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ABSTRACT. In this paper, sufficient conditions have been obtained for the oscillation of a class
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1. INTRODUCTION

In this paper, we consider oscillatory properties for the linear second order matrix

differential system with damping
(1) X"+ Pt)X '+ Q)X =0, t€ [ty,00),

where P(t), Q(t) and X (t) are n X n continuous matrix-valued functions, P(t) and
Q(t) are symmetric. When P(t) = 0, system (1) reduces to the linear second order

matrix differential system
(2) X"+ Q)X =0, t€ [ty,00).

By M* we mean the transpose of the matrix M, for any n x n symmetric matrix
M, its eigenvalues are real numbers. We always denote by A\ [M] > A\ [M] > ... >
An[M], and as usual, tr[M] = >, Ni[M]. A solution X (t) of (1) (or(2)) is said to
be nontrivial solution if det X (¢) # 0 for at least one point ¢ € [ty, 00), and a solution
X(t) of (1) (or(2)) is said to be prepared if

X*6)X'(t) — (X*(¢))X(t) =0, t € [tg,0).
System (1) (or (2)) is said to be oscillatory on [ty, 00) in case the determinant of every
nontrivial prepared solution vanishes for at least one point on [T, 00) for each T' > t,.

The oscillation and nonoscillation of system (2) have been extensively studied by
many authors (see [1 — 9, 11, 12, 16 — 18, 22]). A discrete version of (2) is studied in
[19].
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We recall the following concept from [3]. For any subset E of the real line R,
w(E) denote the Lebesgue measure of E. If f : [ty,00) — R is continuous and if [, m
satisfy —oo < I, m < oo, then lim approxinf, __f(¢) = [ if and only if u{t € [tg, o0) |
f(t) <L} < 4oo forall Iy < and uft € [ty,00) | f(t) < lo} = 400 for all Iy > .
Similarly, lim approxsup,_, .. f(t) = m if and only if u{t € [to,00) | f(t) > my} = +o0
for all m; < m and p{t € [to,o0) | f(t) > me} < +oo for all my > m. We define

lim approx,_,..f(t) = A in case
tlim approxsup f(t) = tlim approxinff(t) = .
In general,

li{n inf f(t) < tlim approxinff(t) < tlim approxsup f(¢) < limsup f(t).

t—o0

The motivation for the present work has come chiefly from [3]. Here we list the

main results of [3] as follows:

TheoremA [3,Theorem2.1]. Assume that

hmmf—/ /tr ) dsdt > —oo.

Then system (2) is oscillatory in case any of the following conditions holds:

hzrp_)sipT/ A1 </Q ds) dt = +o0,
e [ ([ owae)] a=ce

T
lim approxsup;_, A1 </ Q(s)ds) = +o00,
to

T
lim approxinf,_ A\ (/ Q(S)ds) = —00.
to

Nevertheless, oscillation of system with damping has drawn less attention [22],
so we are concerned with extending oscillation criteria for system (2) to that of the
damped linear second order matrix differential system (1). The purpose of this paper
is to establish some new oscillation criteria for system (1). The criteria extend and
improve the main results of Butler, Erbe and Mingarelli [3] and Parhi and Praharaj
[18] for system (2).
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2. MAIN RESULTS

Let f(t) be a smooth and real-valued function on [ty, o), and let

at) = eXp(—Z/t £(s)ds).

If a prepared solution X (¢) of (1) is nonoscillatory, then X (¢) is nonsingular for all

sufficiently large ¢, without loss of generality, say t > ty. Let

(3) V(t) = at)[X' ()X (1) + f(O)1], t >to.

Where [ is the n x n identity matrix. Then V(¢) is symmetric and for any t > ¢,
from (1), we get

() V() = —ﬁv%) ~ PIOV(1) ~ R(1),
where
R(t) = a(t) {Q(t) + F*()] — ()P I}
From (4) and the definition of prepared solution, we have PV is symmetric. Denote
(5) Wi(t)=V(t)+ @P(t}.
Then we obtain
(6) W'(t) = —%W%) + %P%) — R(t) + <@P(t>) :
W(t)=Wi(ty) — /t <R(s) - @PQ(S)) ds — /t a (s)W?(s)ds
(7) +@P(t> _ “(;O)p<t0>.

Further, W*(¢t) = W (t) due to (5).
In the sequel, we need the following lemmas.
Lemmal[22]. Suppose A, B and C are n X n-matrices, and A is symmetric.
Then
1) (A < M[A?) < tr[A?)
(i) [tr(A)]* < ntr[A?]
(iii) )
(iv) tr[(B+ C)*] < 2 (tx[B?] + tr[C?])

< M(B

Lemma2. Assume that (1) is nonoscillatory on [tg, 00), and a(t) < m* (m* > 0

is a constant), for ¢ € [tg, 00). Then

T
(8) 0 < lim a '(s)W?(s)ds < +oo, t>ty,

T—o00 ¢
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if and only if
T a(s) 1o a(t)
Proof. Suppose (8) holds. Thus,
(10) 0< / a '(s)W?3(s)ds < oo, t>t.
t
From (7), we obtain

tr[W(t)] = tr {W(to) - “(SO)P@O)] —tr { /t: (R(s) . @Jﬂ(s)) ds — @p(t)}

(1) - [ )]

that is, 0

(12) [V ()] — M(t) = —tr [ /t t (R(s) - @Jﬂ(s)) . @P(t)} 4L
e L=tr [W(to) _ G(EO)P(tO)} - /: o (s)tr [W2(s)] ds

and -
M(t) = / a”(s)tr [W?(s)] ds.
t
Since a(t) < m*, from (10) and Lemmal, it follows that
. 1 4 2 * 1: 1 g -1 2
lim — (tr [W(s)])"ds < nm* lim — a”'(s)tr [W?(s)] ds = 0.
T—oo T to T—o0 to
That is,
(13) lim — / W ()2 ds = 0
T—o0 T to o

Moreover, by (10), we observe that lim; .., M(t) = 0, i.e. for every € > 0, it is possible
to find a t; > tg, such that for t > t;, M(t) < e. Hence,

! TM2(t)dt L[ M?(t)dt + ! /TMz(t)dt< ! /tl MQ(t)dt+T_t1 2

= == = < = —¢€".

T/, T/, T/, T/, T
Thus,

1 g 2 2
1 s
Jim /to M2(#)dt < e

Since € is arbitrary, then

1
(14) Tlgxoloffto M2(8)dt = 0.
From (13) and (14), we have

71520%[ (b [V (8)] — M(£))% dt < 271320%10 [t W) + M2(t)} dt = o.
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Thus, from (12) it follows that

(15)  Jim % /tOT {—tr Utt (R(s) - @Jﬂ(s)) ds — @P(t)} + L}2dt _0.

By the Cauchy-Schwartz inequality,

%/tOT {—tr M (R(s) - @P?(s)) ds — @P(t)} + L} dt‘
< % /: {—tr Utt <R(s) _ @P?(s)) ds — @P(t)} + L}zdt] i {T;to} g

Hence, by (15),

that is,

lim % /: r Utt (R(s) _ #lﬂ(s)) ds — @P(t}} dt = > —o0,

so that (9) holds.
Conversely, suppose that (9) holds. From (7), we have

% ) W (t)dt + — /to / s)dsdt = T;to (W(to>—a(;°)P(to))—
LA ) 2

so that from (9), we obtain

(16)  limsup {l/ ) dt + = / / s)tr [W?(s)] dsdt
T—o0 T t to

Since a~*(t)tr [W?2(t)] > 0, for t > to, it follows that
t
lim [ a”'(s)tr [W?(s)] ds exists, finite or infinite.

t—o0 to

Suppose that
lim [ a”'(s)tr [W?(s)] ds = +oc.
0

Hence,

Y .
Tlgrgof/to / a”H(s)tr [W?(s)] dsdt =

to

Then (16) yields
1 T
lim _/ b [V (#)] dt = —o0.
to

T—o00

So for large T we have, again using (16),

(17) /t / $)tr [W2(s)] dsdt < —% / o) de.

to
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Now by the Cauchy-Schwartz inequality and Lemmal, we have

‘%/jtr (W(s)lds| < {%/toTa(s)a_l(s) (tr [W(s)])2ds}% x {T;tO}%
{5/ ") (r [W(s)]fds}%

< {”;’ /t : o~ (s)tr [W2(s)] ds}% .
So that (17) gives 0

(18) { /t / s)tr [W(s)] dsdt}2 < Anm” s)tr [W(s)] ds,

for large T, say, for T' > T;. Setting, for T" > T,

/ / s)tr [W?(s)] dsdt > 0,

H/(T) = / o (s)tr [W2(s)] ds.

to

We obtain

Thus, (18) yields H*(T') < 4nm*TH'(T), for T > T}. Integrating this inequality from
T} to T and noting that H(T) > 0, for T' > T}, we get

1 1
logT —logT}] < )
dnm* [log ogTh] < H(TY)

A contradiction is obtained as T — oo. Thus,
t

tlim a”'(s)tr [W?(s)] ds exists as a finite limit.

=0 J4o
We see that this implies the existence of lim; o ft L(s)W?(s)ds, as follows: let
the (operator) norm of a matrlx A be denoted by |A|. For tg < s < t, define
A(s,t) by A(s,t) = [La~'(0) )da Then A(s,t) is a nonnegative definite matrix
and |A(s,t)] = A\ [A(s, t)] < tr[A = [fa='(o)tr [W?(o)]do. This last integral
converges to zero as s, t — 00, and so we have |A(s t) — 0 as s, t — oo, i.e.
[fa=(o)W?(o)do — Oas s, t — oo, yielding the existence of lim, ft L(s)W2(s)ds

as asserted. This completes the proof of Lemma2.
Now we give the main results of this paper.

Theorem1. Assume there exist a smooth and real-valued function f (t) on [tg, 00)

and a(t) < m* (m* > 0 is a constant ), where a(t) = exp(—2 ft , and

%iolgf% /: tr M (R(s) - #P%s)) ds — @P(t}} dt > —oo.
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If one of the conditions

(19)  limsup % /: A ut (R(s) _ @P?(s)) ds — @P(t}} dt = +oo,

T—o0

i s % /: ()\1 [ /t t (R(s) _ @P?(s)) ds — @P(t)])z dt = +oo,

(21)  lim approxsup;_, .\ [ /tOT (R(s) — @P%s)) ds — @P(t)] = 400,

(20

~—

2

(22) lim approxinf;_ A\ {/T <R(3) - @P%S)) ds — ?P(t)} = —00,

to
holds, where R(t) = a(t) {Q(t) + f2(t)I — f(t)P(t) — f'(t)I}, then (1) is oscillatory.
Proof. Suppose that (1) is nonoscillatory. Then there exists a prepared solution X (t)
of (1) which is not oscillatory. Without loss of generality, we may suppose that
detX (t) # 0 for t > ty. Denote V (¢) by (3); then we have that (7) holds. By (9) and
Lemma?2, it follows that (8) holds.

Suppose that (19) holds. From (7), we obtain

MW (to) — “(;‘))P(to) _ W(t)] ~ [ /t t (R(s) _ @Jﬂ(s)) as— W ppy

(23) +/t a_l(s)W2(s)ds} .

to

By the convexity of A\; and the fact that ftz a”(s)W?(s)ds > 0, we have from (23)
that

A {W(to) - a(éo)P(to)] +M [-W ()] >N\ [/t: (R(s) — #Pz(s)) s— ?P(t)} ;

and hence,

1

- /t A [~ ()] ds +

(24) > % /tOT A [ /t: (R(s) - @P?(s)) ds — @P(t)} dr.

So that from hypothesis (19), there exists a sequence T,, — oo with

T— to a(to)

A {W(to) — P(to)}

1 [T

(25) o A [—W(s)]ds — +oo, as T, — o0.
n Jto

By the Cauchy-Schwartz inequality and from Lemmal, we have

< (Ti / o LW ()2 ds)é

I
T_n/to A [—W(s)]ds
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lim a” ' (s)tr [W?(s)] ds = +o0.

nnnnn

On the other hand, Lemma2 implies that

Tn
lim a”(s)tr [W?(s)] ds < 4o0.

nnnnn

This contradiction completes the proof of the part under the assumption (19) of the

theorem.

Let (20) be true. From (7), we have
/t (R(s) - @P%S)) ds — @P(t}

a(;O)P(to) - /: a” (s)W?(s)ds + /too a”'(s)W?(s)ds.

Hence, by (26) and Lemmal we have

(26) = —W(t) + W(to) —
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( /t N a_l(s)W2(s)ds) 2]

(W(to) - a(;O)P(tO) - / h a—l(s)w2(s)ds) 2] .

to

< dtr [W?(t)] + 4tr

(27) +2tr

2
Let 2tr {(W(to) — 2 p(tg) — [ a—l(s)W2(5)ds> } — (. Using (27), we obtain

{Al Ut: (R(s) — @Jﬂ(s)) ds — @P(t)} }2

00 2
</ a_l(s)Wz(s)ds)
t
Therefore, we get

%/: {Al Mt (R(s) - @P?(s)) ds — @P(t)} }zdt

< dtr [WR@)] + 4tr + C.

B(t) = /too a "t (s)W?(s)ds,

then tr [B(t)] — 0(t — o0) and B(t) > 0. So that A\ [B(t)] — 0(t — o0) and
hence \; [B?(t)] — 0(t — o0). Therefore tr [B*(t)] — 0 as t — oo. Thus, the
second integral on the right side of (28) tend to 0 as 7" — oo. From Lemma2, we
get

*

%/ tr [W?(s)] ds < ﬂ; / a '(s)tr [W?(s)] ds — 0, as T — oc.

to to

Thus,

1 T
—/ tr [W?(s)]ds — 0, asT — oo.
T to

Therefore, the first integral on the right side of (28) tend to 0 as 7' — oo. However,
condition (20) implies that the left side of (28) is not bounded and this contradiction

completes the proof of the part under the assumption (20) of the theorem.

Let us assume that (21) holds. From (26), we have

a(s) a(t)

a [ (76 - 22p0) as = L] < l-wiogen e - G

2

Pt

(29) Y [ / N a—l(s)w2(s)ds] + A [ /t ) a_l(s)W2(s)ds] .

to
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Using (29), we obtain

M =W ()] + M [ /t h a_l(s)WQ(s)ds}

> A\ Utt <R(s) — ?}ﬂ(s)) ds — @P(t)]

(30) Y [ / h a—l(s)w2(s)ds] X\ [W(to) -

to

a(to)
2

P(to)] .

By (21), for any k > 1,
m {t € [to, 00) : Ay ut (R(s) — @P%S)) ds — @P(t)} > k} = +00.

So that if

Y

k>4 ’—Al [W(to) - G(EO)P(tO)} o l / N a_l(s)W2(5)ds]

to

then from (30),

1) {t € [to,00) : M[—TW(H)] + Ay [/too a—1(5>W2(5)d5] > 1} — to0.

Setting D(t) = [ a~'(s)W?(s)ds, by Lemma2, we get tr[D(t)] — 0 as t — o0
and D(t) > 0, thus, \{[D(t)] — 0(t — o0). So that there exists a T > to, such

that ¢ > T implies that A\ [D(t)] < %, therefore, we see that

" {t € [to,00) : M [—W()] > %} — 40,

That is,

| W optar > Ju(m) =+,
where k

B = {t € [to,00) : M [~V ()] > %}

On the other hand,

[E O ()2 dt < / A [W2(0)] dt

< / tr [W2(t)] dt

< m*a” " (s)tr [W?(s)] ds

Ey
< / m*a”" (s)tr [W?(s)] ds < 400
to

due to (8) and Lemmal. It is a contradiction. Hence, the proof of the part under the

assumption (21) of the theorem is complete.
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Suppose that (22) holds. From (26), we have

M[=W()]) <N [—W(t) + /t N a_l(s)W2(5)ds}
<\ [/t: (R(s) - #P%s)) 5 — @P(t)]

(32) Y [W(to) _ “(;O) P(to)} A l / N a‘l(s)W2(5)ds] |

to

By (22), for any k£ > 0,
u {t € [to,00) 1 Ay /t: (R(s) — @P%s)) ds — @P(t}} < —k:} = +o0.

So that if
k>1+ ‘—An W(ty) — 5 P(to)} + A\ </OO a_l(s)Wz(s)ds)

then from (32), we get
it € [to,00) : A [-W (t)] < —1} = 400,

therefore,
[ T W) > /E O W) dt = (By) =+
where,
By = {t € [t0,00) : A [W(8)] < ~1}.
However,

/OO M\ [ @) dt < /OO A (W2 ()] dt

to to

< /OO tr [W2(t)] dt

< m*a” ! (s)tr [W?3(s)] ds < 400
to
due to Lemma2. This contradiction completes the proof of the part under the as-

sumption (22) of the theorem.
This completes the proof of Theoreml.

Examplel. Consider the following 2-dimensional system

(33) X"+ POX' + Q)X =0, t> g
where
[ 24 0
P(t) = (d > 0 is a constant),
0 —2d
Q) = _sint+2tcost—%t2sint+d2+1 0
0 sint+2tcost—%t2sint+d2+1 '
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Let f(t) =0, then a(t) =1 and R(t) = Q(t), hence,

/_t (R(s) — @P%s)) ds

2

3

(34) =

t(1+4sint) + 22 cost — 0
0 t(1+sint) + 22 cost — 7 |

from (34), we have

[ (76 - Lp ) as - Lo

| t(1 +sint) + 3t cost —m —d 0
B 0 t(1+sint) + 22 cost —m +d |’
and then
t
t
tr / <R(3) - ?Pz(s)) ds — %P(t) = 2t(1 +sint) + t* cost — 2.
2
Thus,
T t t 2
/ (tr / (R(s) - @P%)) ds — ?P(t} dt = T*(1 +sinT) — 27T + %
% E
> —2xT.
Consequently,

1 (7
hTIri)loréfT[; tr

and
1 T
lim sup — / A
T—o0 T %

17 1
:limsup—/ {t(l—l—sint)—i——ﬂcost—w—i—d] dt
T—o0 T z 2

)dtZ —2m > —0o0,

>dt

/%t (R(s) - @P%s)) ds — @P(t)

= lizr}l_)solip [%T(l +sinT) — 7+ g +d— %] = +00.
Thus, from Theorem 1 (19), it follows that (33) is oscillatory.
Remarkl. It is easy to see that when d # 0 the results in [1-21] can not be
applied to this case. However, if we let d = 0, (33) reduces to (2).
Theorem2. Assume a(t) < m*, for t > t,

(35)  liminf % /tOT b l /t: <R(s) - @P?(s)) ds — @P(t}} dsdt = —oo,

T—o00
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Then (1) is oscillatory if

im Approxsupy_.. A, [ /t: (R(s) . @P?(s)) ds — @P(t)} — B> oo,

where a(t) is the same as in Theorem 1.

Proof. Suppose that (1) is not oscillatory. Then there exists a prepared solution
X(t) of (1). Such that X(¢) is nonsingular. Without loss of generality, we assume
that detX(¢) # 0 for ¢t > ty. Denote V(t) by (3) then we have (7) holds. From (35)
and Lemma?2 it follows that

t
/ a ' (s)tr (W?(s)) ds — 400, t— +o0,
to

and hence,
rrt

A / a_l(s)Wz(s)ds] — 400, t — +00.
L/ to

Since

A1 - /t: (R(s) — @P%s)) ds + @P(t)]
=\, Utt <R(s) - @P%s)) ds — @P(t)} ,

<MW+ M [— /: (R(s) _ als) p2(5>> ds + @P(t)}
—n W] | [ (R - ") as- D ro)

Now for any € > 0,

m {t € [to,00) : An Ut: (R(s) — @P%S)) ds — @P(t)} > 03— e} = +00.

From (7), we have

v | [ W)
= 2or [-w(e Wit - 5P - [ ()= ") s TP
=t [-w - [ (R - “Lrw) as s D] Lo [wiao) - i)
< nuwe - [ (0 - D) as+ St [ - et
<MWk |- [ t (70— L2200 ) s+ i) +or [ - L )
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(36)
=\ [-W ()] = [ /t t <R(s) - @P?(s)) s — @P(t)} +%tr [W(to) — a(;O)P(to) :
and since

%tr {/t: a_l(s)Wz(s)ds] > L /t A a7 ()W (s)] ds

n Ji,
from (36), we have that

1 [ t A [a” ! (s)W2(s)] ds — Ly {W(to) -

n Ji, n

a(to)

Pt

(37) < M[-WEH)] = M [/t: <R(s) — ?P%s)) ds — ?P(t}} . t> 1.

Hence, we have that for any € > 0,

m {t € [to, 00) : 1 /t A [a7H (s)WP(s)] ds — %fﬂ” [W(to) -

n Ji,

a(to)
2

Pl

<M [-W(E)] - B+ €} = +os,

and since

/t A a7 (s)W3(s)] ds > N {/t a_l(s)W2(s)ds} — 400, as t — +00,

to to

we see that if F is defined by

E= {t 1 /t A [a 7 (s)W2P(s)] ds < N [—W(t)]} C [to+ 1,00),

"on to
then p(E) = +o00. But now with G(t) = fti A1 [a (s)W?(s)] ds, we have
a”'(t)

—_

G'(t) =M\ [a ' (OW?()] = —tr [a ' ()W (t)] >

A [WR()],

S

and so

nm*G'(t) > na(t)G'(t) > M [W2(t)] > (M [-W(1)])? > 4%26?2@),15 € E,

which in turn implies that
G'(t)/G*(t) > 1/(4n’m"), t € E,

and now

1
G'(t)/G?(t)dt > E)=
[ @0/ mi = (B =+,
a contradiction since the integral on the left is < 1/G(to + 1).

This completes the proof of Theorem 2.

Remark2. Theorem 1 and Theorem 2 are generalizations and improvements
of [3,Theorem2.1 and Theorem2.2], respectively. In fact, when P(t) = 0, we let
f(t) =0, a(t) =1 then Theorem 1 and Theorem 2 are reduced to Theorem2.1 and
Theorem2.2 of [3],respectively.
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In order to illustrate our theorems, we consider the following example.

Example2. Consider the following 2-dimensional system

(38) X"+ PHOX +Q#t)X =0, t>tg,
where

and ¢;(t), p;(t) are continuous functions of ¢ on [tg,+00), for i = 1, 2. If we let
f(t) =0, a(t) =1 for t > ty, then we have

R(t) = Q(1),

and .

/to <R(s) — ?Pz(s)) s — ?P(t)
[ (0s) = £2929)) ds = St () 0

0 S (a2(5) = £253(s) ) ds = du(t)pa(t)
Set

U(t) =tr [/t (R(s) — @P%S)) s — @P(t)] ,

and

V(t) =\ ut (R(s) — @P%S)) ds — @P(t}} :

Now let us consider the following two cases.
Casel. If
1 /7
liminf—/ U(t)dt > —o0,

T—o00 to

and one of the following conditions holds:

1 T
lim sup —/ V(t)dt = 400,

T—o0 to

1 T
lim sup — / V2(t)dt = +oo,

T—o0 to

lim approxsup,_ .V (t) = +o0,
lim approxinf, |V (t) = —o0,
then (38) is oscillatory by Theorem 1.
Case2. If
1 /7
lim inf —/ U(t)dt = —o0,

T—o00 to

and

> —00,

lim approxsup,_, . A, [ /t t (R(s) - #PQ(S)) ds — @P(t}

then (38) is oscillatory by Theorem 2.
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