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1. INTRODUCTION

The monotone iterative method combined with the method of lower and upper

solutions is well known. It can be applied successfully to nonlinear differential prob-

lems to obtain some existence results usually in some segments generated by lower

and upper solutions. In this paper we apply this method for quite general delay

problems with boundary conditions of the form

(1.1)

{

x′(t) = f(t, x(t), x(α(t))) − g(t, x(t), x(β(t))) ≡ Fx(t) − Gx(t), t ∈ J,

x(0) = λx(T ) + k,

where J = [0, T ], 0 < T < ∞, λ, k ∈ IR and

H1 : f, g ∈ C(J × IR × IR, IR), α, β ∈ C(J, J), 0 ≤ α(t) ≤ t, 0 ≤ β(t) ≤ t on J.

Note that the boundary condition in (1.1) contains, as special cases, initial con-

dition (λ = 0), periodic condition (λ = 1) and anti–periodic condition (λ = −1)

when k = 0. Indeed, differential equation in (1.1) contains ordinary differential

equations (without delayed arguments) as a special case. Corresponding results for

above mentioned special cases of problem (1.1) are obtained, for example, in papers

[10, 11, 16, 17]. There are only a few papers when the iterative method is applied to

problems of type (1.1) for g = 0, see for example, [5, 8, 9, 12, 14, 15], see also [4].

Recently, ordinary differential equations with antiperiodic boundary conditions have

been considered in [2, 13], and also with nonlinear boundary conditions in [3, 6, 7].

In paper [5], there are some existence results for delay problems of type (1.1) (with

g = 0) when f satisfies one–sided Lipschitz condition with corresponding constants.
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In this paper, the monotonicity of f and g is assumed to formulate some existence re-

sults. Under such assumption the convergence of two monotone sequences is proved.

This paper extends some results of [1] in which initial problems without delays have

been considered. Some examples are added to support theoretical results.

2. MAIN RESULTS

We will say that functions u, v ∈ C1(J, IR) are coupled lower and upper solutions

(CLUS for short) of problem (1.1) if
{

u′(t) ≤ Fu(t) − Gv(t), t ∈ J,

v′(t) ≥ Fv(t) − Gu(t), t ∈ J,

with boundary conditions

(2.1) u(0) ≤ λu(T ) + k, v(0) ≥ λv(T ) + k if λ ≥ 0,

or with conditions

(2.2) u(0) ≤ λv(T ) + k, v(0) ≥ λu(T ) + k if λ < 0.

Functions y, z ∈ C1(J, IR) are coupled extremal quasi–solutions of problem (1.1) i.e.

if U ∈ C1(J, IR) is any solution of (1.1) such that y0(t) ≤ U(t) ≤ z0(t), t ∈ J, then

y0(t) ≤ y(t) ≤ U(t) ≤ z(t) ≤ z0(t), t ∈ J, where y, z are solutions of system

(2.3)

{

y′(t) = Fy(t) − Gz(t), t ∈ J,

z′(t) = Fz(t) − Gy(t), t ∈ J

with boundary conditions

(2.4) y(0) = λy(T ) + k, z(0) = λz(T ) + k if λ ≥ 0,

or with conditions

(2.5) y(0) = λz(T ) + k, z(0) = λy(T ) + k if λ < 0.

Remark 2.1. Let Gx(t) = 0, t ∈ J and λ ≥ 0. In this case, the functions of CLUS of

problem (1.1) are known as lower and upper solutions of (1.1). The notion of coupled

extremal quasi–solutions of (1.1) denotes extremal solutions of problem (1.1), see, for

example [5, 8, 14, 15], see also [10, 11].

Let Gx(t) = 0, t ∈ J, and λ < 0. In this case, the notion of CLUS of problem

(1.1) denotes weakly coupled lower and upper solutions of (1.1). Similarly, the notion

of coupled extremal quasi–solutions of (1.1) means weakly coupled quasi–solutions of

(1.1), see, for example, [4, 5], see also [16, 17].

Theorem 2.2. Let Assumption H1 hold. Suppose that

H2 : y0, z0 ∈ C1(J, IR) are CLUS of problem (1.1) and y0(t) ≤ z0(t) on J,
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H3 : functions f and g are nondecreasing with respect to the last two variables in the

sector [y0, z0] = {w ∈ C1(J, IR) : y0(t) ≤ w(t) ≤ z0(t), t ∈ J}.

Then problem (1.1) has, in the sector [y0, z0], coupled extremal quasi–solutions.

Proof. First we consider the case when λ ≥ 0. For n = 0, 1, · · · , we construct two

sequences by
{

y′

n+1(t) = Fyn(t) − Gzn(t), t ∈ J, yn+1(0) = λyn(T ) + k,

z′
n+1(t) = Fzn(t) − Gyn(t), t ∈ J, zn+1(0) = λzn(T ) + k.

Note that y1, z1 are well defined and y1, z1 ∈ C1(J, IR). Let p = y0 − y1, so p(0) ≤ 0,

and

p′(t) ≤ Fy0(t) − Gz0(t) − Fy0(t) + Gz0(t) = 0.

It yields y0(t) ≤ y1(t) on J. Similarly, we get z1(t) ≤ z0(t), t ∈ J. Now we put

q = y1 − z1. Then q(0) ≤ 0, and

q′(t) ≤ Fy0(t) − Gz0(t) − Fz0(t) + Gy0(t) ≤ 0,

in view of Assumption H3. Hence y1(t) ≤ z1(t), t ∈ J, so

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Moreover, by Assumption H3, we get

y′

1(t) = Fy0(t) − Gz0(t) ≤ Fy1(t) − Gz1(t), t ∈ J and y1(0) ≤ λy1(T ) + k,

z′1(t) = Fz0(t) − Gy0(t) ≥ Fz1(t) − Gy1(t), t ∈ J and z1(0) ≥ λz1(T ) + k.

It proves that y1, z1 are CLUS of problem (1.1).

Basing on the above, we can prove the relations

y0(t) ≤ · · · ≤ yn−1(t) ≤ yn(t) ≤ zn(t) ≤ zn−1(t) ≤ · · · ≤ z0(t), n = 0, 1, · · · ,

by mathematical induction.

By standard arguments, yn → y, zn → z as n → ∞, y(t) ≤ z(t) and y, z ∈
C1(J, IR) are solutions of system (2.3),(2.4). Now, we need to show that y, z are

coupled extremal quasi–solutions of problem (1.1). Let u be any solution of (1.1)

such that y0(t) ≤ u(t) ≤ z0(t), t ∈ J. Assume that

ym(t) ≤ u(t) ≤ zm(t), t ∈ J

for some positive m. Put p = ym+1 − u on J. Then p(0) ≤ 0, and

p′(t) = Fym(t) − Gzm(t) − Fu(t) + Gu(t) ≤ 0,

by Assumption H3. It gives ym+1(t) ≤ u(t) on J. Similarly, we can obtain the relation

u(t) ≤ zm+1(t), t ∈ J. It results

y0(t) ≤ ym+1(t) ≤ u(t) ≤ zm+1(t) ≤ z0(t), t ∈ J.
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Hence, by mathematical induction, we obtain

yn(t) ≤ u(t) ≤ zn(t), t ∈ J, n = 0, 1, · · · .

Now, if n → ∞, then

y0(t) ≤ y(t) ≤ u(t) ≤ z(t) ≤ z0(t), t ∈ J

showing that the assertion holds.

In case when λ < 0, we construct two sequences by
{

y′

n+1(t) = Fyn(t) − Gzn(t), t ∈ J, yn+1(0) = λzn(T ) + k,

z′
n+1(t) = Fzn(t) − Gyn(t), t ∈ J, zn+1(0) = λyn(T ) + k.

The proof is similar to the previous case and therefore it is omitted. This ends the

proof.

Remark 2.3. Assume that Gx(t) = 0, t ∈ J. Let λ ≥ 0. In this case, y, z are

solutions of problem (1.1). Moreover, y, z are extremal solutions of problem (1.1).

Remark 2.4. Assume that Fx(t) = 0, t ∈ J. Then we have a result when −g(t, x1, x2)

is nonincreasing with respect to the last two variables.

Remark 2.5. Theorem 2.2 deals with the case when f and g are nondecreasing. It

is also true when

(i) f and g are nonincreasing,

(ii) f is nonincreasing and g is nondecreasing,

(iii) f is nondecreasing and g is nonincreasing.

Case (i). Note that

x′(t) = Fx(t) − Gx(t) = Fx(t) − Gx(t),

where

Fx(t) = −Gx(t), Gx(t) = −Fx(t).

Changing the order, we see that −g and −f are nondecreasing.

In Case (ii), f1 = f − g, g1 = 0 are nonincreasing; and in Case (iii), f2 =

f − g, g2 = 0 are nondecreasing.

Remark 2.6. Assume that there exist nonnegative constants M, N such that

f(t, x1, x2) − f(t, x̄1, x̄2) ≥ −M(x1 − x̄1) − N(x2 − x̄2)

if xi ≥ x̄i, i = 1, 2.

Consider the problem

(2.6)

{

x′(t) = f(t, x(t), x(α(t))) = F̃ x(t) − G̃x(t), t ∈ J,

x(0) = λx(T ) + k,
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where

F̃ x(t) ≡ f̃(t, x(t), x(α(t))) = f(t, x(t), x(α(t))) + Mx(t) + Nx(α(t)),

G̃x(t) ≡ g̃(t, x(t), x(α(t))) = Mx(t) + Nx(α(t)).

Indeed, functions f̃ , g̃ are nondecreasing with respect to 2nd and 3rd variables. We

see that Theorem 2.2 can be applied to problems of type (2.6).

Remark 2.7. Suppose that f and g do not depend on the last variable and λ = 0.

Then Theorem 2.2 reduces to Theorem 2.1 of [1].

Remark 2.8. Suppose that f and g do not depend on the last variable. Moreover,

we assume that there exists an integrable function W : J → IR such that

(2.7) |λ|e
R

T

0
W (s)ds < 1

and

f(t, u1) + g(t, u1) − f(t, u2) − g(t, u2) ≤ W (t)(u1 − u2)

for y0(t) ≤ u2 ≤ u1 ≤ z0(t).

Then problem (1.1) has, in the sector [y0, z0], a unique solution.

To show it we consider the case when λ ≥ 0. It results from Theorem 2.2 that

yn → y, zn → z on J, y(t) ≤ z(t), t ∈ J, and y, z are solutions of system (2.3),(2.4).

To show that y = z, we put p = z − y. Then p(0) = λp(T ), and

p′(t) = Fz(t) − Fy(t) − Gy(t) + Gz(t) ≤ W (t)p(t).

It yields

p(t) ≤ e
R

t

0
W (s)dsp(0), t ∈ J.

This, boundary condition and (2.7) say that z = y on J. It shows that y, z are solutions

of (1.1). Moreover, y, z are coupled extremal quasi–solutions of problem (1.1). Since

y = z on J , it proves that the assertion holds. By the similar way we can prove this

result when λ < 0.

Theorem 2.9 (see Theorem 4 of [3]). Let Gx(t) = 0, t ∈ J and λ ≥ 0. Let Assump-

tions H1 and H2 hold. Suppose that

H4 : there exist nonnegative constants M, N,

(i) N(eMT − 1) ≤ M only if M > 0 and N > 0,

(ii) NT ≤ 1 only if N > 0 and M = 0

and such that

f(t, x̄1, x̄2) − f(t, x1, x2) ≤ M(x1 − x̄1) + N(x2 − x̄2) if x1 ≥ x̄1, x2 ≥ x̄2.

Then problem (1.1) has extremal solutions in the sector [y0, z0].
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Remark 2.10. Condition (i) can be improved by the following

N

∫

T

0

eM(t−α(t))dt ≤ 1,

see Theorem 2.4 of [15].

3. EXAMPLES

Example 3.1. Consider the problem

(3.1)

{

x′(t) = x(t) − bx
(

1
2
t
)

+ c ≡ F1x(t), t ∈ J = [0, ln 5],

x(0) = k for k = 1,

where

(3.2) 5b ≤ c ≤ 1 + b, b, c > 0.

Note that M = 0, N = b, from Theorem 2.9. Put y0(t) = et, z0(t) = e2t. Indeed,

F1y0(t) = et − be
1

2
t + c ≥ et −

√
5b + c > et = y′

0(t),

F1z0(t) = e2t − bet + c = 2e2t − e2t − bet + c ≤ 2e2t + c − (1 + b) ≤ 2e2t = z′0(t),

and y0(0) ≤ k, z0(0) ≥ k. In view of condition (3.2), b ≤ 1
4
. It yields

b ln 5 ≤ 1

4
ln 5 < 1,

so condition (ii) of Theorem 2.9 holds. By Theorem 2.9, problem (3.1) has, in the

sector [et, e2t], extremal solutions.

Now, we consider again problem (3.1) using another approach. Indeed, problem

(3.1) is identical with the following
{

x′(t) = Fx(t) − Gx(t), t ∈ J,

x(0) = k,

where

Fx(t) = x(t) + c, Gx(t) = bx

(

1

2
t

)

.

Note that F and G are nondecreasing. Keep y0, z0 as above. We see, that

Fy0(t) − Gz0(t) = et + c − bet ≥ et + c − 5b ≥ et = y′

0(t),

F z0(t) − Gy0(t) = e2t + c − be
1

2
t ≤ 2e2t + c − (1 + b) ≤ 2e2t = z′0(t).

By Theorem 2.2, problem (3.1) has, in the segment [et, e2t], coupled extremal quasi–

solutions y, z ∈ C1(J, IR). Functions y, z are solutions of the system
{

y′(t) = y(t) − bz
(

1
2
t
)

+ c, t ∈ J, y(0) = k,

z′(t) = z(t) − by
(

1
2
t
)

+ c, t ∈ J, z(0) = k.

We need to show that y = z on J. To do it we put p = z − y. Then

(3.3)

{

p′(t) = p(t) + bp
(

1
2
t
)

, t ∈ J,

p(0) = 0.
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By Theorem 2.2 of [5], problem (3.3) has a unique solution. We see that p(t) =

0, t ∈ J is this unique solution. It proves that z(t) = y(t), t ∈ J, so functions y, z

are solutions of problem (3.1). Again, by Theorem 2.2, functions y, z are extremal

solutions of problem (3.1). If we take, for example, b = 1
4
, c = 5

4
, then condition (3.2)

holds.

Example 3.2. Consider the problem

(3.4)

{

x′(t) = cos2 x(t) + x(t) − bx
(

1
2
t
)

≡ Fx(t) − Gx(t), t ∈ J = [0, T ],

x(0) = λx(T ), 0 ≤ λ ≤ e−2T , 0 < b ≤ e−T ,

where Fx(t) = cos2 x(t) + x(t), Gx(t) = bx
(

1
2
t
)

, 0 < T < ∞.

Let y0(t) = 0, z0(t) = e2t. Then

Fy0(t) − Gz0(t) = 1 − bet ≥ 1 − beT ≥ 0 = y′

0(t),

F z0(t) − Gy0(t) = cos2 e2t + e2t ≤ 1 + 2e2t − e2t ≤ 2e2t = z′0(t),

and

y0(0) − λy0(T ) = 0, z0(0) − λz0(T ) = 1 − λe2T ≥ 0.

By Theorem 2.2, problem (3.4) has, in the sector [0, e2t], coupled extremal quasi–so-

lutions y, z ∈ C1(J, IR). Functions y, z are solutions of system (2.3),(2.4).

If we are going to apply Theorem 2.9 to problem (3.4), then we see that M =

0, N = b, so problem (3.4) has extremal solutions in [0, e2t] provided that bT ≤ 1.

Example 3.3. Consider the problem

(3.5)

{

x′(t) = Fx(t) − Gx(t), t ∈ J = [0, 1],

x(0) = λx(1) + 1, −e−1 ≤ λ < 0,

where

Fx(t) = Aee
−1

x(t), Gx(t) = e−2x

(

1

2
t

)

, e−1.5 ≤ A ≤ e−1.

Put y0(t) = 0, z0(t) = et. Then

Fy0(t) − Gz0(t) = A − e−2e
1

2
t ≥ A − e−1.5 ≥ 0 = y′

0(t),

F z0(t) − Gy0(t) = Aee
−1

e
t ≤ Ae ≤ 1 = z′0(t),

and

λz0(1) + 1 = λe + 1 ≥ 0 = y0(0), λy0(1) + 1 = 1 = z0(0).

By Theorem 2.2, problem (3.5) has, in the sector [y0, z0], coupled extremal quasi–so-

lutions.
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[15] J.J.Nieto and R.Rodŕıguez–López, Remarks on periodic boundary value problems for functional

differential equations, J. Comput. Appl. Math., 158:339–353, 2003.

[16] Y.Yin, Remarks on first order differential equations with anti–periodic boundary conditions,

Nonlinear Times and Digest, 2:83–94, 1995.

[17] Y.Yin, Monotone iterative technique and quasilinearization for some anti–periodic problems,

Nonlinear World, 3:253–266, 1996.


