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ABSTRACT. We analyze the mathematical model of the dynamics of HIV-1 infection in an organ-

ism reported in [9]. The model consists of a set of second type delay Volterra Integral Equations and

takes into account the induction upon vaccination of a humoral and/or cellular immune response;

the existence of a distributed delay for intracellular life cycle of the virus and a maximal time period

for which an infected cell is allowed to become productive. We perform the analysis of the quali-

tative behavior of the solution by proving its positivity, boundedness and by providing a threshold

parameter whose value permits to predict whether the infection will spread in the organism or not.

Some numerical examples are added even if most of numerical analysis of the model is carried out

in [9].

1. INTRODUCTION

This paper is can be considered as the mathematical counterpart of [9] where a

model for the study of the efficiency of vaccine for HIV-1 infection is proposed. Many

mathematical models have been developed to describe the spread of HIV-1 infection

in the organism. Most of these models investigate kinetics of viral progression after

infection and/or predict viral decline after drug treatment ([5, 6, 13, 16, 17, 18, 20,

21, 23, 24, 25, 26, 27, 28, 29, 30]). In this paper we give the mathematical background

of the model reported in [9]. The model accounts for the phenomenological scheme

represented in figure 1 and is characterized by the following features: the existence of

a distributed delay for the intracellular life cycle of the virus (see Banks et al. [3, 4],

Mittler et al. [23]); a maximal time period for which an infected cell is allowed to

become productive; and the induction upon vaccination of a humoral and/or cellular
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Figure 1. Simplified phenomenological model of HIV-1 infection

immune response against HIV-1. In the phenomenological model of Figure 1, the

virus (V) infects the target cells (S) at a rate of infection ks. The resulting infected

cells then become virus-producing cells at a transition rate ki. P cells produce virus

at a replication rate p and are removed by clearance at a relative rate δ. The latter

includes the death rate of productive cells and other removal mechanisms, such as

innate and adaptive immune responses ([5]). We underline that the infected cells are

not explicitly represented by a variable in our model because we are interested in the

portion of them producing viruses (P (t)).

It is known that upon infection with HIV-1 there is an intracellular delay during

which the cell is infected but has not yet begun producing viruses. In some models

(see [6, 13, 24]) this delay is assumed to be fixed. Here we assume that it is a

continuous random variable having a Gamma probability distribution F (x) (see [3,

6, 23, 25]). As the most natural reproduction of a continuous delay is by means of an

integral ([3, 6, 23, 25]), the model we are going to study is based on a set of integral

equations (integro-differential formulation would be equivalent). Nevertheless, for

technical reasons, a large part of the analysis contained in the paper is obtained by

transforming it into an equivalent set of delay differential equations involving some

internal variables which do not have biological meaning.

We consider a vaccine eliciting a humoral and/or cellular response, i.e., a vaccine

which stimulates the production of antibodies (humoral response) and/or killer cells

which remove infected cells (cellular response). Mathematically speaking, the vaccine

is represented by the functions

φ1(t) = 1 − ωv(t) , φ2(t) = 1 − γv(t).

Here ω is the rate of killing of each killer cell and therefore it represents the ability of

each single cell to act as an effector, γ is the rate of neutralization of each antibody
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molecule or in other words the ability of each single antibody to act as an effector,

v(t) represents the “intensity” of the immune response.

Finally, we attribute to the infected cell a maximal time period for which an

infected cell is allowed to become productive, named θ and, because of this, the equa-

tions corresponding to the model involve two different expression, with a change from

one to the other when the time passed since infection reaches θ. To be more specific

the model consists in the following set of second type Volterra Integral Equations

(VIEs): (for summary of notation see Table 1)

(1.1)

P (t) = (1 − ωv(t))
∫ t

d(t)
F (t − x)e−δ(t−x)kIkSV (x)S(x)dx

V (t) = (1 − γv(t))
[

V0e
−ct +

∫ t

0
e−c(t−x)pP (x)dx

]

t ∈ [0, tf ]

S(t) = S0e
−βt +

∫ t

0
e−β(t−x) [α − kSV (x)S(x)] dx

where

(1.2) d(t) =

{

0 t < θ

t − θ t ≥ θ

Observe that for t ≥ θ (1.1) is a system of delay Volterra Integral Equations (DVIE).

Moreover, when d(t) = 0, the effect of infected cells (kIkSV (x)S(x)) lasts from the

time infection (x = 0) to the current time t, whereas in the case d(t) = t − θ it lasts

only a time interval ([t − θ, t]) of length θ.

We suppose that the probability density function of the delay of intracellular life

cycle is

(1.3) fn,b(x) =
xn−1

(n − 1)!bn
e−

x
b n ∈ N , b ∈ R

+

where n and b are the parameters of the Gamma distribution whose product represents

the expected value, i.e.

E =

∫ ∞

0

xf(x)dx = nb

The probability distribution F is thus given by

F (x) =

∫ x

0

f(s)ds = 1 − e−
x
b

n−1
∑

j=0

xj

j!bj

We refer to [3] for a detailed discussion on the choice of this delay. Observe that

in (1.1) there appears F (x), whereas in the formulation of the models reported in

[6, 23, 25] we find the function f(x) given in (1.3). This is due to the fact that our

model is based an integral formulation, whereas in [6, 23, 25] an integro-differential one

is reported. In other words, if we differentiate (1.1) we obtain an integro-differential

equation whose kernel contains the function f(x). We have to note that if the vaccine
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and the maximal time period for which an infected cell is allowed to become productive

are not taken into account (ω = γ = 0 and d(t) ≡ 0), our model results to be very

closed to model (11) in [25]. The main difference between the two models lies in the

following fact. In [25] the time t = 0 corresponds to starting time of drug therapy and

therefore the value assumed by the solution before such a time influences its behavior

in any subsequent time t > 0 (this explains the presence of the integral from zero to

infinity in the formulation of (11) of [25]). In our case the initial time is the time of

infection, hence P (t) and V (t) are assumed to be null before such an instant.

The function v(t) has the form:

(1.4) v(t) =











0 t < τ1

m(t − τ1) τ1 ≤ t ≤ τ2

m(τ2 − τ1) t ≥ τ2

The parameter m is the number of effector elements induced by the vaccine and

therefore reflects the intensity of the immune response that can be attained upon

vaccination. The model assumes that if the vaccine is given at time τ1 its maximal

intensity is reached at time τ2. A vaccine given at time τ1 ≤ 0 (that is before infection)

is obviously envisageable as a preventive one, whereas a vaccine inoculated at later

times (τ1 > 0) is therapeutic. It should be noted that, to simplify, we do not make

yet a distinction between primary and secondary immune responses. The vaccine

“efficiency” parameters appearing in (1.1), ω and γ, of course satisfy 0 ≤ ω ≤ 1 ,

0 ≤ γ ≤ 1 and

(1.5) mω(τ2 − τ1) ≤ 1 , mγ(τ2 − τ1) ≤ 1.

From (1.1) and (1.4) we observe that if τ1 > 0 then V (0) = V0, whereas this is not true

anymore in the case τ2 < 0 or τ1 < 0. Biologically speaking this is a characteristic of

a preventive vaccine. In other words we are taking into consideration the fact that a

preventive vaccine has an effect also on the number (V0) of viruses inoculated at the

beginning of the infection, before they reach the cells to be infected. Moreover, we

are assuming that the vaccine acts on the amount of cells (and viruses) independently

of the time at which they are “provided” (x) and depending only on the current time

(t) and the time of inoculation of the vaccine (τ1).

The paper is organized as follows: in section 2 we prove basic properties of the

model such as the existence, the positivity and the boundedness of the solution which

make the model meaningful from a mathematical and a biological point of view.

In section 3 we provide the main result used in [9], that is a threshold parameter

whose value allows to predict whether the HIV infection will start in the organism or

not. The role of the threshold parameter R0 and its dependence on the parameters

defining the vaccine and the maximal time period for which an infected cell is allowed
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to become productive, is analyzed in section 4 thanks to the numerical resolution of

the problem. Some concluding remarks are added at the end of the paper.

List of variable and parameters

Variables

S(t) susceptible or target cells

P (t) productively infected cells

V (t) viruses

Parameters

θ > 0 maximal time period for which an infected cell is allowed

to become productive

α > 0 renewal rate of susceptible cells

β > 0 rate of clearance of susceptible cells

kS > 0 rate at which viruses infect target cells

S0 > 0 S(0)

c > 0 rate of clearance of viruses

p > 0 rate of virus production

V0 > 0 Number of viruses inoculated at t=0

δ > 0 rate of clearance of productive and infected cells

kI > 0 rate of transition from infected to productively infected cells

b > 0 scale parameter of the Gamma function

n ∈ N
+ shape parameter of the Gamma function

τ1 ∈ R time of vaccine inoculation

τ2 > τ1 time of maximal immune response

m Intensity of immune response

0 ≤ γ ≤ 1 Rate of neutralization of each antibody molecule

0 ≤ ω ≤ 1 Rate of killing by each effector cell

Table 1

2. PRELIMINARY RESULTS

In order to make the proposed model “meaningful” from a mathematical point of

view we want to prove the existence of the solution of (1.1). By now we shall assume

that all parameters in (1.1) satisfy the conditions expressed in Table 1 and (1.5). As

we already mentioned, the differential formulation of (1.1) is not completely natural in

the modelling of this biological problem because it introduces some internal variables

with no biological meaning. For this reason and also because it seems to us more

convenient in order to prove positivity and boundedness of the solution we prefer the

integral formulation of the model. Nevertheless most of the following results can also

be obtained by exploring the function space of the solutions of the differential form
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of (1.1) (see section 3) with the help of the the tools of functional analysis (see for

example [12, 15]).

Theorem 2.1. The solution of (1.1) exists and it is unique.

Proof. The proof comes immediately from the theory of nonlinear VIE (see for exam-

ple [22] (pp.30–33)) and by considering (1.1) subsequently in the interval

[0, θ], [θ, 2θ], . . . , [(N − 1)θ, Nθ], [Nθ, tf ]

where

N = max {m ∈ N : mθ ≤ tf}

Now in order to make the model meaningful from a biological point of view we

want to prove that the solutions P (t), V (t) and S(t) of (1.1) are positive and bounded.

In fact, as P (t), V (t), S(t) represent three populations of individuals present in a

volume unit of plasma, we expect that they are nonnegative and bounded. Before

proceeding to the proof of these results note that, biologically speaking, in the absence

of viruses the number of target cells should remain constant, because they are provided

and removed at constant rate. This can be mathematically obtained if and only if

(2.1) S0 =
α

β

Therefore here and in the sequel we assume that (2.1) holds. In this case (1.1)

becomes:

(2.2)

P (t) = (1 − ωv(t))
∫ t

d(t)
F (t − x)e−δ(t−x)kIkSV (x)S(x)dx

V (t) = (1 − γv(t))
[

V0e
−ct +

∫ t

0
e−c(t−x)pP (x)dx

]

S(t) = α
β
−

∫ t

0
e−β(t−x)kSV (x)S(x)dx

Theorem 2.2. The solutions P (t), V (t), S(t) of (2.2) are nonnegative for t > 0.

Proof. Let us assume mω(τ2 − τ1) 6= 1 and mγ(τ2 − τ1) 6= 1. If S(0) > 0 and

V (0) > 0 it is possible to prove (see [10], thm. 2.1) that the functions P (t),V (t) and

S(t) are continuous for t > 0, and bounded in [0, θ]. Let us prove the positivity of

solutions in [θ,∞). We know that P (θ) > 0,V (θ) > 0 and S(θ) > 0. Let us prove

it by contradiction. To this purpose assume that there exists a point t0 such that

S(t0) = 0. Being the function S(t) continuous and piecewise derivable, there exists

as point t s.t. S ′(t) < 0 with t ∈ [t, t0). So

(2.3) lim
t→t−

0

S ′(t) ≤ 0.



MATHEMATICAL MODEL 413

On the other hand the following relation holds:

S ′(t) = α − βS(t) − kSV (t)S(t)

and then

(2.4) lim
t→t−

0

S ′(t) = α.

Taking into account (2.3) and (2.4) we obtain the absurd statement α ≤ 0. And so

we have proved the positivity of the function S(t).

Now, let us suppose that there exists a point t0 > θ s.t.:

(2.5)
V (t)S(t) > 0 t ∈ [θ, t0)

V (t0)S(t0) = 0.

From the first of (2.2) and (2.5) follows

P (t) > 0 t ∈ [θ, t0];

and then, taking into account the second of (2.2), it is V (t0) > 0, that together with

(2.5.2) implies

S(t0) = 0 (Absurd).

From the positivity of the product V (t)S(t), and from (2.2), the positivity of functions

P (t) and V (t) for t > 0 follows.

Observe that in the case mω(τ2 − τ1) = 1 there results 1−ωv(t) = 0 when t > τ2

and hence P (t) = 0 for t ≥ τ2. The same is true for V (t) if mγ(τ2 − τ1) = 1.

The boundedness of the unknown functions is shown in the following result.

Theorem 2.3. Assume that i) β ≤ δ. Then the solutions P (t), V (t), S(t) of (2.2)

are bounded for t > 0.

Proof. By the nonnegativity of the product V (t)S(t) and from the third of (2.2) it

follows:

(2.6) S(t) ≤
α

β
t > 0.

Now, taking into account that 0 ≤ F (x) ≤ 1, 0 ≤ 1 − ωv(t) ≤ 1, and i), we obtain:

(1 − ωv(t))

∫ t

t−θ

F (t − x)e−δ(t−x)kIkSV (x)S(x)dx ≤

∫ t

t−θ

e−β(t−x)kIkSV (x)S(x)dx ≤

∫ t

0

e−β(t−x)kIkSV (x)S(x)dx = kI

(

α

β
− S(t)

)

.

Therefore from the first of (2.2) there results:

P (t) ≤ kI

α

β
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and from the second of (2.2):

V (t) ≤ V0 +
pkIα

cβ

Observe that we provide explicit values for the bound of P, V, S. In particular

inequality (2.6) means that S(t) cannot outgrow α
β
. This is reasonable, because as

said before, the number of the target cells remains constant and equals α
β

in the

absence of virus, while in the presence of virus it can only decrease.

3. ASYMPTOTIC PROPERTIES

In [9] equations (2.2) are solved numerically for different value of the parameter

in order to simulate the potential of HIV vaccines having different strengths and

efficacies. The numerical resolution was performed because we needed to know the

quantitative behavior of P , V and S immediately after the infection and/or after the

inoculation of the vaccine, whereas the asymptotic behavior of the model is completely

determined by the results contained in this section.

In order to study the asymptotic behavior of P (t), V (t), S(t) we assume

t > ti = max {θ, τ2}

and observe that, thanks to the form of the kernel of the integral equations (2.2),

our model can be transformed into a set of delay differential equations by using

the classical transformation which is known as method of stages (MOS) ([19]). By

making this transformation we increase the dimension of the mathematical problem

which passes from a system of 3 VIEs to a system of n + 3 ODEs. Nevertheless, such

a transformation is more convenient for the following analysis. Put

(3.1) Ej(t) =

∫ t

t−θ

fj(t − x)e−δ(t−x)kIkSV (x)S(x)dx

where fj(t) ≡ fj,b(t), j = 1, . . . , n. From here and from the boundedness of V and S

we have that Ej, j = 1, . . . , n are derivable and bounded functions for all t > ti. Let

us derive (3.1) and (2.2). We obtain

(3.2)

E ′
1(t) = 1

b
kSkIV (t)S(t) − 1

b
e−( 1

b
+δ)θkSkIV (t − θ)S(t − θ) −

(

1
b

+ δ
)

E1(t)

E ′
j(t) = −fj(θ)e

−δθkSkIV (t − θ)S(t − θ) + 1
b
Ej−1(t) −

(

1
b
+ δ

)

Ej(t), 2 ≤ j ≤ n

P ′(t) = −δP (t) + (1 − ωv(t))
[

−F (θ)e−δθkSkIV (t − θ)S(t − θ) + En(t)
]

, t ∈ [ti, tf ]

V ′(t) = −cV (t) + (1 − γv(t))pP (t)

S ′(t) = α − kSV (t)S(t) − βS(t).
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The initial values can be obtained computing (2.2) and (3.1) in ti and they are:

P (ti) = (1 − ωv(ti))
∫ ti

ti−θ
F (ti − x)e−δ(ti−x)kIkSV (x)S(x)dx

V (ti) = (1 − γv(ti))
[

V0e
−cti +

∫ ti

0
e−c(ti−x)pP (x)dx

]

S(ti) = α
β
−

∫ ti

0
e−β(ti−x)kSV (x)S(x)dx

Ej(ti) =
∫ ti

ti−θ
fj(ti − x)e−δ(ti−x)kIkSV (x)S(x)dx j = 1, . . . , n

Note that the function Ej given in (3.1) are auxiliary functions related to the proba-

bility density and they do not represent any specific biological component.

Before proving the convergence at infinity of the functions P , V and S, we recall

some known results which can be found in [14].

Lemma 3.1. Let τ : R
+ → R be any function such that i) τ ′(t) exists and is bounded

for t ∈ R
+; ii)

∫ ∞

0
τ(t)dt < ∞. Then

lim
t→∞

τ(t) = 0.

Lemma 3.2. If τ : R
+ → R is a differentiable function and lim inf τ(t) < lim sup τ(t),

then there exist two divergent sequences {t′j}j≥0 and {t′′j}j≥0 such that

limj→∞ τ(t′j) = lim inf τ(t), τ ′(t′j) = 0, j ≥ 0

limj→∞ τ(t′′j ) = lim sup τ(t), τ ′(t′′j ) = 0, j ≥ 0

Theorem 3.3. Assume that i) β ≤ δ. If one of the functions V, P, S, E1, . . . , En has

a finite limit at at infinity then also the remaining functions have a finite limit at

infinity.

Proof. With no loss of generality, assume limt→∞ V (t) = lV ≥ 0. Observe that V (t) is

bounded on [0,∞] and its derivative is a continuous and bounded function on [0,∞],

therefore it is a Lipschitz continuous function and hence a uniformly continuous one.

So limt→∞ V ′(t) = 0. Now, from (3.2), easily follows that limt→∞ P (t) = lP ≥ 0, and

limt→∞ Ej(t) = lEj
≥ 0, j = 1, . . . , n.

Assume that S(t) does not converge at infinity, i.e.

(3.3) lim inf
t→∞

S(t) < lim sup
t→∞

S(t)

and apply lemma 3.2. The evaluation of (3.2.5) in the points of both the sequences
{

t′j
}

and
{

t′′j
}

leads to

lim inf S(t) = lim sup S(t) = lS =
α

(β + kSlV )

which contradicts (3.3).
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Denote by B(t) the following continuous functions which plays a fundamental

role in the proof of the next theorem:

(3.4) B(t) = V (t) +
ω γpkIkS

δ

∫ t

t−θ

[ϕ(t − x) − ϕ(θ)]V (x)S(x)dx t ∈ [ti, tf ]

where

ϕ(y) =
1

(1 + bδ)n

[

F (y)e−δy(1 + bδ)n − F ((1 + bδ)y) + 1
]

and

ω = 1 − ωm(τ2 − τ1), γ = 1 − γm(τ2 − τ1).

It can be easily proved that

(3.5) ϕ′(t) = −δF (t)e−δt ≤ 0,

thus ϕ(t) is a decreasing function and this implies that B(t) is a positive one.

The derivative of (3.4) is given by:

(3.6) B′(t) = cV (t)

(

1

λ
S(t) − 1

)

where

(3.7) λ =
δc(1 + bδ)n

ω γ kIkSp [F ((1 + bδ)θ) − F (θ)e−δθ(1 + bδ)n]
.

Now we are ready to prove the main result of this section which provides a necessary

and sufficient condition for the vanishing of the function V (t).

Theorem 3.4. Assume that i) β ≤ δ. Then

λ ≥
α

β
⇔ lim

t→∞
V (t) = 0

Proof. “⇒” From (3.6) and (2.6) we have:

(3.8) B′(t) ≤ ηV (t) ≤ 0

where η = c
(

α
βλ

− 1
)

≤ 0. Thus the function B(t) converges at infinity and because

of its uniform continuity, it holds:

(3.9) lim
t→∞

B′(t) = 0

If λ > α
β
, integrating both sides of (3.8) from ti to t, we obtain:

∫ t

ti

B′(x)dx ≤ η

∫ t

ti

V (x)dx

hence:

−η

∫ t

ti

V (x)dx + B(t) ≤ B(ti).

So V (t) satisfies the hypotheses of lemma (3.1) and therefore limt→∞ V (t) = 0.
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Now let us consider the case λ = α
β

and suppose that S(t) does not converge at

infinity, then there exists a divergent sequence {tj} s.t. S ′(tj) = 0, 0 < S(tj) < α
β

∀ j ∈ N:

lim
j→∞

S(tj) = lim inf
t→∞

S(t) = l′S <
α

β
.

From (3.2.5) and α > 0 we have l′S > 0. Evaluation of (3.2.5) in tj furnishes:

V (tj) =
α − βS(tj)

kSS(tj)

and passing to the limit as j goes to infinity, we get:

(3.10) lim
n→∞

V (tj) =
α − βl′S

kSl′S
> 0

On the other hand, computing (3.6) in tj:

B′(tj)

c
(

1
λ
S(tj) − 1

) = V (tj);

passing to the limit as j goes to infinity, and taking into account (3.9), we have:

lim
n→∞

V (tj) = 0

which contradicts (3.10). This, together with theorem 3.3, implies that the functions

S(t) and V (t) convergence at infinity. Taking into account (3.6) and (3.9) we obtain:

lim
t→∞

V (t) = 0

or

lim
t→∞

S(t) =
α

β
.

In the second case the thesis follows from (3.2.5) by passing to the limit as t goes to

infinity.

“⇐”.

lim
t→∞

V (t) = 0 ⇒ lim
t→∞

P (t) = 0, lim
t→∞

Ej(t) = 0, j = 1, . . . , n, lim
t→∞

S(t) =
α

β

and then:

lim
t→∞

B(t) = 0.

B(t) is a positive function vanishing at infinity, therefore there exists a divergent

sequence {tj} s.t B′(tj) ≤ 0 for j ≥ 0.

Computing (3.6) in tj we obtain S(tj) ≤ λ, and the thesis follows as j goes to

infinity.

Now put

R0 =
α

βλ

From theorem 3.3 we immediately derive
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Theorem 3.5. Assume that i) β ≤ δ; then

R0 ≤ 1 ⇔ lim S(t) =
α

β
, lim V (t) = 0

R0 > 1 ⇔ V (t) does not vanish as t goes to ∞

Such a result provides a necessary and sufficient condition for the outbreak

of HIV-1 infection. Moreover we note that the condition limt→∞ V (t) = 0 and

limt→∞ S(t) = α
β

derived in the case R0 ≤ 1 seems to imply the healing of the

patient. When no vaccine is inoculated this of course is absurd because we are deal-

ing with HIV-1 infection. Corollary (3.6) clarify that in this case we not only have

limt→∞ V (t) = 0 but it is also V (t) ≤ V (0), which biologically speaking means that

no infection occurs.

Corollary 3.6. Assume that i) β ≤ δ; ii) ω = γ = 0. Then R0 ≤ 1 is equivalent to

say that no infection occurs.

Proof. “⇒”. Let us define the function B̂(t) as:

(3.11) B̂(t) = V (t) +
pkIkS

δ

∫ t

d(t)

[ϕ(t − x) − ϕ(θ)] V (x)S(x)dx t ∈ [0, tf ]

where d(t) is given by (1.2). It can be easily proved that:

B̂′(t) = cV (t)

(

1

λ
S(t) − 1

)

Following the lines of the proof of theorem 3.4 and taking into account ii) it can be

easily seen that B̂′(t) ≤ 0 and thus

V (t) ≤ B̂(t) ≤ B̂(0) = V (0).

“⇐”. If the infection does not occurs we can assume lim V (t) = 0. This in view of

theorem (3.5) leads to R0 ≤ 1.

Thus we can claim that the infection by HIV-1 can get started if an only if

R0 > 1. Therefore R0 is a very important threshold parameter, the value of which

allows to decide whether the HIV-1 infection can take over in an organism. In this

sense we can also state that R0 plays the role of the basic reproduction number (see

[7, 8]) of our model. From the expression (3.7) we can see that λ increases when the

overall efficiency of the vaccine increases (ωm(τ2 − τ1) → 1 and γm(τ2 − τ1) → 1)

and hence in both the cases we get R0 ≤ 1. The same is true when θ → 0, as we

could expect. On the other hand we note that when θ increases, R0 increases and

the DVIE (2.2) tends to a classical VIE. Finally observe that in the case ω = 0 (or

γ = 0) and θ = ∞, the expression of λ coincides with the corresponding threshold

parameter given in [10] where a general model of virus dynamics which does not take
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into account the vaccine and the maximal time period for which an infected cell is

allowed to become productive is studied.

In order to completely describe the behavior of P (t), V (t) and S(t) at infinity

we prove the following theorem which explicitly gives the limiting value in the case

R0 > 1.

Theorem 3.7. Assume that i) β ≤ δ; ii) R0 > 1; iii) one of the functions V , P , S,

E1,. . . ,En converges at ∞. Then

lim
t→∞

S(t) = λ

and

lim
t→∞

V (t) =
α − βλ

kSλ
lim
t→∞

P (t) =
c (α − βλ)

γpkSλ

Proof. From theorem 3.3 we have that each of the functions V, P, Ei, i = 1, . . . , n

converges at infinity and hence

lim
t→∞

B′(t) = 0.

In view of theorem 3.4 we have limt→∞ V (t) > 0 and therefore from (3.6) we obtain

lim
t→∞

S(t) = λ.

The rest of the thesis comes immediately from (3.2).

All the results given in this section can be compared in with those reported in [9],

where the problem is solved numerically by using the kinetics parameters obtained

from experimental and clinical observations. Here we only want to underline that,

since the most popular mathematical software (see for example Matlab, Mathematica,

Maple, Nag, Netlib) present an absolute lack of numerical code for solving DVIEs, we

prefer to transform equation (2.2) into the system (3.2) of delay differential equations

(DDEs) and to solve it by using one of the few codes available. In particular, we

used the routine dde23 of the software Matlabr (The mathWorks Inc., Natick, MA,

USA). Of course the transformation mentioned above is possible only thanks to the

particular form of Equation (2.2) (in other words the transformation from DVIEs to

DDEs is not always possible) and it is not very convenient from a computational point

of view. In fact the dimension of the DDEs system is considerably larger than that of

the original one. The software package developed for the simulation of viral kinetics,

namely VKS-B1.2, is freely available into the software section at www.na.iac.cnr.it

(web site).

It is also worth to point out that, even if the code may be not readily download-

able, there are in literature several numerical schemes proposed to numerically solve

a large variety of Delay Functional Differential Equations (see for example [1, 2]).
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4. THE ROLE OF R0

In this section we want to illustrate the role of R0 in our model. To this purpose

we compare some numerical results, obtained as described above, to the analytic ones

of the previous section. Figure 1 shows how the vaccine influences R0. In fact in fig. 1a,

where no vaccine is inoculated (ω = 0), a virus production occurs. This corresponds

to R0 > 1. In figure 1b the vaccine reaches it maximal efficiency (ωm(τ2 − τ1) = 1),

no virus production occurs and R0 < 1. In Figure 1c we see how R0 varies depending

on θ. Observe that as θ decreases R0 does the same (Fig. 1c), but as it is once again

R0 > 1 we still have an infection, the amount of virus at equilibrium is less than that

in the case 1a and the peak has a different shape. Finally in Fig. 2 we have θ = 1,

R0 < 1 and no infection occurs. We recall that a large variety of resolution of (2.2)

has been reported in [9] to the purpose of illustrating the applicability of the proposed

model.

Fig. 1a
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Fig. 1b

Fig. 1c
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Fig. 2

5. CONCLUDING REMARKS

We have performed the qualitative analysis of a model whose applicability was

discussed in [9]. We provide the threshold parameter R0 and we prove that starting

from any value V0, the amount of virus vanishes if and only if R0 ≤ 1. This, from

another point of view means that the point (P (0) = 0, V (0) = φ2(0)V0, S(0) = α
β
)

is a globally stable stationary point. Moreover we have proved that the condition

R0 ≤ 1 not only assures that lim V (t) = 0, but also that we do not have infection at

all because V (t) does not overcome its initial value V (0). The value of R0 also allows

to predict whether a vaccine is sufficiently efficient to avoid the infection.
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