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ABSTRACT. In this paper we consider the question of optimal fusion of sensor data in discrete

time. The basic problem is to design a linear filter whose output provides an unbiased minimum

variance estimate of a signal process whose noisy measurements from multiple sensors are available for

input to the filter. The problem is to assign weights to each of the sources (sensor data) dynamically

so as to minimize estimation errors. We formulate the problem as an optimal control problem where

the weight given to each of the sensor data is considered as one of the control variables satisfying

certain constraints. There are as many controls as there are sensors. We develop an efficient method

for determining the optimal fusion strategy and gives a numerical result for illustration.
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1. INTRODUCTION

In many physical problems, a large amount of data is available for collection.

The collection is done at discrete time from different sensors with diverse degrees

of reliability. On the basis of these collected data, a natural aim is to estimate the

needed but unknown signal as accurately as possible. In the case of single sensor and

linear system in Gaussian environment, the best estimator is given by the Kalman

filter (recursive estimator). In this paper, we consider the situation in which the

data is available at discrete time points from multiple sensors with varying degrees

of reliability. Our aim is to find a way to assign an appropriate weight to each of

the sensor sources so that unreliable data would not have too much an influence

in the estimation. We formulate this problem as a discrete time optimal control

problem where the control is the weight vector process dynamically assigning degree
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of importance to sensor sources. We develop an efficient computational method for

calculating the optimal weight assignment strategy.

Multisensor problem has received considerable attention in literature. In [11], the

measurement adaptive problem involving linear systems with Gaussian perturbations

and quadratic cost is formulated and solved. In [2], the sensor scheduling problem is

considered in continuous time, where scheduling policies are considered as processes

adapted to the observation σ-algebra. It is then shown that the optimal scheduling

policy can be obtained by solving a quasi-variational inequality. However, this general

formulation is much too complex for an optimal solution to be computed. In [10], the

sensor scheduling problem considered is in continuous time involving linear systems.

It corresponds to the situation, where the control variables are restricted to take

values in a discrete set but with switchings being allowed to take place in continuous

time. This formulation leads to an optimal discrete valued control problem, which is a

special case of the form considered in [9] and [15]. For the case of discrete time system,

the sensor scheduling problem is solvable by the tree search type of algorithms, and

greedy algorithms. For example, see those reported in [3], [6], [7], [12] and [13]. In

[5], by deriving a precise expression of an effective lower bound, a branch and bound

method, which is based on the positive semi-definite property of the covariance matrix

introduced in [8], is developed to seek the exact optimal solution.

In [4], we consider the optimal fusion problem in continuous time. The problem

is formulated as an optimal control problem involving a matrix Riccati differential

equation where the weight given to each of the sensor data is considered as one

of the control variables satisfying certain constraints. The existence of an optimal

weighting function for each of the sensor sources is established and an efficient method

to determine an optimal fusion strategy is developed. In this paper, we shall study the

discrete time version of the optimal fusion problem considered in [4]. The modification

for this study is that the collection of data is done at discrete time.

The rest of the paper is organized as follows. In Section 2, we present the under-

lying mathematical problem and formulate the problem for achieving our objectives,

which turns out to be a stochastic optimal control problem in discrete time. We then

show that this discrete time stochastic optimal control problem is equivalent to a

discrete time deterministic optimal control problem. In Section 3, the existence of

an optimal control is established. In Section 4, we develop an efficient computational

method for the solution of the discrete time deterministic optimal control problem.

For illustration, a numerical result is obtained in Section 5.
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2. MATHEMATICAL FORMULATION

Let (Ω,F , P ) be a given probability space. Consider a system governed by the

following linear stochastic difference equation

(2.1a) x(t + 1) = A(t)x(t) + B(t)V (t), t ∈ I1,

with initial condition

(2.1b) x(0) = x0,

where I1 = {0, 1, · · · , T − 1}, and for each t ∈ I1, A(t) ∈ R
n×n and B(t) ∈ R

n×d are

matrices with real elements. The process {V (t), t ∈ I1} is a sequence of independent

standard Gaussian random vectors with values in R
d on (Ω,F , P ), and the mean and

covariance are given by

E{V (t)} = 0 and E{(V (t)V (s))} = δt,s, t, s ∈ I1.

The initial state x0 is a R
n-valued Gaussian random vector on (Ω,F , P ) with

mean E(x0) = x̂0 and covariance matrix E{(x0 − x̂0)(x0 − x̂0)ᵀ} = P0.

Denote I2 = {1, 2, · · · , T}. Our aim is to estimate the process {x(t), t ∈ I2}

based on the measurement data obtained by N sensors, which are governed by the

following family of linear stochastic difference equations given by

(2.2) yi(t) = Ci(t)x(t) + Di(t)Wi(t), t ∈ I2,

where, for each t ∈ I1,

Ci(t) ∈ R
m×n, Di(t) ∈ R

m×m, yi(t) ∈ R
m,

and for each i, 1 ≤ i ≤ N , {Wi(t), t ∈ I2} is a sequence of independent standard

R
m-valued Gaussian random vectors.

By virtue of all these available data

{yi(t), t ∈ I2, i = 1, · · · , N},

our objective is to find a dynamical strategy to assign appropriate weights {αi(t), t ∈

I2} to all the individual sensor sources. We then use the weighted measurement given

by

(2.3a) y(t) =
N∑

i=1

αi(t)yi(t), t ∈ I2,

where

(2.3b) αi(t) ≥ 0, i = 1, · · · , N,

(2.3c)

N∑

i=1

αi(t) = 1,
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to estimate the signal so that the estimation error is minimum. This objective can

be formulated as a stochastic optimal control problem. For this, let us define the set

(2.4) Λ ≡ {λ ∈ R
N : λi ≥ 0, i = 1, . . . , N, and

N∑

i=1

λi = 1}.

Clearly, Λ is a compact convex set.

Any α(t) = [α1(t), · · · , αN(t)]ᵀ ∈ R
N such that α(t) ∈ Λ for t ∈ I2 is called an

admissible control. Let U be the set of all such admissible controls.

For any given α ∈ U , let

(2.5) Fα = σ{y(s), s ∈ I2}

denote the smallest σ-algebra relative to which y is measurable. It is well known that

the unbiased minimum variance estimate of the process {x}, given the history Fα, is

given by its conditional expectation:

(2.6) x̂(t) = E{x(t)|Fα}.

We can formulate our basic problem as a stochastic discrete time optimal control

problem as follows:

Problem (P1). Find an α ∈ U such that

(2.7) E{x(t)} = E{x̂(t)}, ∀t ∈ I2,

and that it minimizes the cost functional given by

(2.8) J(α) =
T−1∑

t=0

Tr{Σ(t)Pα(t)}dt + c1Tr{Pα(T )} + c2

N∑

j=1

T−1∑

t=1

|αj(t + 1) − αj(t)|,

where Σ is an n × n-positive definite matrix-valued function satisfying

|Σij(t)| ≤ L, ∀t ∈ I1, i, j = 1, · · · , n,

while L, c1, and c2 are positive constants, and

(2.9) Pα(t) = E{(x(t) − x̂(t))(x(t) − x̂(t))
ᵀ

|Fα}

is the estimation error covariance matrix.

The first two terms of the cost functional (2.8) aim to minimize estimation errors

with a special emphasis on the terminal error, while the third term imposes a penalty

on the frequency of switching and the magnitudes of jumps so as to prevent frequent

and large changes in control policies.

Given the a priori estimate of the state at time t, denoted by z−(t), we seek an

update estimate z+(t) based on the current measurement data y(t), we impose that

the estimator have the following structure

(2.10) z+(t) = E(t)z−(t) + Γ(t)y(t),
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where the filter inputs are the decision process {α}, which represents the weight given

to each of the noisy measurement channel, and the weighted measurement data {y}.

Our problem is to find the matrices

{E(t), Γ(t), Fi(t), i = 1, 2, · · · , N}

so that for all t ∈ I2, z+(t) is the best (unbiased minimum variance = UMV) linear

estimate for x(t). Define the estimation error (after and before the measurement)

process as follows:

(2.11a) e−(t) = z−(t) − x(t), t ∈ I2, before measurement

(2.11b) e+(t) = z+(t) − x(t), t ∈ I2, after measurement

Substituting (2.11) in (2.10), we obtain

e+(t) =E(t)z−(t) + Γ(t)y(t) − x(t)

=E(t)e−(t) + Γ(t)

N∑

i=1

αi(t)yi(t) + E(t)x(t) − x(t)

=E(t)e−(t) + Γ(t)
N∑

i=1

αi(t)(Ci(t)x(t) + Di(t)Wi(t)) + (E(t) − I)x(t)

=E(t)e−(t) + Γ(t)
N∑

i=1

αi(t)Di(t)Wi(t) + (Γ(t)
N∑

i=1

αi(t)Ci(t) + E(t) − I)x(t)(2.12)

By assumption

E{Wi(t)} = 0, t ∈ I2,

and hence, if

(2.13) E{e−(t)} = 0, t ∈ I2,

then we can have an unbiased estimate if and only if

(2.14) E(t) = I − Γ(t)
N∑

i=1

αi(t)Ci(t), t ∈ I2.

Substituting (2.14) into (2.12), we have

e+(t) = (I − Γ(t)
N∑

i=1

αi(t)Ci(t))e
−(t) + Γ(t)

N∑

i=1

αi(t)Di(t)Wi(t)

= e−(t) + Γ(t)[y(t) −
N∑

i=1

αi(t)Ci(t)z
−(t)](2.15)

To determine the error covariance, define the error covariance matrices before mea-

surement and after measurement as follows:

(2.16a) P−(t) = E{e−(t)(e−(t))ᵀ}, before measurement
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(2.16b) P +(t) = E{e+(t)(e+(t))ᵀ}, after measurement

Substituting (2.15) into (2.16), we have

P+(t) =E{[(I − Γ(t)

N∑

i=1

αi(t)Ci(t))e
−(t) + Γ(t)

N∑

i=1

αi(t)Di(t)Wi(t)]·

[(I − Γ(t)
N∑

i=1

αi(t)Ci(t))e
−(t) + Γ(t)

N∑

i=1

αi(t)Di(t)Wi(t)]
ᵀ}

=(I − Γ(t)
N∑

i=1

αi(t)Ci(t))P
−(t)(I − Γ(t)

N∑

i=1

αi(t)Ci(t))
ᵀ

+ Γ(t)(

N∑

i=1

α2

i (t)Di(t)D
ᵀ

i (t))Γᵀ(t)(2.17)

We take the a priori estimate of the state as

(2.18) z−(t + 1) = A(t)z+(t),

then we compute the error covariance time update

(2.19a) P−(t + 1) = A(t)P +(t)Aᵀ(t) + B(t)Bᵀ(t)

with initial condition

(2.19b) P +(0) = P0.

Note that, for fixed but arbitrary α ∈ U , we may choose Γ that minimizes a given

cost functional if an additional assumption is imposed (see [1], Section 5.5, p. 80).

Details are given in the following theorem.

Theorem 1. Consider the system (2.1), (2.2) and (2.3). Suppose α ∈ U is given

and the elements of the matrices {A(t), B(t), t ∈ I1} and {Ci(t), Di(t), t ∈ I2} are

bounded matrix-valued functions, V, Wi (i = 1, · · · , N) are a sequence of independent

standard Gaussian random vectors on (Ω,F , P ). Further, suppose that the initial state

has finite second moment. Let the cost functional be given by

(2.20) L(α) =
T−1∑

t=0

Tr{Σ(t)P +

α (t)} + c1Tr{P +

α (T )},

where Σ is an n × n-positive definite matrix-valued function satisfying

|Σij(t)| ≤ L, ∀t ∈ I1, i, j = 1, · · · , n.

Then the best linear filter is given by the following set of difference equations

(2.21a) z+(t) = (I − Γα(t)Ξα(t))z−(t) + Γα(t)y(t),

with initial condition

(2.21b) z(0) = x̂0.
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Define

(2.22) Rα(t) =

N∑

i=1

(αi(t))
2Di(t)D

ᵀ

i (t), t ∈ I2.

If Rα(t) is positive definite, then the optimum Γα(t) is given by

(2.23) Γα(t) = P−
α (t)Ξᵀ

α(t)(Ξα(t)P−
α (t)Ξᵀ

α(t) + Rα(t))−1,

where

(2.24) Ξα(t) =
N∑

i=1

αi(t)Ci(t),

and the set of error covariance matrices {P +
α (t)} is given by the solution of the matrix

difference equation

(2.25a) P +

α (t + 1) = (I − Γα(t + 1)Ξα(t + 1))[A(t)P +

α (t)Aᵀ(t) + B(t)Bᵀ(t)],

with initial condition

(2.25b) P +

α (0) = P0.

3. Optimal Fusion

The main results are presented in the following two theorems.

Theorem 2. The stochastic optimal control Problem (P1) is equivalent to the follow-

ing deterministic optimal control problem:

Problem (P2). Find an α ∈ U such that the cost functional

(3.1) L(α) =

T−1∑

t=0

Tr{Σ(t)P +

α (t)} + c1Tr{P +

α (T )} + c2

N∑

j=1

T−1∑

t=1

|αj(t + 1) − αj(t)|

is minimized subject to the dynamic constraint:

(3.2a) P +

α (t + 1) = (I − Γα(t + 1)Ξα(t + 1))[A(t)P +

α (t)Aᵀ(t) + B(t)Bᵀ(t)],

with initial condition

(3.2b) P +

α (0) = P0,

where c1, c2 are positive constants,

(3.3) Γα(t) = P−
α (t)Ξᵀ

α(t)(Ξα(t)P−
α (t)Ξᵀ

α(t) + Rα(t))−1,

and Rα, Ξα are given by (2.22) and (2.24), respectively.
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Proof. From our choice of E, as given by (2.14), it follows that the filter is unbiased

and that the error dynamics is given by (2.15). From this equation, we obtained

the dynamics for the error covariance matrix given by equation (2.17) and (2.19).

The cost functional (2.20) assumes its minimum at Γα given by (2.23). Thus, for

fixed but arbitrary α ∈ U , Problem (P2) is obtained by substituting the expression

for optimum Γα given by (2.23) into the error covariance equation (2.17) and (2.19).

Hence, Problem (P1) is equivalent to Problem (P2).

Note that Problem (P2) is a deterministic optimal control problem. The existence

of an optimal control is given in the following theorem.

Theorem 3. Consider the control problem (P2). Suppose that Rλ given by

(3.4) Rλ(t) =
N∑

i=1

λ2

i Di(t)D
ᵀ

i (t)

is positive definite for all λ ∈ Λ and for all t ∈ I2. Then, Problem (P2) admits an

optimal control α∗ ∈ U .

Proof. Note that the domain U is a compact and convex subset in

(3.5) A = {α : max
t∈I2

max
1≤i≤N

|αi(t)| < ∞}.

Therefore, it suffices to prove the continuity of the cost functional with respect to α.

Clearly, the third term of the cost functional is continuous, as an absolute value

function is a continuous function.

Consider the first two terms, we need to show the continuity of P +
α (t) for all

t ∈ I2. Clearly, α → Ξα and α → Rα are continuous by their definitions. Continuity

of α → Γα(t) follows from the expression (3.3) and the facts that α → Rα(t) is

continuous and positive definite and that α → P−
α (t) is continuous. Continuity of the

later, α → P−
α (t), follows from the recursion (2.19a) and the facts that P +

α (0) = P0

which is independent of α, and α → P +
α (1) is continuous. Continuity of P +

α (t) now

follows from the recursion (3.2a) and the continuity of α → P +
α (1).

This completes the proof.

Remark 1. A sufficient condition for Rλ(t) to be positive definite for λ ∈ Λ is that

N⋃

i=1

{t ∈ I2 : Ker(Dᵀ

i (t)) = {0}} = I2.

Physically this means that for each t ∈ I2 not more than N − 1 sensors are noiseless

or equivalently at least one sensor is noisy. If all the sensors are noiseless over a

nonempty subset of t ∈ I2, we have a singular situation. Using the results reported in

([1], Chapter10), it can be shown that this singular situation will give rise to Riccati

type equations subject to algebraic constraints.



OPTIMAL FUSION OF SENSOR DATA 401

4. Numerical Solution

In view of Problem (P2), we note that for each j = 1, · · · , N, |αj(t + 1) − αj(t)|

is non-smooth. We choose to use the smoothing technique reported in [14] to smooth

it as:

(4.1) Sρ(y) =

{
|y| , if |y| > ρ

[y2 + ρ2]/2ρ, if |y| ≤ ρ

Then, we have the approximate Problem (P2(ρ)), which is Problem (P2) with its

cost function (3.1) being approximated by

(4.2) Lρ(α) =

T−1∑

t=0

Tr{Σ(t)P +

α (t)} + c1Tr{P +

α (T )} + c2

N∑

j=1

T−1∑

t=1

Sρ(αj(t + 1) − αj(t)).

The cost functional (3.1) contains nonsmooth terms which are now approximated by

smooth ones in (4.2). The relationship between the Problem (P2) and its subsequent

approximate problems is given in the following theorem.

Theorem 4. Let αρ,∗ and α∗ be, respectively, optimal solutions to Problem (P2(ρ))

and Problem (P2). Then,

(4.3) 0 ≤ Lρ(α
ρ,∗) − L(α∗) ≤ c2[N(T − 2)]ρ/2.

Proof. The proof is similar to that given for Theorem 10.4.1 of [14].

Problem (P2(ρ)) is a standard optimal parameter selection problem. It can be

viewed as a mathematical programming problem. For this, we require the gradient

formula for the cost functional.

Let α̃(t) = α(t + 1), and

x̃(t) = (P +

11(t), P
+

12(t), · · · , P+

1n(t), P
+

22(t), P
+

23(t), · · · , P+

2n(t), · · · , P+

nn(t))
ᵀ.

Next, let f be the corresponding vector obtained from the right hand side of (3.2).

Then,

(4.4) x̃(t + 1) = f(t, x̃(t), α̃(t))

and Jρ denotes the corresponding cost functional obtained from (4.2), i.e.,

(4.5) Jρ(α̃) = Φ̃ρ(x̃(T ), α̃) +
T−1∑

t=1

L̃ρ(t, x̃(t), α̃(t)).

Thus, the gradient formula of Jρ with respect to α̃ is given (see [14] for the derivation)

by
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Theorem 5. Consider Problem (P2)(ρ). The gradient of the cost functional Jρ with

respect to α̃ is:

∂Jρ(α̃)

∂α̃
=

[
∂Φ̃ρ(x̃(T ), α̃)

∂α̃(0)
+

∂H̃ρ(0, x̃(0), α̃(0), λ(1))

∂α̃(0)
, · · · ,

∂Φ̃ρ(x̃(T ), α̃)

∂α̃(T − 1)
+

∂H̃ρ(T − 1, x̃(T − 1), α̃(T − 1), λ(T ))

∂α̃(T − 1)

]
,(4.6)

where H̃ρ is the Hamiltonian function given by

(4.7) H̃ρ(t, x̃(t), α̃(t), λ(t + 1)) = L̃ρ(t, x̃(t), α̃(t)) + λᵀ(t + 1)f(t, x̃(t), α̃(t)),

and λ(t), t = T − 1, T − 2, · · · , 1, is the solution of the costate system:

(4.8a) λ(t) =
∂H̃ρ(t, x̃(t), α̃(t), λ(t + 1))

∂x̃(t)
,

with final conditions

(4.8b) λ(T ) =
∂Φ̃ρ(x̃(T ), α̃)

∂x̃(T )
.

To solve the optimal parameter selection Problem (P2(ρ)), we use the optimal

control software, MISER 3.2 [14]. For this, we need, at each iteration, the value of the

cost functional (4.2) and its gradient (4.6). We propose to solve the optimal fusion

Problem (P2) using the following procedure:

Algorithm:

Consider Problem (P2(ρ)), we choose constants ρ0 > 0, 0 < γ < 1 and set

ρk+1 = γρk.

Step 1. Solve Problem (P2(ρ)) with ρ = ρ1 by using the optimal control software,

MISER 3.2 [14]. Let the optimal control obtained be denoted by αρ1,∗.

Step 2. Use αρk,∗ as initial guess to solve Problem (P2(ρ)) with ρk+1 = γρk. Let the

optimal control obtained be denoted by αρk+1,∗.

Step 3. If |Lρk+1
(αρk+1,∗) − Lρk

(αρk,∗)|< ε, where ε is a pre-specified error constant,

go to Step 4. Otherwise, go to Step 2 with ρk+1 =: ρk.

Step 4. Stop. We have obtained an approximate optimal solution to Problem (P2).

5. Illustrative Example

In this section, we shall apply the method developed in previous sections to the

following example.
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Example: Consider the following time variant optimal control problem, where the

system dynamic is described by:



x1(t + 1)

x2(t + 1)

x3(t + 1)


 =




0.05t 0 0.1t + 0.4

0.2 0.2t 0

0 1 0.1t







x1(t)

x2(t)

x3(t)


 +




0.05t + 0.5

0.1t + 0.5

0.2t + 0.8


 V (t)

with initial condition 


x1(0)

x2(0)

x3(0)


 =




0

0

0




Assume that there are three sensors given by

y1(t + 1) =

[
1 0.05t 0.2

0 1 0.1t + 1

]


x1(t)

x2(t)

x3(t)


 +

[
2 1

0 1

] [
W11(t)

W12(t)

]

y2(t + 1) =

[
0 1 2

0.1t 2 0

] 


x1(t)

x2(t)

x3(t)


 +

[
1 0

1 2

][
W21(t)

W22(t)

]

y3(t + 1) =

[
0.2t + 0.8 0 1

1 0.1t − 0.5 0.8

] 


x1(t)

x2(t)

x3(t)


 +

[
2 1

1 2

][
W31(t)

W32(t)

]

The cost functional is

J(u) =

T−1∑

t=0

Tr{P +(t)} + c1Tr{P +(T )} + c2

N∑

j=1

T−1∑

t=1

|αj(t + 1) − αj(t)|.

We take T = 20, c1 = 1, c2 = 0.5, ε = 10−2, γ = 0.1, ρ is reduced gradually from 10−3

to 10−4, and the solutions obtained are reported in Table 1.

ρ 10−3 10−4

Jρ 1.342316e+001 1.341435e+001

Table 1. Numerical Results

Figure 1 shows that the optimal weight given to each of the data sources is time

varying. Initially, the second data source heavily influences the estimation. Later,

the first data becomes more important than the others. Toward the end, the third

data source is the most important one. For the purpose of comparing our results with

those obtained using the single sensor strategy, we test the error function

T−1∑

t=0

Tr{P +(t)} + Tr{P +(T )}
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Figure 1. Optimal Weights

with different strategies and different values of T . The results are reported in Table

2. In view of the results presented in Table 2, we can see that the fusion strategy is

a highly effective way to reduce the accumulative error.

M 1 2 3 4 5

Using only sensor 1 0.2357 0.4593 0.6670 0.8584 1.0391

Using only sensor 2 0.2005 0.4118 0.6315 0.8599 1.0999

Using only sensor 3 0.8485 2.0521 3.4589 4.9834 6.5803

Using optimal strategy 0.1852 0.3790 0.5783 0.7828 0.9943

M 6 7 8 9 10

Using only sensor 1 1.2135 1.3862 1.5629 1.7544 1.9844

Using only sensor 2 1.3549 1.6290 1.9285 2.2649 2.6639

Using only sensor 3 8.2384 9.9739 11.8236 13.8425 16.1156

Using optimal strategy 1.2152 1.4484 1.6982 1.9720 2.2859

M 11 12 13 14 15

Using only sensor 1 2.3153 2.9191 4.2774 7.6960 16.7415

Using only sensor 2 3.1900 4.0181 5.6475 9.5463 19.8723

Using only sensor 3 18.8057 22.1807 26.2752 30.6766 35.1321

Using optimal strategy 2.6778 3.2084 3.9444 4.8665 5.9273

M 16 17 18 19 20

Using only sensor 1 41.5358 100.9794 177.2286 234.6523 275.4797

Using only sensor 2 45.9379 98.5956 179.8121 286.2377 416.9216

Using only sensor 3 39.6206 44.1834 48.8659 53.7075 58.7418

Using optimal strategy 7.1125 8.4030 9.7862 11.2575 12.7449

Table 2. Comparative Results
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6. Conclusion

In this paper, we construct a model of optimal fusion problem, where the collec-

tion of data is collected at discrete time from different sensors with diverse degrees of

reliability. A linear filter is designed such that its output provides an unbiased mini-

mum variance estimate of a signal process whose noisy measurements from multiple

sensors are available for input to the filter. The problem of assigning appropriate

weight to each of the sources dynamically so as to minimize estimation error is for-

mulated as a discrete time deterministic optimal control problem.

Our contributions include showing the existence of an optimal weighting func-

tion for each of the sensor sources, and the development of an efficient method for

calculating an optimal fusion strategy. From the numerical experience gained, we see

that the proposed method is highly efficient.
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