indeed stabilize Stépán

system with negative damping. We also give an algorithmic characterization of as-

ymptotic stability of the zero solution of (1.3) in the general “positively damped”

case (i.e., p1 < 0 and q2 < 0).

Our papers [5], [19] give general stability criteria for a third order and odd higher

order. The stability criteria in this note are idealized for (1.3) and general positive or

negative damping. The resulting stability tests have sharper stopping criteria than

those in [4], [5] and are thus more efficient.

This paper is organized as follows. In Section 2, we present the tools used in our

asymptotic stability analysis. In Section 3 we give our main results. In Section 4 we

present some examples.

2. BACKGROUND

In this section, we identify the characteristic function of (1.1) in order to study the

asymptotic stability of the zero solution. We also quote the main results of Pontryagin

related to asymptotic stability [23,24,25] and the applications of Pontryagin’s results

[23, 13.7-13.9].

The characteristic function of (1.1) is given by

(2.1) Ĥ(s) = s3 − p1s
2 − q2se

−sτ − q1s − r2e
−sτ .

Multiplying (2.1) by esτ yields

(2.2) esτĤ(s) = esτs3 − p1s
2esτ − q2s − q1se

sτ − r2.

Letting s = z
τ
, we examine the zeros of

(2.3) H(z) = τ 3ezĤ(
z

τ
) = z3ez − Az2ez − Bzez − Dz − M

where

(2.4) A = τp1, B = τ 2q1, D = τ 2q2 and M = τ 3r2.

With regard to the reduced robotic equation (1.2)

(2.5) A = −2τκα, B = −τ 2α2, D = −2τ 2Kκα and M = −τ 3α2K,

and with this our study relates to the particular case (1.2) of (1.3).
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Theorem 2.1. In order that all solutions of (1.1) approach zero as t → ∞ it is

necessary and sufficient that all zeros of (2.1), or equivalently (2.3), have negative

real parts.

See [22]. The function (2.3) is a special function, usually called an exponential

polynomial or a quasi-polynomial. The problem of analyzing the distribution of the

zeros in the complex plane of such functions has received a great deal of attention.

Definition 2.1. Let h(z, w) be a polynomial in the two variables z and w (with

complex coefficients),

h(z, w) =
∑

m,n

amnzmwn, (m, n nonnegative integers)

We call the term arsz
rws the principal term of h(z, w) if ars 6= 0, and for each term

amnzmwn with amn 6= 0, we have r ≥ m and s ≥ n.

Note that H(z) = h(z, ez) where

h(z, w) = wz3 − (Az2 + Bz)w − Dz − M.

It is clear from Definition 2.1 that h(z, w) above has principal term z3w. We now cite

two theorems of Pontryagin, see [22,23,24].

Theorem 2.2. Let H(z) = h(z, ez), where h(z, w) is a polynomial with a principal

term. The function H(iy) is now separated into real and imaginary parts; that is, we

set H(iy) = F (y)+ iG(y). If all the zeros of the function H(z) lie in the open left half

plane, then the zeros of the functions F (y) and G(y) are real, are interlacing, and

(2.6) D(y) = G′(y)F (y)− G(y)F ′(y) > 0

for all real y. Moreover, in order that all the zeros of the function H(z) lie in the

open left half plane, it is sufficient that one of the following conditions be satisfied:

(a) All the zeros of the functions F (y) and G(y) are real and interlace, and the

inequality (2.6) is satisfied for at least one value of y.

(b) All the zeros of the function F (y) are real and for each of these zeros y = y0

condition (2.6) is satisfied; that is, F ′(y0)G(y0) < 0.

(c) All the zeros of the function G(y) are real and for each of these zeros the in-

equality (2.7) is satisfied; that is, G′(y0)F (y0) > 0.

In our case,

(2.7) H(iy) = (iy)3eiy − (A(iy)2 + B(iy))eiy − (D(iy) + M)

or

(2.8) H(iy) = F (y) + iG(y)
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where

(2.9) F (y) = y3 sin y + By sin y + Ay2 cos y − M

and

(2.10) G(y) = −y3 cos y − By cos y + Ay2 sin y − Dy.

In order to study the location of the zeros of H(z) one has to study the zeros

of F and G. To do so, we need the following result which is useful in determining

whether all roots of F and G are real. Let f(z, u, v) be a polynomial in z, u, and v,

which we write in the form

(2.11) f(z, u, v) =
∑

m,n

zmφ(n)
m (u, v)

where φ
(n)
m (u, v) is a polynomial of degree n, homogeneous in u and v, and let

zrφ
(s)
r (u, v) be the principal term of f(z, u, v), and let φ∗(s)(u, v) denote the coeffi-

cient of zr in f(z, u, v), so that

φ∗(s)(u, v) =
∑

n≤s

φ(n)
r (u, v).

Also we let

Φ∗(s)(z) = φ∗(s)(cos z, sin z).

Theorem 2.3. Let f(z, u, v) be a polynomial with principal term zrφ
(s)
r (u, v). If ε is

such that Φ∗(s)(ε + iy) 6= 0 for all real y, then in the strip −2πk + ε ≤ x ≤ 2πk + ε,

z = x + iy, the function F (z) = f(z, cos z, sin z) will have, for all sufficiently large

values of k, exactly 4sk + r zeros. Thus, in order for the function F (z) to have only

real roots, it is necessary and sufficient that in the interval −2πk + ε ≤ x ≤ 2πk + ε,

it has exactly 4sk + r real roots for all sufficiently large k.

Note that the functions F (y) and G(y) in (2.9) and (2.10) have principal terms

y3 sin y and −y3 cos y, respectively. For the function F (y) and G(y) in (2.9) and

(2.10), the number of roots in −2kπ + ε 6 y 6 2kπ + ε is 4k + 3 for k sufficiently

large. For F (y), we take 0 < ε < π, and for G we take ε = 0. We will use Theorem

2.2 and Theorem 2.3 to study the asymptotic stability of (1.1). In the next section

we will present the main results of this paper.

3. MAIN RESULTS

In this section we present the main results of this paper. From Theorem 2.2, we

have the following necessary condition.

Lemma 3.1. If the zero solution of (1.1) is asymptotically stable, then D(0) = (B +

D)M > 0.
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In view of Theorem 2.2, we only consider cases where D(0) > 0. First we start

with undamped system, i.e. κ = 0, or equivalently, A = 0 and D = 0.

Theorem 3.1. Assume that A = 0 and D = 0. Then the zero solution of (1.1) is

asymptotically stable if and only if M < 0, B < 0 and there exists k ∈ Z+ such that

(3.1) 2kπ + π/2 <
√
−B < (2k + 1)π + π/2

and

(3.2)

−M < min(−(2kπ+π/2)((2kπ+π/2)2+B), ((2k+1)π+π/2)(((2k+1)π+π/2)2+B)).

Proof. With D = 0, this case coincides with a case considered in [5]. See our paper

[1] for the proof. This result is the rediscovery of a result given in [2], and a different

proof is given in [5].

We now state two results from [6].

Lemma 3.2. For n sufficiently large, the interval (nπ, (n+1)π) contains exactly one

zero rn of G and limn→∞[rn]π = π/2.

Here [x]c denotes the unique real number in [0, c) for which x− [x]c is a multiple

of c.

Theorem 3.2. If the zero solution of (1.3) is asymptotically stable, then M < 0 and

B + D < 0.

We start with the general negative damping case (i.e. A > 0 and D > 0).

Lemma 3.3. Assume that A > 0 and D > 0, M < 0 and B + D < 0. Let

(3.3) N0 =

s
0.5 + 0.5

√
1 + 4(D − B)

π

{
+ 1

Then G has all real zeros if and only if G has N0 + 1 zeros in (0, N0π). Furthermore,

in this case, G has precisely one zero in (nπ, (n + 1)π) for every integer n ≥ N0.

Here J K denotes the greatest integer function.

Proof. Recall equations (2.9) and (2.10):

F (y) = (y3 + By) sin y + Ay2 cos y − M,

G(y) = −(y3 + By) cos y + Ay2 sin y − Dy.

By hypotheses, D(0) = (B + D)M > 0. Note that y = 0 is a zero of G, and G is an

odd function. If y is not a multiple of π, then y is a zero of G if and only if

(3.4) w(y) = ζy
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where

(3.5) w(y) = (y2 + B) cot y + D csc y

and

(3.6) ζ(y) = Ay.

As y → 0+ the function w has limit −∞. As y → nπ+ (n a positive integer)the

function w has a limit sgn((nπ)2 + B + (−1)nD)∞ and as y → nπ− w has a limit

sgn((nπ)2 + B + (−1)nD)(−∞).

For n large the function w has limits +∞ and −∞ at (n−1)π and nπ, respectively,

when the limits are taken from inside this interval ((n − 1)π, nπ).

From equation (3.4) we have

w′(y) =
y sin 2y − y2 − B − D cos y

sin2 y
≤ y − y2 − B + D

sin2 y
< 0

when y > 0.5+0.5
√

1 + 4(D − B) and y is not a multiple of π. See Figure 1 for typical

representation. It follows that if nπ > 0.5 + 0.5
√

1 + 4(D − B), then w is strictly

decreasing on (nπ, (n+1)π) and w approaches −∞ and ∞ when y approaches nπ and

(n + 1)π, respectively, from inside the interval (nπ, (n + 1)π). It follows w(y) = ζ(y)

has precisely one root in (nπ, (n + 1)π) for all n ≥ N0. It can be seen that if y = mπ

is a zero of G where m is a positive integer, then m 6
√

D − B < N0. All parts of

the lemma now follow from Theorem 2.3.

The following remark and Lemma apply to both the the positively damped and

the negatively damped cases.

Remark 3.1. In case G has all real zeros, we denote the positive ones as r1 < r2 <

r3 < r4 · · · . By Lemma 3.3 r1, r2, . . . , rN0+1 ∈ (0, N0π) and for n > N0, rn+2 ∈
(nπ, (n + 1)π). Notice that G′(0) = −(D + B) > 0. Since G has all real and simple

zeros sgn(G′(rn)) = (−1)n Also [r2j ]2π → π/2 and [r2j+1]2π → 3π/2. Recall [x]c

denotes the unique real number for which x− [x]c is a multiple of c. As noted above,

the following criterion for asymptotic stability applies to both cases considered of

damping in this paper. It involves infinitely many conditions, and we will give efficient

stopping criteria that reduce the test to checking only finitely many conditions.

Theorem 3.3. The zero solution of (1.3) is asymptotically stable if and only if

1. M < 0 and B + D < 0,

2. G has all real zeros, and

3. (−1)nF (rn) > 0, n = 1, 2, . . .

where r1 < r2 < r3 < . . . are the positive zeros of G.
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Proof. Necessity of 1 and 2 follows from Theorem 3.2 and Theorems 2.1–2.2. Between

consecutive zeros of G, G′ must properly change sign, and from Remark 3.1, G′ has

sign (−1)n for n = 1, 2, . . . and now 3 follows from Theorems 2.1 and 2.2c. Sufficiency

follows in the same fashion.

With negative damping, A > 0, D > 0, the following lemma provides an estimate

of large positive zeros of G.

Lemma 3.4. Assume that A > 0, D > 0, and B < 0. If n is a positive integer and

(3.7) ln > max

{
0.5 + 0.5

√
1 + 4(D − B)

π
,
A

π
+

4D
√

2

π2
− 4B

π2
− 1

4

}
:= Λ,

then the interval (nπ, (n + 1)π) contains exactly one zero r of G and π/2 ≤ [r]π ≤
3π/4.

Proof. Let y ∈ (nπ, (n + 1)π) be a zero of G. Then w(y) = ζ(y), and as in Lemma

3.3

w′(y) − ζ ′(y) ≤ y − y2 − B + D

sin2y
− A < 0

when y > 0.5 + 0.5
√

0.5 + 4(D − B) and y is not multiple of π. It follows that

w(y) − ζ(y) has exactly one root in (nπ, (n + 1)π). Since B < 0 and D < 0,

w(nπ + π/4) − ζ(nπ + π/4) =(3.8)

(nπ + π/4)2 + B + (−1)nD
√

2 − A(nπ + π/4)

≥ (nπ + π/4){nπ + π/4 +
4B

π
− 4D

√
2

π
− A} > 0

by (3.7). Similarly, w(nπ + 3π/4)− ζ(nπ + 3π/4) < 0 when (3.7) holds. The proof is

now complete

Theorem 3.4 (Algorithmic Stability Test I). Suppose A > 0, D > 0, M < 0,

B+D < 0. Necessary and sufficient for the zero solution of (1.3) to be asymptotically

stable is that

1. G has N0 + 1 zeros in (0, N0π),

2. F (r2`) > 0 for all ` = 1, 2, . . . , n1, and

3. F (r2`+1) < 0 for all ` = 1, 2, . . . , n2

where N0 is defined in (3.3) and n1 and n2 are defined in (3.10–3.12) and (3.13) below.

Proof. We need only to prove sufficiency. The proof is based on Lemmas 3.3, 3.4,

Theorem 3.3 and the observation that [r2j ]2π → π/2 and [r2j+1]2π → 3π/2. By

Remark 3.1, r2n ∈ ((2n−2)π, (2n−1)π) and r2n+1 ∈ ((2n−1)π, 2nπ) if 2n−2, 2n−1 ≥
N0, respectively. From (2.9),

(3.9) F (r2`) = r2`

[
(r2

2` + B) sin r2` + Ar2` cos r2` −
M

r2`

]
.
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Let n1 be the first positive integer satisfying

2n1 > max(N0, Λ)(3.10)

r2
2n1

+ B > 0(3.11)

r2n1
>

A +
√

A2 − 4B

2
.(3.12)

By Lemma 3.4, sin r2n >
√

2/2 and | cos r2n| <
√

2/2 for all n > n1, and we have from

(3.9) and from M < 0 and A > 0 that

F (r2n)/r2n = (r2
2n + B) sin r2n + Ar2n cos r2n − M/r2n >

√
2

2
(r2

2n − Ar2n + B) > 0.(3.13)

Thus for all n > n1, F (r2n) > 0. Now we choose n2 to be the first positive integer for

which

2n2 + 1 > max(N0, Λ)

r2n2+1 > 1,

r2
2n2+1 + B > 0.

r2n2+1 >
A +

√
A2 + 4(B − M

√
2)

2
if A2 + 4(B − M

√
2) ≥ 0.

By Lemma 3.4, sin r2n+1 < −
√

2/2 and | cos r2n| <
√

2/2 for all n > n2, and by (3.9)

for n > n2

F (r2n+1)/r2n+1 = (r2
2n+1 + B) sin r2n+1 + Ar2n+1 cos r2n+1 − M/r2n+1 <

(3.14)

−
√

2

2
(r2

2n+1 + B) +

√
2

2
Ar2n+1 − M =

√
2

2
(−r2

2n+1 + Ar2n+1 + B − M
√

2) < 0.

By (3.14), F (r2n+1) < 0 for all n > n2. By Theorem 3.3 the zero solution of (1.3) is

asymptotically stable.

Now consider equation (1.3) with general positive damping, i.e. A < 0 and D < 0.

Lemma 3.5. Assume that A < 0, D < 0, M < 0 and B < 0. Let

(3.15) M0 =

s
0.5 + 0.5

√
1 − 4(D + B + A)

π

{
+ 1

Then G has all real zeros if and only if G has M0 +1 zeros in (0, M0π). Furthermore,

in this case, G has precisely one zero in (nπ, (n + 1)π) for all n ≥ M0.
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Proof. The proof of Lemma 3.5 is similar to the proof of Lemma 3.3 and we omit it

(see Figure 2 for an illustration of w(y) = ζ(y) when G has all real zeros). The only

difference in the proof is that we show w′(y) < ζ ′(y) rather than w′(y) < 0 < ζ ′(y)

when y ∈ (nπ, (n + 1)π), n > M0.

y

302520

x

15

40

10

20

0
5

-20

-40

0

Figure2

Figure 2. G has all real zeros with negative damping

Lemma 3.6. Assume A < 0, D < 0 and B < 0. If n is a positive integer and

(3.16) n > max

{
0.5 + 0.5

√
1 − 4(D + B + A)

π
,
A

π
− 4D

√
2

π2
− 4B

π2
− 1

4

}
:= Λ1,

then the interval (nπ, (n + 1)π) contains exactly one zero r of G and π/2 ≤ [r]π ≤
3π/4.

Proof. The proof of Lemma 3.6 is similar to the proof of Lemma 3.4 and we omit it

(see Figure 3 to illustrate that the large zeros of G satisfy π/2 ≤ [r]π ≤ 3π/4).

y

605040302010
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0

100

50

0

-50

-100

Figure3

Figure 3. Large zeros of G in π/2 ≤ [r]π ≤ 3π/4

Theorem 3.5 (Algorithmic Stability Test II). Suppose A < 0, D < 0, M < 0,

B < 0. The zero solution of (1.3) is asymptotically stable if and only if

1. G has M0 + 1 zeros in (0, M0π)
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2. F (r2`) > 0 for all ` = 1, 2, . . . , m1 where m1 is the first positive integer satisfying

2m1 > max(M0, Λ1), r2
2m1

+ B > 0, and r2m1
> (−A +

√
A2 − 4B)/2

3. If F (r2`+1) < 0 for all ` = 1, 2, . . . , m2 where m2 the first positive integer sat-

isfying 2m2 + 1 > max(M0, Λ1), r2m2+1 > 1, r2
2m2+1 + B > 0, and r2m2+1 >

(
− A +

√
A2 − 4(B + M

√
2)

)
/2

where M0 is defined in (3.15).

Proof. The proof of Theorem 3.5 is similar to the proof of Theorem 3.4 and we omit

it.

4. EXAMPLES

Example 4.1. For Stépán’s system (1.1), let κ = −1/(200
√

5) < 0, α = 2
√

(5),

K = 1/5, and τ = 1. With κ < 0, this example includes negative damping. Equation

(1.2) becomes

(4.1) y′′′(t) = p1y′′(t) + q2y′(t − τ) + q1y′(t) + r2y(t − τ)

where

A = τp1 = −2τκα = 0.02, D = τ 2q2 = −2τ 2Kκα = 0.004,

B = τ 2q1 = −τ 2α2 = −20, M = τ 3r2 = −τ 3α2K = −4.(4.2)

We apply Algorithmic Stability Test I. Here N0 = 2, and in [0, 2π], w(y) = ζ(y) has

N0 + 1 = 3 roots, r1 = 1.572362263, r2 = 1.656190448, r3 = 4.653940883, and thus G

has all real zeros. It is easy to see that Λ = 7.864353522 and n2 = n1 = 4. We found

that F (r2j) > 0 for j = 1, 2, . . . , n1 and F (r2j+1) < 0, for j = 1, 2, . . . , n2. The values

are F (r1) = −23.55990138, F (r2) = 1.656190448, F (r3) = −3.733778032. Also we

found

r4 = 7.850306032, F (r4) = 330.7894049,

r5 = 10.99335457, F (r5) = −1104.724709,

r6 = 14.13561695, F (r6) = 2545.808525,

r7 = 17.2775045, F (r7) = −4807.998857,

r8 = 20.4193335, F (r8) = 8109.442002,

r9 = 23.5610568, F (r9) = −12604.07772.

Conditions 1-3 are satisfied, and therefore the zero solution of (4.1) is asymptotically

stable. Thus it is possible for delay to stabilize (1.1) in the presence of negative

damping.
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Example 4.2. Consider (1.3)

(4.3) y′′′(t) = p1y′′(t) + q2y′(t − τ) + q1y′(t) + r2y(t − τ)

where

A = τp1 =
2

10
, D = τp2 = 1,

B = τ 2q1 = −3.6, M = r2τ
3 = −1.(4.4)

In this example we apply Algorithmic Stability Test I. Here N0 = 2 and in [0, 2π],

G(y) has N0 +1 = 3 zeros, r1 = 1.202449067, r2 = 2.17490924, and r3 = 4.603295507.

Thus G has all real zeros. Here Λ = 1.845846189 and n1 = 2, since r4 = 7.844163623,

r2
4 +B = 57.93090294 > 0, r4 > (A+

√
A2 − 4B)/2 = 2 and F (r2) = 2.17490246 > 0,

F (r4) = 1152.593969 > 0. For odd zeros n2 = 1 since r3 > 1, r2
3 + B > 0 and

A2 + 4(B −M
√

2) = −8.703145752. For Condition 3 of Algorithmic Stability Test I,

we have F (r1) = −0.974102994, F (r3) = −28.74053025, F (r5) = −841.8844450, and

therefore the zero solution of (4.1) is asymptotically stable with negative damping.

Without the delay the zero solution is not asymptotically stable. [We also examined

equation (4.3) with M = −4, and we found that interlacing fails and the zero solution

is not asymptotically stable.] Although delay generally has an unstabilizing effect,

this is another case when the delay stabilize the zero solution.

Example 4.3. Consider (1.3)

(4.5) y′′′(t) = p1y′′(t) + q2y′(t − τ) + q1y′(t) + r2y(t − τ)

where

A = τp1 = 4, D = τp2 = 1,

B = τ 2q1 = −100, M = r2τ
3 = −100.(4.6)

In this example N0 = 4, and in [0, 4π], w(y) = ζ(y) has three roots, r1 = 1.627310695,

r2 = 4.984575786, r3 = 8.852083494, in [0, 4π], the next root is r4 = 13.57477560,

which is not in [0, 4π]. Thus condition (2) of Theorem 3.3 is not valid, G has nonreal

zeros. The zero solution of (4.5) is not asymptotically stable. Figure 4 shows the

functions w(y and ζ(y) in this case. It reveals how two real zeros were lost.

Example 4.4. Consider (1.3)

(4.7) y′′′(t) = p1y′′(t) + q2y′(t − τ) + q1y′(t) + r2y(t − τ)

where

A = τp1 = −8, D = τp2 = −10,

B = τ 2q1 = −45, M = r2τ
3 = −6.(4.8)
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Figure 4. G has non-real zeros

In this example we apply Algorithmic Stability Test II. We found that r1 = 1.520451954

and r2 = 3.716633416. Also r3 = 6.522779220, r4 = 8.855923258, r5 = 11.85193114.

In this example M0 = 3, and in [0, 3π], w(y) = ζ(y) has N0 + 1 = 4 roots, thus

G has all real zeros. Here Λ1 = 21.172925664 and 2n1 = 2n0 = 22, also r22 =

64.52234321 > 1, and r2
22 + B = 4118.132773 > 0. For odd zeros, n2 = 11 since

2n2 + 1 > Λ1 = 21.17292564 and r23 > (−A +
√

A2 − 4(B + M
√

2))/2. Conditions

(1-3) are satisfied and thus the zero solution is asymptotically stable by Algorithmic

Stability Test II.

In Table I we present the values of rj, F (rj), and sin rj, j = 1, . . . , 25. By

Algorithmic Stability Test II the zero solution of (4.7) is asymptotically stable.

Table I

r1 = 1.520451954 F (r1) = −59.75384590 sin(r1) = 0.9987329897

r2 = 3.716633416 F (r2) = 161.7735712 sin(r2) = −0.5438689977

r3 = 6.522779220 F (r3) = −328.4477971 sin(r3) = 0.2373081589

r4 = 8.855923258 F (r4) = 694.0739859 sin(r4) = −0.5386674682

r5 = 11.85193114 F (r5) = −1584.287170 sin(r5) = −0.6551940646

r6 = 14.52768533 F (r6) = 2879.482436 sin(r6) = 0.9247118502

r7 = 17.68140408 F (r7) = −5327.719645 sin(r7) = −0.9200279635

r8 = 20.73647753 F (r8) = 8663.418259 sin(r8) = 0.9504471462

r9 = 23.87855121 F (r9) = −13331.54648 sin(r9) = −0.9502974918

r10 = 26.96351754 F (r10) = 19273.10224 sin(r10) = 0.9663951235

r11 = 30.10329059 F (r11) = −26910.92607 sin(r11) = −0.9668612729

r12 = 33.20570284 F (r12) = 36202.52591 sin(r12) = 0.9761195408

r13 = 36.34520605 F (r13) = −47557.14584 sin(r13) = −0.9765713080

r14 = 39.45834120 F (r14) = 60942.62430 sin(r14) = 0.9822989656

r15 = 42.59803668 F (r15) = −76759.72312 sin(r15) = −0.9826525760
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Table I: continued

r16 = 45.71812796 F (r16) = 94982.94616 sin(r16) = 0.9864126909

r17 = 48.85809309 F (r17) = −1.160075213× 105 sin(r17) = −0.9866787642

r18 = 51.98291500 F (r18) = 1.!39812432× 105 sin(r18) = 0.9892681606

r19 = 55.12313029 F (r19) = −1.667891332× 105 sin(r19) = −0.9894684705

r20 = 58.25129952 F (r20) = 1.969197374× 105 sin(r20) = 0.9913222895

r21 = 61.39172565 F (r21) = −2.30590257× 105 sin(r21) = −0.9914749590

r22 = 64.52234321 F (r22) = 2.677933727× 105 sin(r22) = 0.9928452438

r23 = 67.66294201 F (r23) = −3.089076017× 105 sin(r23) = −0.9929634278

Notice that the values of sin(rj) which reveals that [r2j ]2π → π/2 and [r2j+1]2π →
3π/2.

In this example for A > −0.8578732450 G has nonreal zeros and the zero solution

of (4.7) is not asymptotically stable. Figure 5 shows the functions w(y) and ζ(y) for

A = −8. When A > −0.8578732450, the two zeros in the “third branch” of w(y) are

lost.
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-50

-100

Figure 5. G has all real zeros

Example 4.5. Consider (1.3)

(4.9) y′′′(t) = p1y′′(t) + q2y′(t − τ) + q1y′(t) + r2y(t − τ)

where

A = τp1 = −8, D = τp2 = −8,

B = τ 2q1 = −4π2, M = r2τ
3 = −6.(4.10)

In this example we apply Theorem 3.3. We found that r1 = 1.561186405 and r2 =

2.960693918, r3 = 4.727703217. Also r4 = 7.8361690369,r5 = 10.07808985, and

r5 = 10.92099762, and N0 = 2 and G has three real zeros, in (0, 2π] thus G has all
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real zeros but F (r1) = 83.99999206 > 0, and by Theorem 3.3 the zero solution is not

asymptotically stable.
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