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ABSTRACT. In this paper, by virtue of the Mann iterative technique, we introduce and study a

class of systems of nonlinear equations without any mixed monotone property and continuity, and

prove the existence, uniqueness and Mann iterative approximation theorems of solutions for systems

of nonlinear operator equations. The results presented in this paper improve and generalize the

corresponding results of the earlier and recent works.
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we always assume that X is a real Banach space with

norm ‖ · ‖, θ is the null element of X and P ⊂ X is a cone on X, and the cone P

defines a partial ordering ≤ in X by x ≤ y if and only if y − x ∈ P for all x, y ∈ X.

A cone P in X is said to be normal if there exists a normal constant Np > 0 such

that θ ≤ x ≤ y implies ‖x‖ ≤ Np‖y‖ for all x, y ∈ X. The constant Np is called the

normal constant of the cone P . Without loss of generality, we can assume that the

normal constant Np = 1. For any u0, v0 ∈ X with u0 ≤ v0, we define the ordered

interval D = [u0, v0] = {u ∈ X : u0 ≤ u ≤ v0} (see [5]).
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In [7], Song considered the following system of nonlinear operator equations in

X:
{

x = A(x, x),

x = B(x, x),
(1.1)

where A, B : D×D → X need not be mixed monotone operators or continuous oper-

ators, and introduced the following assumptions (H1) and (H2) to show the existence

and uniqueness of the system (1.1):

(H1) There exist nonnegative real constants M and N with N < M + 1 such

that

(i) u0 + N(v0 − u0) ≤ B(u0, v0), A(v0, u0) ≤ v0 − N(v0 − u0);

(ii) A(u2, v2) − A(u1, v1) ≥ −M(u2 − u1) − N(v1 − v2);

(iii) B(u2, v2) − B(v0, u0) ≥ −M(u2 − u1) + N(v1 − v2);

(iv) A(u2, u1) − B(u1, u2) ≥ −(M + N)(u2 − u1),

where u0 ≤ u1 ≤ u2 ≤ v0, u0 ≤ v2 ≤ v1 ≤ v0,

and

(H2) there exists a positive linear operator L : X → X with r(L) < 1 such that

A(v, u) − B(u, v) ≤ L(v − u), u0 ≤ u ≤ v ≤ v0,

where r(L) is the spectral radius of L.

Theorem S1. ([7]) Let P ⊂ X be a normal cone and u0, v0 ∈ X such that u0 ≤

v0 and D = [u0, v0]. Assume that the conditions (H1) and (H2) are satisfied. If

2N + r(L) < 1, then the system of the nonlinear operator equations (1.1) has a

unique solution ū in D, the iterative sequences {un} and {vn} generated by
{

un = 1

1+M−N
[B(un−1, vn−1) + Mun−1 − Nvn−1],

vn = 1

1+M−N
[A(vn−1, un−1) + Mvn−1 − Nun−1]

(1.2)

for n = 1, 2, · · · both converge to the unique solution ū and there exists a natural

number n0 such that, for any constant c with r(L) < ci < 1 − 2N ,

‖ū − un‖ ≤ bn‖v0 − u0‖ or ‖ū − vn‖ ≤ bn‖v0 − u0‖, n ≥ n0,

where b = c+M+N
1+M−N

.

Theorem S2. ([7]) Let P ⊂ X be a normal cone and u0, v0 ∈ X such that u0 ≤ v0

and D = [u0, v0]. Assume that the conditions (H1) is satisfied. If there exists a

constant with 0 < b < 1 − 2N such that, for u0 ≤ u ≤ v ≤ v0,

(H3) A(v, u) − B(u, v) ≥ b(v − u), then the system of the nonlinear operator

equations (1.1) has a unique solution ū in D, the iterative sequences {un} and {vn}
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generated by (1.2) both converge to the unique solution ū and have the following error

estimate:

‖ū − un‖ ≤
( b + M + N

1 + M − N

)n

‖v0 − u0‖

for n = 1, 2, · · · .

Remark 1.1. (1) If A = B in (1.1), then we have the following nonlinear operator

equation:

x = A(x, x).(1.3)

(2) If A(x, y) = T (x) + F (y) for all x, y ∈ X in (1.3), then we have the following

nonlinear operator equation:

x = T (x) + F (x).(1.4)

(3) If A(x, y) = T (x)F (y) for all x, y ∈ X in (1.3), then we have the following

nonlinear operator equation:

x = T (x)F (x).(1.5)

In fact, the study of these nonlinear operator equations is motivated by an in-

creasing interest in the equation (1.3) with applications in Banach spaces (see, for

example, [1], [2], [4], [6]–[9], [11]–[14] and the references therein).

In 1995, Chen [1] studied the fixed point theorems of T -monotone operator un-

der the condition that A satisfies some continuous condition. Recently, Sun, Li and

Luan [8] studied T -mixed monotone operator which generalized T -monotone opera-

tor and obtained some new fixed point theorems by using the results of Syan [9] and

the condition that A satisfies some non-continuous condition. Very recently, Zhang

and Xie [14] discussed the existence of the solution and coupled minimal and max-

imal quasi-solutions for nonlinear non-monotone operator equation (1.3) under the

condition that A(x, y) + T (x) is a mixed monotone operator.

Moreover, by using partial order method, Song [7] discussed the existence, unique-

ness and Picard’s iterative approximation of solutions for the operator equations (1.1)

in Banach space (see Theorems S1, S2 above).

Inspired and motivated by the recent works of [3], [6], [7], [11] and [14], in this pa-

per, we study the Mann iterative approximation problem of solutions for the nonlinear

operator equations (1.1), (1.3)–(1.5) in Banach spaces and also give the estimation

of rate of convergence. The results presented in this paper improve and extend the

corresponding results given by Song [7] and some authors.
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2. SOME ITERATIVE ALGORITHMS

In this section, we will give some Algorithms (Mann iterative sequences) for

solving the equations (1.1), (1.3)–(1.5) in Section 1.

Algorithms 2.1. The sequences {un} and {vn} are defined by
{

un+1 = (1 − αn)un + αn(1 + an − bn)−1[B(un, vn) + anun − bnvn],

vn+1 = (1 − αn)vn + αn(1 + an − bn)−1[A(vn, un) + anvn − bnun]
(2.1)

for n = 0, 1, 2, · · · , where {αn} is a real sequence in (0, 1] satisfying some conditions

and {an}, {bn} are two nonnegative real sequences with bn < an+1 for n = 0, 1, 2, · · · .

If αn = 1 for all n = 0, 1, 2, · · · in (2.1), then Algorithms 2.1 is reduced to the

following algorithm:

Algorithms 2.2. The sequences {un} and {vn} are defined by
{

un+1 = (1 + an − bn)−1[B(un, vn) + anun − bnvn],

vn+1 = (1 + an − bn)−1[A(vn, un) + anvn − bnun]
(2.2)

for n = 0, 1, 2, · · · .

If an ≡ a and bn ≡ b for all n = 0, 1, 2, · · · in (2.2), then Algorithms 2.2 is reduced

to the following algorithm:

Algorithms 2.3. The sequences {un} and {vn} are defined by
{

un+1 = (1 + a − b)−1[B(un, vn) + aun − bvn],

vn+1 = (1 + a − b)−1[A(vn, un) + avn − bun]
(2.3)

for n = 0, 1, 2, · · · .

Remark 2.1. The iterative procedures {un} and {vn} in Algorithms 2.3 were studied

by Song [7].

Algorithms 2.4. The sequences {un} and {vn} are defined by
{

un+1 = (1 − αn)un + αn(1 + an − bn)−1[A(un, vn) + anun − bnvn],

vn+1 = (1 − αn)vn + αn(1 + an − bn)−1[A(vn, un) + anvn − bnun]
(2.4)

for n = 0, 1, 2, · · · .

Algorithms 2.5. The sequences {un} and {vn} are defined by
{

un+1 = (1 − αn)un + αn(1 + an − bn)−1[(T + anI)(un) + (F − bnI)(vn)],

vn+1 = (1 − αn)vn + αn(1 + an − bn)−1[(T + anI)(vn) + (F − bnI)(un)]
(2.5)

for n = 0, 1, 2, · · · , where I is an identical operator from X into itself.
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Algorithms 2.6. The sequences {un} and {vn} are defined by
{

un+1 = (1 + an − bn)−1[T (un)F (vn) + anun − bnvn],

vn+1 = (1 + an − bn)−1[T (vn)F (un) + anvn − bnun]
(2.6)

for n = 0, 1, 2, · · · .

3. THE MAIN RESULTS

First, we list for convenience the following assumptions:

(H1) There exist nonnegative real sequences {an} and {bn} with bn < an + 1 for

all n = 0, 1, 2, · · · such that

(a) û + bn(v̂ − û) ≤ B(û, v̂), A(v̂, û) ≤ v̂ − bn(v̂ − û);

(b) A(û, v̂) − A(ū, v̄) ≥ −an(û − ū) + bn(v̂ − v̄);

(c) B(û, v̂) − B(ū, v̄) ≥ −an(û − ū) + bn(v̂ − v̄);

(d) A(û, ū) − B(ū, û) ≥ (1 − 2bn)(û − ū),

where u0 ≤ ū ≤ û ≤ v0 and u0 ≤ v̂ ≤ v̄ ≤ v0.

(H2) There exists a positive linear operator L : X → X with r(L) < 1 such that

A(v, u) − B(u, v) ≤ L(v − u), u0 ≤ u ≤ v ≤ v0,

where r(L) is the spectral radius of L.

Now, we give our main results in this paper.

Theorem 3.1. Let P ⊂ X be a normal cone, u0, v0 ∈ X such that u0 ≤ v0 and

D = [u0, v0]. Suppose that the conditions (H1) and (H2) are satisfied. If 2bn+r(L) < 1

for n = 0, 1, 2, · · · , {αn} is a monotone decreasing sequence with αn → α ∈ [0, 1),

lim
n→∞

an = a and lim
n→∞

bn = b, then the iterative sequences {un} and {vn} generated by

(2.1) both converge strongly to the unique solution x∗ of the system of the nonlinear

operator equations (1.1) and there exists a natural number n0 such that, for any

i = 0, 1, 2, · · · , n − 1 and r(L) < ci < 1 − 2bi,

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖, n ≥ n0,

where ε = (1 − α) + ασ, σ = max
0≤i≤n−1

{σi}, σi = ci+ai+bi

1+ai−bi

for i = 0, 1, · · · , n − 1.

Proof. Firstly, from the condition (H1) and (2.1), we can know that

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ vn ≤ · · · ≤ v1 ≤ v0.(3.1)

In fact, when n = 1, by (2.1) and the condition (H1), we have

u1 − u0 = (1 − α0)u0 + α0(1 + a0 − b0)
−1[B(u0, v0) + a0u0 − b0v0] − u0

= α0{(1 + a0 − b0)
−1[B(u0, v0) + a0u0 − b0v0] − u0}

≥ α0{(1 + a0 − b0)
−1[u0 + b0(v0 − u0) + a0u0 − b0v0] − u0}
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= θ,

v0 − v1 = v0 − {(1 − α0)v0 + α0(1 + a0 − b0)
−1[A(v0, u0) + a0v0 − b0u0]}

= α0{v0 − (1 + a0 − b0)
−1[A(v0, u0) + a0v0 − b0u0]}

≥ α0{v0 − (1 + a0 − b0)
−1[v0 − b0(v0 − u0) + a0v0 − b0u0]}

= θ

and

v1 − u1 = (1 − α0)(v0 − u0)

+α0(1 + a0 − b0)
−1{[A(v0, u0) − B(u0, v0) + (a0 + b0)(v0 − u0)}

≥ (1 − α0)(v0 − u0)

+α0(1 + a0 − b0)
−1[(1 − 2b0)(v0 − u0) + (a0 + b0)(v0 − u0)]

= v0 − u0

≥ θ.

Therefore, u0 ≤ u1 ≤ v1 ≤ v0, i.e., (3.1) holds for n = 1.

Suppose now that (3.1) holds for n = k, i.e., uk−1 ≤ uk ≤ vk ≤ vk−1. We shall

show that it holds for n = k + 1. Indeed, by (2.1), the condition (H1) and induction

hypothesis, we have

uk+1 − uk = (1 − αk)uk + αk(1 + ak − bk)
−1[B(uk, vk) + akuk − bkvk] − uk

= αk{(1 + ak − bk)
−1[B(uk, vk) + akuk − bkvk] − uk}

≥ αk{(1 + ak − bk)
−1[uk + bk(vk − uk) + akuk − bkvk] − uk}

= θ,

vk − vk+1 = vk − {(1 − αk)vk + αk(1 + ak − bk)
−1[A(vk, uk) + akvk − bkuk]}

= αk{vk − (1 + ak − bk)
−1[A(vk, uk) + akvk − bkuk]}

≥ αk{vk − (1 + ak − bk)
−1[vk − bk(vk − uk) + akvk − bkuk]}

= θ.

vk+1 − uk+1 = (1 − αk)(vk − uk)

+αk(1 + ak − bk)
−1{[A(vk, uk) − B(uk, vk) + (ak + bk)(vk − uk)}

≥ (1 − αk)(vk − uk)

+αk(1 + ak − bk)
−1{[(1 − 2bk)(vk − uk) + (ak + bk)(vk − uk)}

= vk − uk

≥ θ.

Thus uk ≤ uk+1 ≤ vk+1 ≤ vk and so (3.1) is true.
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Secondly, we prove that the existence of solutions for the systems of operator

equations (1.1) in D. In fact, it follows from the condition (H2) that

θ ≤ vn − un

= (1 − αn−1)(vn−1 − un−1)

+αn−1(1 + an−1 − bn−1)
−1[A(vn−1, un−1) − B(un−1, vn−1)

+(an−1 + bn−1)(vn−1 − un−1)]

≤ {(1 − αn−1)I + αn−1(1 + an−1 − bn−1)
−1

×[L + (an−1 + bn−1)I]}(vn−1 − un−1)

= Qn−1(vn−1 − un−1)

≤ Qn−1(Qn−2(vn−2 − un−2))

≤ · · ·

≤

n−1
∏

i=0

Qi(v0 − u0),(3.2)

where Qi = (1 − αi)I + αi(1 + ai − bi)
−1[L + (ai + bi)I] for i = 0, 1, 2, · · · , n − 1.

Since {αn} is a monotone decreasing sequence in (0, 1] and αn → α ∈ (0, 1], for all

i = 0, 1, 2, · · · , n − 1 and ci ∈ (r(L), 1 − 2bi), we have (see [10])

lim
n→∞

‖Qn
i ‖

1

n = r(Qi)

≤ (1 − αi) + αi

r(L) + ai + bi

1 + ai − bi

≤ (1 − αi) + αi

ci + ai + bi

1 + ai − bi

= (1 − αi) + αiσi

≤ (1 − αi) + αiσ,

where σ = max{σi| i = 0, 1, · · · , n − 1}, σi = ci+ai+bi

1+ai−bi

. Obviously, the condition

ci < 1 − 2bi implies σi < 1 for all i = 0, 1, 2, · · · , n − 1 and so σ < 1 and it follows

from αi > α for all i = 0, 1, 2, · · · , n − 1 that

lim
n→∞

‖Qn
i ‖

1

n = 1 − αi(1 − σ)

≤ 1 − α(1 − σ)

= ε,(3.3)

where ε = (1−α)+ασ ∈ (0, 1). Thus, from (3.3), it is easy to know that there exists

a natural number n0 such that

‖Qn
i ‖ ≤ εn, ∀n ≥ n0, i ≥ 0,
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i.e.,

n−1
∏

i=0

‖Qi‖ = ‖Q0‖ · ‖Q1‖ · · · ‖Qn−1‖ ≤ εn, n ≥ n0.(3.4)

From (3.2), (3.4) and the normality of P , we get

‖vn − un‖ ≤ ‖v0 − u0‖ε
n, n ≥ n0.(3.5)

It follows from (3.1) that, for any positive integers m and n,

θ ≤ um+n − un ≤ vn − un, θ ≤ vn − vm+n ≤ vn − un.(3.6)

For any n, m ≥ 1, (3.5), (3.6) and the normality of P imply
{

‖un+m − un‖ ≤ ‖vn − un‖ ≤ εn‖v0 − u0‖,

‖vn − vn+m‖ ≤ ‖vn − un‖ ≤ εn‖v0 − u0‖,
n ≥ n0,(3.7)

which imply that {un} and {vn} are Cauchy sequences in X and hence there exist

u∗, v∗ ∈ X such that lim
n→∞

un = u∗, lim
n→∞

vn = v∗ and un ≤ u∗ ≤ v∗ ≤ vn for

n = 0, 1, 2, · · · . By the normality of P and (3.5), we have

‖v∗ − u∗‖ ≤ ‖vn − un‖ → 0 (n → ∞),

and so u∗ = v∗ 4
= x∗ ∈ D, i.e.,

lim
n→∞

un = lim
n→∞

vn = x∗ and un ≤ x∗ ≤ vn, n ≥ 0.(3.8)

On the other hand, from (2.1), (3.8) and the condition (H1), it follows that

un+1 = (1 − αn)un + αn(1 + an − bn)−1[B(un, vn) + anun − bnvn]

≤ (1 − αn)un + αn(1 + an − bn)−1[B(x∗, x∗) + (an − bn)x∗]

≤ (1 − αn)un + αn(1 + an − bn)−1[A(x∗, x∗) + (an − bn)x∗]

≤ (1 − αn)vn + αn(1 + an − bn)−1[A(vn, un) + anvn − bnun]

= vn+1(3.9)

for all n = 0, 1, 2, · · · . Thus, letting n → ∞ in (3.9), it follows from the normality of

P , (3.8), αn → α, an → a and bn → b that

x∗ ≤ (1 − α)x∗ + α(1 + a − b)−1[B(x∗, x∗) + (a − b)x∗]

≤ (1 − α)x∗ + α(1 + a − b)−1[A(x∗, x∗) + (a − b)x∗] ≤ x∗,

i.e.,

x∗ = (1 − α)x∗ + α(1 + a − b)−1[B(x∗, x∗) + (a − b)x∗]

= (1 − α)x∗ + α(1 + a − b)−1[A(x∗, x∗) + (a − b)x∗].

Therefore, we get

x∗ = B(x∗, x∗) = A(x∗, x∗).



ITERATIVE APPROXIMATIONS 387

This implies that x∗ is a solution of the system of the nonlinear operator equations

(1.1) in D.

Thirdly, we shall show that x∗ is the unique solution of the system (1.1). Indeed,

suppose that x ∈ D is also a solution of (1.1), then, from u0 ≤ x = A(x, x) =

B(x, x) ≤ v0 and the condition (H1), we have

x − u1 = x − {(1 − α0)u0 + α0(1 + a0 − b0)
−1[B(u0, v0) + a0u0 − b0v0]}

= (1 − α0)(x − u0)

+α0(1 + a0 − b0)
−1[B(x, x) − B(u0, v0) + a0(x − u0) − b0(x − v0)]

≥ (1 − α0)(x − u0)

+α0(1 + a0 − b0)
−1[−a0(x − u0) + b0(x − v0) + a0(x − u0) − b0(x − v0)]

= (1 − α0)(x − u0)

≥ θ

and

v1 − x = (1 − αn)vn + αn(1 + an − bn)−1[A(vn, un) + anvn − bnun] − x

= (1 − α0)(v0 − x)

+α0(1 + a0 − b0)
−1[A(v0, u0) − A(x, x) + a0(v0 − x) − b0(u0 − x)]

≥ (1 − α0)(v0 − x)

+α0(1 + a0 − b0)
−1[−a0(v0 − x) + b0(u0 − x) + a0(v0 − x) − b0(u0 − x)]

= (1 − α0)(v0 − x)

≥ θ,

which imply that u1 ≤ x ≤ v1. By induction, it is easy to prove that

un ≤ x ≤ vn, n ≥ 1.(3.10)

Thus, letting n → ∞ in (3.10), it follows from (3.8) and the normality of cone P that

x∗ ≤ x ≤ x∗, i.e., x∗ = x. Therefore, x∗ is the unique solution of the system of the

equations (1.1).

Finally, letting m → ∞ in (3.7), we can obtain the following error estimation:

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖.

This completes the proof. �

Corollary 3.1. Let P ⊂ X be a normal cone, u0, v0 ∈ X be such that u0 ≤ v0

and D = [u0, v0]. Suppose that the conditions (H1) is satisfied. Suppose that, for

n = 0, 1, 2, · · · , there exists a constant c with 0 < c < 1 − 2bn such that

(H ′
2) A(v, u) − B(u, v) ≤ c(v − u) for all u0 ≤ u ≤ v ≤ v0.
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If {αn} is a monotone decreasing sequence with αn → α ∈ [0, 1), lim
n→∞

an = a

and lim
n→∞

bn = b, then the iterative sequences {un} and {vn} generated by (2.1) both

converge strongly to the unique solution x∗ of the system of the nonlinear operator

equations (1.1) and

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖, n ≥ 1.

where ε = (1 − α) + ασ and σ = max
0≤i≤n−1

{ c+ai+bi

1+ai−bi

}.

Proof. By the same way as stated in Theorem 3.1, we can complete the proof. �

Theorem 3.2. Let P ⊂ X be a normal cone, u0, v0 ∈ X be such that u0 ≤ v0 and

D = [u0, v0]. Suppose that the conditions (H1) and (H2) are satisfied. If 2bn+r(L) < 1

for n = 0, 1, 2, · · · , lim
n→∞

an = a and lim
n→∞

bn = b, then the iterative sequences {un} and

{vn} generated by Algorithm 2.2 both converge strongly to the unique solution x∗ of

the system of the nonlinear operator equations (1.1) and there exists a natural number

n0 such that, for any i = 0, 1, 2, · · · , n − 1 and r(L) < ci < 1 − 2bi,

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖, n ≥ n0,

where ε = max
0≤i≤n−1

{ ci+ai+bi

1+ai−bi

}.

Theorem 3.3. Let P ⊂ X be a normal cone, u0, v0 ∈ X be such that u0 ≤ v0 and

D = [u0, v0]. Let the condition (H2) be satisfied. Assume that 2b + r(L) < 1 and the

following conditions hold:

(H ′
1) There exist nonnegative real sequences a and b with b < a + 1 such that

(a) u0 + b(v0 − u0) ≤ B(u0, v0), A(v0, u0) ≤ v0 − b(v0 − u0);

(b) A(û, v̂) − A(ū, v̄) ≥ −a(û − ū) + b(v̂ − v̄);

(c) B(û, v̂) − B(ū, v̄) ≥ −a(û − ū) + b(v̂ − v̄);

(d) A(û, ū) ≥ B(ū, û),

where u0 ≤ ū ≤ û ≤ v0, u0 ≤ v̂ ≤ v̄ ≤ v0.

Then the iterative sequences {un} and {vn} generated by Algorithm 2.3 both con-

verge strongly to the unique solution x∗ of the system of the nonlinear operator equa-

tions (1.1) and there exists a natural number n0 such that, for any r(L) < ci < 1−2b,

‖x∗−un‖ ≤ (
c + a + b

1 + a − b
)n‖v0−u0‖ or ‖vn−x∗‖ ≤ (

c + a + b

1 + a − b
)n‖v0−u0‖, n ≥ n0.

Proof. Let αn ≡ 1, an = a and bn = b for all n = 0, 1, 2, · · · in the proof of

Theorem 3.1. By the condition (H ′
1), we know that

vn+1 − un+1 = (1 + a − b)−1{[A(vn, un) − B(un, vn) + (a + b)(vn − un)}

≥ (1 + a − b)−1(a + b)(vn − un)}
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≥ θ, n ≥ 0.

The rest proof can be obtained by the proof of Theorem 3.1 and so it is omitted. �

Remark 3.1. It is easy to know that the condition (H ′
1) in Theorem 3.3 implies the

condition (H1) in Song [7] and so our results improve and generalize the corresponding

results of Song’ recent works [7]. In fact, the conditions (i)-(iii) of (H1) in [7] is the

same as the conditions (a)-(c) of (H ′
1) in Theorem 3.3. But, from the condition (d)

of (H ′
1), it follows that A(û, ū) ≥ B(ū, û) > 0 > −(a + b)(û − ū) implies A(û, ū) ≥

B(ū, û) > −(a + b)(û − ū), which is the condition (iv) of (H1) in [7]. Thus the

condition (H ′
1) improves the condition (H1) in [7].

Remark 3.2. In Theorems 3.1, 3.3, if A and B are two mixed monotone operators,

then (ii) and (iii) of the condition (H1) are fulfilled.

From Theorem 3.1, we have the following results:

Theorem 3.4. Let P ⊂ X be a normal cone, u0, v0 ∈ X be such that u0 ≤ v0 and

D = [u0, v0]. Suppose that operator A : D×D → X satisfies the following conditions:

(h1) There exist nonnegative real sequences {an} and {bn} with bn < an + 1 for

all n = 0, 1, 2, · · · such that

(a) û + bj(v̂ − û) ≤ A(û, v̂), A(v̂, û) ≤ v̂ − bj(v̂ − û);

(b) A(û, v̂) − A(ū, v̄) ≥ −aj(û − ū) + bj(v̂ − v̄),

where u0 ≤ ū ≤ û ≤ v0, u0 ≤ v̂ ≤ v̄ ≤ v0 and some aj ∈ {a0, a1, a2, · · · }, bj ∈

{b0, b1, b2, · · · }.

(h2) There exists a positive linear operator L : X → X with r(L) < 1 such that

A(v, u) − A(u, v) ≤ L(v − u), u0 ≤ u ≤ v ≤ v0,

where r(L) is the spectral radius of L.

If 2bn + r(L) < 1 for n = 0, 1, 2, · · · , lim
n→∞

an = a, lim
n→∞

bn = b and {αn} is

a monotone decreasing sequence with αn → α ∈ [0, 1), then the nonlinear operator

equation (1.3) has a unique solution x∗ in D and both the iterative sequences {un}

and {vn} generated by Algorithms 2.4 converge strongly to x∗. Further, there exists a

natural number n0 such that, for any i = 0, 1, 2, · · · , n − 1 and r(L) < ci < 1 − 2bi,

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖, n ≥ n0,

where ε = (1 − α) + ασ, σ = max
0≤i≤n−1

{ ci+ai+bi

1+ai−bi

}.

Remark 3.3. In Theorems 3.1-3.4, we have not required any mixed monotonicity

and continuity condition. In particular, if bj = 0 (resp., b = 0), then from (H1) and

(h1) (resp., (H ′
1)), we know that u0 and v0 are coupled lower and upper solutions of

the nonlinear operator equations (1.1) and (1.3). Our results improve and generalize
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many known corresponding results (see, for example, [2], [4], [8], [12], [14] and the

references therein).

Corollary 3.2. Let P ⊂ X be a normal cone and u0, v0 ∈ X be such that u0 ≤ v0 and

D = [u0, v0]. Suppose that operator T, F : D → X satisfies the following conditions:

(h′
1) There exist nonnegative real sequences {an} and {bn} with bn < an + 1 for

all n = 0, 1, 2, · · · such that

(a) û + bj(v̂ − û) ≤ T (û) + F (v̂), T (v̂) + F (û) ≤ v̂ − bj(v̂ − û);

(b) T (û) − T (ū) ≥ −aj(û − ū);

(c) F (v̂) − F (v̄) ≥ bj(v̂ − v̄),

where u0 ≤ ū ≤ û ≤ v0, u0 ≤ v̂ ≤ v̄ ≤ v0 and aj ∈ {a0, a1, a2, · · · }, bj ∈

{b0, b1, b2, · · · }.

(h′
2) There exists a positive linear operator L1, L2 : X → X with r(L1)+r(L2) <

1 such that

T (v) − T (u) ≤ L1(v − u), F (u) − F (v) ≤ L2(v − u), u0 ≤ u ≤ v ≤ v0,

where r(Li) is the spectral radius of Li (i = 1, 2).

If 2bn + r(L1) + r(L2) < 1 for n = 0, 1, 2, · · · , lim
n→∞

an = a, lim
n→∞

bn = b and {αn}

is a monotone decreasing sequence with αn → α ∈ [0, 1), then the nonlinear operator

equation (1.4) has a unique solution x∗ in D and both the iterative sequences {un}

and {vn} generated by Algorithms 2.5 converge strongly to x∗. Further, there exists a

natural number n0 such that, for any i = 0, 1, 2, · · · , n − 1 and r(L) < ci < 1 − 2bi,

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖, n ≥ n0,

where ε = (1 − α) + ασ and σ = max
0≤i≤n−1

{ ci+ai+bi

1+ai−bi

}.

Corollary 3.3. Let P ⊂ X be a normal cone and u0, v0 ∈ X be such that u0 ≤ v0 and

D = [u0, v0]. Suppose that operator T, F : D → X satisfies the following conditions:

(h′′
1) There exist nonnegative real sequences {an} and {bn} with bn < an + 1 for

all n = 0, 1, 2, · · · such that

(a) û + bj(v̂ − û) ≤ T (û)F (v̂), T (v̂)F (û) ≤ v̂ − bj(v̂ − û);

(b) T (û)F (v̂) − T (ū)F (v̄) ≥ −aj(û − ū) + bj(v̂ − v̄),

where u0 ≤ ū ≤ û ≤ v0, u0 ≤ v̂ ≤ v̄ ≤ v0 and aj ∈ {a0, a1, a2, · · · }, bj ∈

{b0, b1, b2, · · · }.

(h′′
2) There exists a positive linear operator L : X → X with r(L) < 1 such that

T (v)F (u)− T (u)F (v) ≤ L(v − u), u0 ≤ u ≤ v ≤ v0,

where r(L) is the spectral radius of L.
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If 2bn + r(L) < 1 for n = 0, 1, 2, · · · , lim
n→∞

an = a, lim
n→∞

bn = b and {αn} is

a monotone decreasing sequence with αn → α ∈ [0, 1), then the nonlinear operator

equation (1.5) has a unique solution x∗ in D and both the iterative sequences {un}

and {vn} generated by Algorithms 2.6 converge strongly to x∗. Further, there exists a

natural number n0 such that, for any i = 0, 1, 2, · · · , n − 1 and r(L) < ci < 1 − 2bi,

‖x∗ − un‖ ≤ εn‖v0 − u0‖ or ‖vn − x∗‖ ≤ εn‖v0 − u0‖, n ≥ n0,

where ε = (1 − α) + ασ and σ = max
0≤i≤n−1

{ ci+ai+bi

1+ai−bi

}.

Remark 3.4. Corollaries 3.2 and 3.3 show the existence of solutions for the nonlinear

operator equations involving the sum and the product of two nonlinear operators,

respectively.
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