
Dynamic Systems and Applications 16 (2007) 345-360

OSCILLATION OF SECOND-ORDER DELAY AND NEUTRAL
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ABSTRACT. In this paper, we consider the second-order linear delay dynamic equation

x∆∆(t) + q(t)x(τ(t)) = 0,

on a time scale T. We will study the properties of the solutions and establish some sufficient

conditions for oscillations. In the special case when T = R and τ(t) = t, our results include some

well-known results in the literature for differential equations. When, T = Z, T = hZ, for h > 0

and T = Tn = {tn : n ∈ N0} where tn} is the set of the harmonic numbers defined by t0 = 0,

tn =
∑n

k=1

1

k
for n ∈ N0 our results are essentially new. The results will be applied on second-order

neutral delay dynamic equations in time scales to obtain some sufficient conditions for oscillations.

An example is considered to illustrate the main results.
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1. INTRODUCTION

In recent years, the study of dynamic equations on time scales has become and

an area of mathematics and has received a lot of attention. It was created to unify

the study of differential and difference equations, and it also extends these classical

cases to cases “in between,” e.g., to the so-called q-difference equations. Many results

concerning differential equations carry over quite easily to corresponding results for

difference equations, while other results seem to be completely different from their

continuous counterparts.

The general idea is to prove a result for a dynamic equation where the domain

of the unknown function is a so-called time scale T, which is an arbitrary nonempty

closed subset of the reals. The three most popular examples of calculus on time

scales are differential calculus, difference calculus, and quantum calculus. The books

by Bohner and Peterson [4, 5] summarize and organize much of time scale calculus.

Dynamic equations on a time scale have an enormous potential for applications such
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as in population dynamics. For example, it can model insect populations that are

continuous while in season, die out in say winter, while their eggs are incubating or

dormant, and then hatch in a new season, giving rise to a nonoverlapping population.

For completeness, we recall the following concepts related to the notion of time

scales. A time scale T is an arbitrary nonempty closed subset of the real numbers

R. We assume throughout that T has the topology that it inherits from the standard

topology on the real numbers R. The forward jump operator and the backward jump

operator are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

where sup ∅ = inf T. A point t ∈ T, is said to be left–dense if ρ(t) = t and t > inf T,

is right–dense if σ(t) = t, is left–scattered if ρ(t) < t and right–scattered if σ(t) > t.

A function g : T → R is said to be right–dense continuous (rd–continuous) provided

g is continuous at right–dense points and at left–dense points in T, left hand limits

exist and are finite. The set of all such rd–continuous functions is denoted by Crd(T).

The graininess function µ for a time scale T is defined by µ(t) := σ(t)− t, and for any

function f : T → R the notation f σ(t) denotes f(σ(t)). Fix t ∈ T and let x : T → R.

Define x∆(t) to be the number (if it exists) with the property that given any ε > 0

there is a neighborhood U of t with

|[x(σ(t)) − x(s)] − x∆(t)[σ(t) − s]| ≤ ε|σ(t) − s|, for all s ∈ U.

In this case, we say x∆(t) is the (delta) derivative of x at t and that x is (delta)

differentiable at t. Assume that g : T → R and let t ∈ T.

(i) If g is differentiable at t, then g is continuous at t.

(ii) If g is continuous at t and t is right-scattered, then g is differentiable at t

with

g∆(t) :=
g(σ(t)) − g(t)

µ(t)
.

(iii) If g is differentiable and t is right-dense, then

g∆(t) := lim
s→t

g(t) − g(s)

t − s
.

(iv) If g is differentiable at t, then g(σ(t)) := g(t) + µ(t)g∆(t). In this paper we will

refer to the (delta) integral which we can define as follows: If G∆(t) = g(t), then the

Cauchy (delta) integral of g is defined by
∫ t

a

g(s)∆s := G(t) − G(a).

It can be shown (see [4]) that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫ t

t0
g(s)∆s exists, t0 ∈ T, and satisfies G∆(t) = g(t), t ∈ T. For a more general

definition of the delta integral see [4, 5].
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In recent years there has been much research activity concerning the qualitative

theory of dynamic equations on time scales. One of the main subjects of the quali-

tative analysis of the dynamic equations is the oscillatory behavior. Recently, some

interesting results have been established for oscillation and nonoscillation of dynamic

equations on time scales, we refer to the papers [3, 6–12, 16, 17, 21] and the refer-

ences cited therein. To the best our knowledge the papers that are concerned with

the oscillation of delay dynamic equations in time scales are [1, 2, 11, 18, 19, 20, 22,

23].

In this paper, we are concerned with oscillation of the second-order linear delay

dynamic equation

(1.1) x∆∆(t) + q(t)x(τ(t)) = 0,

on a time scale T, where the function q is an rd-continuous function such that q(t) > 0

for t ∈ T, τ : T → T, τ(t) ≤ t and limt→∞ τ(t) = ∞. Throughout this paper these

assumptions will be assumed. Let T0 = min{τ(t) : t ≥ 0} and τ−1(t) = sup{s ≥
0 : τ(s) ≤ t} for t ≥ T0. Clearly τ−1(t) ≥ t for t ≥ T0, τ−1(t) is nondecreasing and

coincides with the inverse of τ when the latter exists. By a solution of (1.1) we mean

a nontrivial real-valued functions x(t) ∈ C2
r [Tx, ∞), Tx ≥ τ−1(t0) where Cr is the

space of rd-continuous functions.

The solutions vanishing in some neighborhood of infinity will be excluded from our

consideration. A solution x(t) of (1.1) is said to be oscillatory if it is neither eventually

positive nor eventually negative. Otherwise it is nonoscillatory. The equation itself

is called oscillatory if all its solutions are oscillatory. Since we are interested in

the oscillatory and asymptotic behavior of solutions near infinity, we assume that

sup T = ∞, and define the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T.

We note that, Equation (1.1) in its general form covers several different types

of differential and difference equations depending on the choice of the time scale T.

When T = R, σ(t) = t, µ(t) = 0,

f∆ = f ′, and

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

and (1.1) becomes the second-order delay differential equation

(1.2) x′′(t) + q(t)x(τ(t)) = 0,

When T = Z, σ(t) = t + 1, µ(t) = 1,

f∆ = ∆f, and

∫ b

a

f(t)∆t =
b−1
∑

t=a

f(t),

and (1.1) becomes the general second-order delay difference equation

(1.3) x(t + 2) − 2x(t + 1) + x(t) + q(t)x(τ(t)) = 0.
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When T =hZ, h > 0, σ(t) = t + h, µ(t) = h,

f∆ = ∆hf =
f(t + h) − f(t)

h
, and

∫ b

a

f(t)∆t =

b−a−h

h
∑

k=0

hf(a + kh)

and (1.1) becomes the second-order delay difference equation

(1.4) x(t + 2h) − 2x(t + h) + x(t) + h2q(t)x(τ(t)) = 0.

When T ={tn : n ∈ N0}, where {tn} is the set of harmonic numbers defined by

t0 = 0, tn =

n
∑

k=1

1

k
, n ∈ N,

we have σ(tn) = tn+1, µ(tn) = 1
n+1

< 1, x∆(tn) = (n + 1)∆x(tn) and (1.1) becomes

the difference equation

(1.5) x(tn+2) −
[

n + 3

n + 2

]

x(tn+1) + (n + 1)

(

1

n + 2
+ (n + 2)q(tn)

)

x(τ(tn)) = 0.

For oscillation of second-order differential equations, Hille [14] considered the linear

equation

(1.6) x′′(t) + q(t)x(t) = 0,

and proved that: If

(1.7) q∗ := lim
t→∞

inf t

∞
∫

t

q(s)ds >
1

4
,

or

(1.8) q∗ := lim
t→∞

sup t

∞
∫

t

q(s)ds > 1,

then every solution of equation (1.6) oscillates. Nehari [15] considered also (1.6) and

proved that: If

(1.9) lim
t→∞

inf
1

t

t
∫

t0

s2q(s)ds >
1

4
,

then every solution oscillates. For oscillation of dynamic equations on time scales,

Erbe, Peterson and Saker [8] established some new oscillation criteria for nonlinear

dynamic equations. As a linear version of their results one can easily see that if

(1.10) lim
t→∞

inf t

∞
∫

t

q(s)∆s >
1

4
,

then every solution of the dynamic equation

(1.11) x
∆∆

(t) + q(t)xσ = 0,
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is oscillatory. We note that the condition (1.10) is a time scale analogue of the Hille

condition (1.7).

Lomtatidze [13], considered (1.6) when (1.7) and (1.8) are not satisfied, and

proved that: If

(1.12) q∗ ≤
1

4
, and lim

t→∞

sup
1

t

t
∫

t0

s2q(s)ds >
1

2

(

1 +
√

1 − 4q∗

)

,

then every solution of (1.6) oscillates.

The natural question now is: Can the oscillation condition (1.12) of Lomtatidze

be extended for (1.1) on time scales and in the special case when T = R and τ(t) = t

include the condition (1.12), i.e., can we find new oscillation criteria for (1.1) when

lim
t→∞

inf t

∞
∫

σ(t)

τ(s)

s
q(s)∆s ≤ 1

4l
and

lim inf
t→∞

1

t

∫ t

t0

s2

(

τ(s)

s
q(s)

)

∆s ≤ 1

4
,(1.13)

where l := limt→∞

t
σ(t)

.

The purpose of this paper is to give an affirmative answer to this question. The

paper, is organized as follows: In Section 2, by analyzing the Riccati dynamic in-

equality, we establish some properties of the solutions of (1.1) and also establish some

new sufficient conditions for oscillation of (1.1). In the special case when T = R

and τ(t) = t our results include the oscillation condition (1.12) established by Lom-

tatidze [13] for second-order differential equation. In the case, when T = Z, T =hZ,

h > 0, T = Tn our results are essentially new. An example is considered to illustrate

the main results. In Section 3, we consider the second-order neutral delay dynamic

equation

(1.14) [y(t) + r(t)y(τ(t))]∆∆ + q(t)y(δ(t)) = 0,

on a time scale T and extend the results in Section 2 and establish some new sufficient

conditions for oscillations. The technique in this paper is different from the techniques

considered in [1, 2, 11, 18, 19, 20, 22, 23].

2. MAIN RESULTS

In this section, we study the properties of the solutions of (1.1) and establish

some new sufficient conditions for oscillations. In what follows, we will assume that

the graininess function µ(t) satisfies maxt∈T µ(t) = h0 ≥ 0, and

(2.1)

∫

∞

t0

τ(s)q(s)∆s = ∞.
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In the next results, for simplicity, we will use the notations

P (t) := t
∫

∞

σ(t)
τ(s)

s
q(s)∆s, Q(t) := 1

t

∫ t

t0
s2

(

τ(s)
s

q(s)
)

∆s,

P∗ := lim inft→∞ P (t), Q∗ := lim inft→∞ Q(t),

P ∗ := lim supt→∞
P (t), Q∗ := lim supt→∞

Q(t),

We will need the following lemma in the proof of our main results.

Lemma 2.1 ([11]). Let x be a positive solution of (1.1) on [t0,∞) and T = τ−1(t0).

Then

(i) x∆(t) ≥ 0, x(t) ≥ tx∆(t)for t ≥ T ,

(ii) x is nondecreasing, while x(t)/t is nonincreasing on [T,∞).

Before, we proceed to the formulation of the oscillation results, we establish some

properties of the solution of (1.1).

Lemma 2.2. Let x(t) be a nonoscillatory solution of (1.1) such that x(τ(t)) > 0 for

t ≥ t1 ≥ τ−1(t0). Assume that 0 ≤ P∗ ≤ 1/4l. Define w(t) := x∆(t)
x(t)

, then

(2.2) lim
t→∞

inf tλw(t) = 0, for λ < 1,

(2.3) lim
t→∞

inf twσ(t) ≥ 1

2
(1 −

√

1 − 4P∗l).

Proof. From the definition of w(t) and in in view of Lemma 2.1, since x(t) be a

nonoscillatory solution of (1.1) such that x(τ(t)) > 0 for t ≥ t1 ≥ τ−1(t0), we have

w(t) > 0, and satisfies

w∆(t) =
(

x∆
)σ

[

1

x(t)

]∆

+
1

x(t)
x∆∆(t) =

(

x∆
)σ

(t)
−x∆(t)

x(t)xσ(t)
+

1

x(t)
x∆∆(t)

= −
(

x∆
)σ

(t)

xσ(t)

x∆(t)

x(t)
+

1

x(t)
x∆∆(t), for t ≥ t1.

In view of (1.1), we get

w∆(t) + q(t)
x(τ(t))

x(t)
+ w(t)wσ(t) = 0, for t ≥ t1.

From Lemma 2.1, we have x(τ(t))
x(t)

≥ τ(t)
t

. This implies that

(2.4) w∆(t) + p(t) + w(t)wσ(t) ≤ 0, for t ≥ t1.

where p(s) := τ(s)
s

q(s) > 0. This implies that

w∆(t)

w(t)wσ(t)
< −1, for t ≥ t1.

So that
( −1

w(t)

)∆

< −1.
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Integrating the last inequality from t1 to t, we have

(2.5) (t − t1)w(t) < 1, for t ≥ t1,

which implies that

(2.6) lim
t→∞

w(t) = 0, lim
t→∞

tλw(t) = 0, for λ < 1 and lim
t→∞

1

t

∫ t

t1

w(s)∆s = 0,

and this proves (2.2). Now, we prove (2.3). If P∗ = 0, then (2.3) is trivial. So, we

may assume that P∗ > 0. Integrating (2.4) from σ(t) to ∞ (σ(t) ≥ t1) and using

(2.6), we have

(2.7) wσ(s) ≥
∫

∞

σ(t)

p(s)∆s +

∫

∞

σ(t)

w(s)wσ(s)∆s for t ≥ t1.

Set r := limt→∞ inf twσ(t). By using (2.5), we see that

(2.8) 0 < r ≤ 1, and r − r2 > 0.

Then it follows that for any ε ∈ (0, r) there exists t2 ≥ t1, such that

r − ε < twσ(t),

and from the definition of P∗, we have

t

∫

∞

σ(t)

p(s)∆s ≥ P∗ − ε, for t ≥ t2.

From (2.7), we have

wσ ≥
∫

∞

σ(t)

p(s)∆s +

∫

∞

σ(t)

w(s)wσ(s)∆s ≥
∫

∞

σ(t)

p(s)∆s +

∫

∞

σ(t)

swσ(s)swσ(s)

s2
∆s

≥
∫

∞

σ(t)

p(s)∆s +

∫

∞

σ(t)

(r − ε)2 1

sσ(s)
∆s

≥
∫

∞

σ(t)

p(s)∆s + (r − ε)2

∫

∞

σ(t)

(−1

s

)∆

∆s

=

∫

∞

σ(t)

p(s)∆s +
1

σ(t)
(r − ε)2 .

This implies that,

twσ(t) ≥ t

∫

∞

σ(t)

p(s)∆s +
t

σ(t)
(r − ε)2 .

Then

(2.9) r ≥ P∗ − ε + l(r − ε)2 for t ≥ t2.

Since ε is an arbitrary, we have

(2.10) P∗ ≤ r − lr2,

which implies that

(2.11) lr2 − r + P∗ ≤ 0.
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Then, from (2.11) since P∗ ≤ 1/4l, we see that (2.3) holds. The proof is complete.

Lemma 2.3. Let x(t) be a nonoscillatory solution of (1.1) such that x(τ(t)) > 0 for

t ≥ t1 ≥ τ−1(t0). Assume that 0 ≤ Q∗ ≤ 1/4. Then

(2.12) lim
t→∞

sup twσ(t) ≤ 1

2
(1 +

√

1 − 4Q∗).

Proof. We proceed as in the proof of Lemma 2.2 to get (2.4). From (2.4) we see that

w∆(t) ≤ 0. This implies that w(t) ≥ wσ(t), and hence (2.4) becomes

(2.13) w∆(t) + p(t) + (wσ(t))2 ≤ 0, for t ≥ t1.

Multiplying (2.13) by t2, and integrating from t1 to t (t ≥ t1) and using the integration

by parts, we obtain
∫ t

t1

s2p(s)∆s ≤ −
∫ t

t1

s2w∆(s)∆s −
∫ t

t1

s2 (wσ(s))2 ∆s

=
[

−t2w(t)
]t

t1
+

∫ t

t1

(s2)∆wσ(s)∆s −
∫ t

t1

s2 (wσ(s))2 ∆s

= −t2w(t) + t21w(t1) +

∫ t

t1

(s + σ(s))wσ(s)∆s −
∫ t

t1

s2 (wσ(s))2 ∆s

= −t2w(t) + t21w(t1) +

∫ t

t1

2swσ(s)∆s −
∫ t

t1

s2 (wσ(s))2 ∆s

+

∫ t

t1

µ(s)wσ(s)∆s.

It follows that

tw(t) ≤ t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s − 1

t

∫ t

t1

s2p(s)∆s

+
1

t

∫ t

t1

[

2swσ(s) − s2 (wσ(s))2] ∆s.

Then, we have

twσ(t) ≤ t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s − 1

t

∫ t

t1

s2p(s)∆s

+
1

t

∫ t

t1

[

2swσ(s) − s2 (wσ(s))2]∆s.(2.14)

From (2.6), since limt→∞

1
t

∫ t

t1
w(s)∆s = 0, and w(t) ≥ wσ(t), we have

lim
t→∞

[

t21w(t1)

t
+

h0

∫ t

t1
wσ(s)∆s

t

]

= 0.

Also, using the inequality a2 + b2 ≥ 2ab, we have

[

2σ(s)wσ(s) − σ2(s) (wσ(s))2] ≤ 1,
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and this implies that

(2.15)
1

t

∫ t

t1

[

2swσ(s) − s2 (wσ(s))2]∆s ≤ 1.

Set

(2.16) R := lim
t→∞

sup twσ(t).

Then from (2.14), we have

R ≤ 1 − Q∗.

The estimation in (2.12) is valid for Q∗ = 0. We may assume that Q∗ > 0. For an

arbitrary ε ∈ (R, 1 − Q∗), there exists t2 ≥ t1 such that

(2.17) R − ε < twσ(t) < R + ε.

From the definition of Q∗, we see that

(2.18)
1

t

∫ t

t0

s2p(s)∆s > Q∗ − ε, for t ≥ t2.

Then, from (2.14)–(2.18), we obtain

(2.19) lim
t→∞

sup twσ(t) ≤ −Q∗ + ε + (R + ε)(2 − R − ε), for t ≥ t2.

From (2.16) and (2.19), since ε is an arbitrary, we get

(2.20) Q∗ ≤ R − R2,

and therefore

(2.21) R2 − R + Q∗ ≤ 0.

Now since Q∗ ≤ 1/4, we see that R ≤ 1
2
(1 +

√
1 − 4Q∗) which is (2.12). The proof is

complete.

From Lemma 2.2 and Lemma 2.3, we have the following properties of the solutions

of (1.1).

Lemma 2.4. Let x(t) be a nonoscillatory solution of (1.1) such that x(τ(t)) > 0 for

t ≥ t1 ≥ τ−1(t0). Assume that 0 ≤ P∗ ≤ 1/4l and 0 ≤ Q∗ ≤ 1/4. Then

lim
t→∞

sup t

(

x∆

x

)σ

(t) ≤ 1

2
(1 +

√

1 − 4Q∗),

and

lim
t→∞

inf t

(

x∆

x

)σ

(t) ≥ 1

2
(1 −

√

1 − 4P∗l).

Theorem 2.2. Assume that

(2.22) lim
t→∞

sup[P (t) + Q(t)] > 1,

then every solution of (1.1) oscillates.
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Proof. Assume for the sake of contradiction that (1.1) has a nonoscillatory solution.

Without loss of generality, we may assume that there is a positive solution x(t) of

(1.1) such that x(τ(t)) > 0 for t ≥ t1 ≥ τ−1(t0). Let w(t) = x∆(t)
x(t)

and proceeding as

in the proofs of Lemmas 2.2 and 2.3, to get

(2.23) t

∫

∞

σ(t)

p(s)∆s ≤ twσ(t) − t

∫

∞

σ(t)

w(s)wσ(s)∆s,

and

1

t

∫ t

t1

s2p(s)∆s ≤ −twσ(t) +
t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s

+
1

t

∫ t

t1

[

2swσ(s) − s2 (wσ(s))2]∆s.(2.24)

From (2.23) and (2.24), we obtain

P (t) + Q(t) ≤ t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s +
1

t

∫ t

t1

[

2swσ(s) − s2 (wσ(s))2]∆s

−t

∫

∞

σ(t)

w(s)wσ(s)∆s

Using the fact that
[

2swσ(s) − s2 (wσ(s))2] ≤ 1, we have

P (t) + Q(t) ≤ 1 +
t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s − t

∫

∞

σ(t)

w(s)wσ(s)∆s

≤ 1 +
t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s − t

∫

∞

σ(t)

(wσ(s))2 ∆s.

Now, since
∫

∞

σ(t)
(wσ(s))2 < ∞, we have

lim
t→∞

sup[P (t) + Q(t)] ≤ 1 + lim
t→∞

sup[
t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s].

Using (2.6) in the last inequality, we get

lim
t→∞

sup[P (t) + Q(t)] ≤ 1,

which contradicts (2.22). The proof is complete.

From Theorem 2.2, we have the following oscillation result.

Corollary 2.2. Assume that

(2.25) Q∗ > 1, or P ∗ > 1,

then every solution of (1.1) oscillates.

Example 2.1. Consider the second-order delay Euler dynamic equation

(2.26) x∆∆(t) +
γ

tτ(t)
x(τ(t)) = 0, for t ∈ [1,∞)T,
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where τ(t) ≤ t and limt→∞ τ(t) = ∞. It is clear that
∫

∞

t0
τ(s)q(s)∆s =

∫

∞

t0
τ(s) γ

sτ(s)

∆s =
∫

∞

1
γ

s
∆s = ∞, so the condition (2.1) holds. To apply Corollary 2.2, it remains

to satisfy condition (2.25). In the case, we have

Q∗ = lim
t→∞

sup
1

t

∫ t

t0

s2P (s)∆s = lim
t→∞

inf
1

t

∫ t

t0

s2 γ

sτ(s)

τ(s)

s
∆s

= γ lim
t→∞

inf
1

t

t
∫

t0

∆s = γ.

So by Corollary 2.2, every solution of (2.26) oscillates if γ > 1. Also, we note that

P ∗ = lim
t→∞

sup t

∫

∞

σ(t)

p(s)
τ(s)

s
∆s = γ lim

t→∞

inf t

∫

∞

σ(t)

1

s2
∆s

≥ γ lim
t→∞

inf t

∫

∞

σ(t)

1

sσ(s)
∆s = γ lim

t→∞

inf t

∫

∞

σ(t)

(−1

s

)∆

∆s = γ.

So by Corollary 2.2, every solution of (2.26) oscillates if γ > 1.

Remark 2.1. Note that the oscillation condition P ∗ > 1 on Corollary 2.2 is the time

scale analogue of the condition (1.8) of Hille [14].

Now, we concentrate our work to give an affirmative answer to the question posed

in the introduction and consider the case when Q∗ ≤ 1/4, and P∗ ≤ 1/4l.

Theorem 2.3. Assume that P∗ ≤ 1/4l. Then, every solution of (1.1) oscillates if

(2.27) Q∗ >
1

2
(1 +

√

1 − 4P∗l).

Proof. Assume for the sake of contradiction that (1.1) has a nonoscillatory solution.

Without loss of generality, we may assume that there is a positive solution x(t) of

(1.1) such that x(τ(t)) > 0 for t ≥ t1 ≥ τ−1(t0). Then from Lemma 2.2, we have

twσ(t) > r − ε, for t ≥ t2 > t1,

where

wσ(t) =

(

x∆

x

)σ

(t) and r =
1

2
(1 −

√

1 − 4P∗l).

From Theorem 2.2, we have

1

t

∫ t

t1

s2p(s)∆s ≤ −twσ(t) +
t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s

+
1

t

∫ t

t1

[

2swσ(s) − s2 (wσ(s))2]∆s

≤ −r + ε + 1 +
t21w(t1)

t
+

h0

t

∫ t

t1

wσ(s)∆s.

It follows that

Q∗ ≤ 1

2
(1 +

√

1 − 4P∗l),
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which contradicts the condition (2.27). The proof is complete.

Theorem 2.4. Assume that Q∗ ≤ 1/4. Then, every solution of (1.1) oscillates if

(2.28) P ∗ >
1

2
(1 +

√

1 − 4Q∗).

Proof. Assume for the sake of contradiction that (1.1) has a nonoscillatory solution.

Without loss of generality, we may assume that there is a positive solution x(t) of

(1.1) such that x(τ(t)) > 0 for t ≥ t1 ≥ τ−1(t0). Then from Lemma 2.3, we have

twσ < R + ε, for t ≥ t2 > t1,

where

R =
1

2
(1 +

√

1 − 4Q∗).

From Lemma 2.2, we have

twσ(t) ≥ t

∫

∞

σ(t)

p(s)∆s + t

∫

∞

σ(t)

w(s)wσ(s)∆s ≥ t

∫

∞

σ(t)

p(s)∆s, for t ≥ t1,

which implies that

lim sup
t→∞

t

∫

∞

σ(t)

p(s)∆s ≤ R + ε, for t ≥ t2 > t1.

Since ε is an arbitrary, so that

P ∗ ≤ 1

2
(1 +

√

1 − 4Q∗),

which contradicts the assumption (2.28). The proof is complete.

Remark 2.2. In the special case when T = R and τ(t) = t, we see that the condition

(2.28) becomes the condition (1.12). So, our results in the special case involve the

oscillation results of differential equations established by Lomtatidze [13], and are

essentially new for equations (1.3)–(1.5) and can be applied to different types of time

scales with maxt∈T µ(t) = h0 ≥ 0. Also the results can be extended to the nonlinear

delay dynamic equations

x∆∆(t) + q(t)f(x(τ(t))) = 0, when |f(u)| ≥ K |u| for K > 0.

3. APPLICATIONS ON NEUTRAL DYNAMIC EQUATIONS

In this section, we apply the oscillation results established in Section 2 on the

neutral delay dynamic equation (1.14). We assume that the following assumptions

are satisfied:

(h1). τ(t) ≤ t, δ(t) ≤ t are defined on the time scale T, and limt→∞ δ(t) =

limt→∞ τ(t) = ∞,

(h2). r(t) and q(t) are positive real-valued rd-continuous functions defined on T

and 0 ≤ r(t) ≤ r < 1.
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(h3).
∫

∞

t0
δ(s)q(s)(1 − r(δ(s))) = ∞.

To the best of our knowledge no similar results are given for equation (1.14) even

for differential or difference equations.

Lemma 3.1. Assume that (h1)–(h3) hold. Let y(t) be a nonoscillatory solution of

(1.14) such that y(t), y(τ(t)) and y(δ(t)) > 0 for t ≥ t0 sufficiently large. Let

(3.1) u(t) := y(t) + r(t)y(τ(t)),

and

b∗ := lim inf
t→∞

t

∫

∞

σ(t)

B(s)∆s, B∗ := lim inf
t→∞

1

t

∫ t

t0

s2B(s)∆s,

where B(s) := δ(s)
s

q(s)(1 − r(δ(s))). Assume that 0 ≤ b∗ ≤ 1/4l and 0 ≤ B∗ ≤ 1/4,

then

lim
t→∞

inf tλ
(

u∆

u

)

(t) = 0, for λ < 1,

lim
t→∞

inf t

(

u∆

u

)σ

(t) ≥ 1

2
(1−

√

1 − 4b∗l), and lim
t→∞

sup t

(

u∆

u

)σ

(t) ≤ 1

2
(1+

√

1 − 4B∗).

Proof. In view of (1.14) and (3.1), we have

(3.2) u∆∆(t) + q(t)y(δ(t)) ≤ 0, t ≥ t1 > t0,

and so u∆(t) is an eventually decreasing function. From Lemma 2.1, u∆(t) is eventu-

ally nonnegative and hence

y(t) = u(t) − r(t)y(τ(t)) = u(t) − r(t)[u(τ(t)) − r(τ(t))y(τ(τ(t)))]

≥ u(t) − r(t)u(τ(t)) ≥ (1 − r(t))u(t).

Then, for t ≥ t2 = δ−1(t1), we see that

(3.3) y(δ(t)) ≥ (1 − r(δ(t)))u(δ(t)).

Then from (3.2) and (3.3), we have

(3.4) u∆∆(t) + q(t)(1 − r(δ(t)))u(δ(t)) ≤ 0, for t ≥ t2.

Define w(t) := u∆(t)
u(t)

and proceeding as in the proof of Lemma 2.2 by using (3.4) we

have w(t) > 0 and satisfies the Riccati dynamic inequality

(3.5) w∆(t) + B(t) + (wσ(t))2 ≤ 0, for t ≥ t2.

The remainder of the proof is similar to that of the proofs of Lemmas 2.2 and 2.3 by

using (3.5) and hence is omitted.

Now, we are ready to state the main oscillation results for ( 1.14) based on

Lemma 3.1 and the inequality (3.5). The proofs are similar to that of the proofs of

Theorems 2.2–2.4 and hence are omitted.
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Theorem 3.1. Assume that (h1)–(h3) hold. If

(3.6) b∗ >
1

4
, or B∗ >

1

4
,

then every solution of (1.14) oscillates.

Theorem 3.2. Assume that (h1)–(h3) hold. If

(3.7) b∗ + B∗ > 1,

where

b∗ := lim
t→∞

sup t

∫

∞

σ(t)

B(s)∆s, and B∗ := lim sup
t→∞

1

t

∫ t

t0

s2B(s)∆s.

then every solution of (1.14) oscillates.

Theorem 3.3. Assume that (h1)–(h3) hold and b∗ ≤ 1/4l. If

(3.8) B∗ >
1

2
(1 +

√

1 − 4b∗l),

then, every solution of (1.15) oscillates.

Theorem 3.4. Assume that (h1)–(h3) hold and B∗ ≤ 1/4. If

(3.9) b∗ >
1

2
(1 +

√

1 − 4B∗),

then every solution of (1.14) oscillates.

REFERENCES

[1] R. P. Agarwal, M. Bohner and S. H. Saker, Oscillation of second-order delay dynamic equations,

Canadian Appl. Math. Quart. (to appear).

[2] R. P. Agarwal, D. O’Regan and S. H. Saker, Oscillation criteria for second-order nonlinear

neutral delay dynamic equations, J. Math. Anal. Appl. 300 (2004), 203–217.

[3] E. A. Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type Equations on

Discrete time scales, J. Diff. Eqns. Appl. 9 (2003), 603–612.

[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Appli-
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