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ABSTRACT. A time scale quadratic problem J with piecewise right-dense continuous coefficients

and one varying endpoint is considered. Such problems are “hybrid”, since they include mixing of

continuous- and discrete-time problems. A new notion of a generalized conjugate point involving

“dynamic” (hybrid) systems and comprising as special cases those known for the continuous- and

discrete-time settings is introduced. A type of a strengthened Legendre condition is identified and

used to establish characterizations of the nonnegativity and positivity of J in terms of (i) the

nonexistence of such conjugate points, (ii) the natural conjoined basis of the associated time scale

Jacobi equation, and (iii) a solution of the corresponding time scale Riccati equation. These results

furnish second order necessary optimality conditions for a nonlinear time scale variational problem.

Furthermore, we present an example of an optimal impulsive control problem and we show how this

problem can be reduced to a variational problem over a time scale.

AMS (MOS) Subject Classification. 39A12, 49K99.

1. INTRODUCTION

Let the time scale T be a nonempty compact subset of R that is not necessarily

connected. Set a := min T, b := max T and denote T by [a, b]. Thus, in this paper [a, b]

denotes the intersection of T with the the connected real interval whose endpoints

are respectively a and b.

Define σ(t) as the “forward jump” at t that reduces to t when t is a “right-

dense” point. Similarly, the “backward jump” ρ(t) is defined. For a given function

η : [a, b] → R
n, the function ησ(t) is η

(
σ(t)

)
. A notion of a time scale ∆-derivative of

η at time t, denoted by η∆(t), was introduced by Hilger in [12]. A precise definition of

this notion will be recalled in the next section. In particular, in the continuous-time

case, i.e. when T is a connected real interval, then σ(t) = t and η∆(t) = η′(t), which is

the usual derivative, while in the discrete-time case, i.e. when T = {0, 1, . . . , N + 1},
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we have σ(t) = t + 1 and η∆(t) = ∆η(t) := η(t + 1) − η(t), that is the usual forward

difference.

Let P , Q, and R be n×n matrix functions, Γ̂a be an n×n matrix, and the matrix

Ma be a projection in R
n. Consider the quadratic functional over the time scale T

J (η) := ηT (a) Γ̂a η(a) +

∫ b

a

{
(ησ)T P ησ + 2 (ησ)T Q η∆ + (η∆)T R η∆

}
(t) ∆t

subject to η ∈ C1
prd satisfying the boundary conditions

(1.1) Maη(a) = 0, η(b) = 0.

The notation C1
prd stands for the space of piecewise right-dense (shortly rd-) contin-

uously ∆-differentiable functions (see next section for more details).

Since Maη(a) = 0, then Γ̂a can be assumed to be invariant under the projection

I − Ma, that is, (I − Ma) Γ̂a (I − Ma) = Γ̂a, where I is the identity matrix. Note

that the constraint of the form Maη(a) = 0 where Ma is an r × n full-rank matrix is

equivalent to the constraint Maη(a) = 0 with Ma := MT
a (MaM

T
a )−1Ma.

It is shown in [19] that the nonlinear variational problem over the time scale T

minimize F(x) := K
(
x(a)

)
+

∫ b

a

L
(
t, xσ(t), x∆(t)

)
∆t(P)

ϕ
(
x(a)

)
= 0, x(b) = B(1.2)

has its accessory problem (the second variation) at an arc x̂ satisfying (1.2) of the form

of J (η) subject to (1.1), where P (t) := L̂xx(t), Q(t) := L̂xv(t), and R(t) := L̂vv(t),

with L̂(t) standing for the evaluation of L(t, x, v) at
(
t, x̂σ(t), x̂∆(t)

)
. Hence, the study

of the nonnegativity (J ≥ 0) and positivity (J > 0) of the quadratic functional J (η)

is directly related to obtaining second order necessary and sufficient conditions for

optimality in (P).

When the time scale T is a connected interval or is the discrete set of values

{0, 1, . . . , N + 1} the problem (P) and its corresponding accessory problem involving

the functional J (η) reduce respectively to the continuous-time and discrete-time set-

tings, that are intensively studied in the literature. Thus, variational problems over

time scales unify both continuous-time and discrete-time problems under one form.

More importantly, this class of variational problems includes a large spectrum of other

problems where the time scale T could be, for example, a union of disjoint connected

time-intervals with some discrete instances. Such problems are known also under the

name “hybrid” since, as stated in [23], they are a “mixing of two fundamentally dif-

ferent types of problems”. Here we are mixing the discrete- and the continuous-time

problems.
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The problem (P) falls naturally in the class of optimal control problems over the

time scale T of the form

minimize G(x, u) := K
(
x(a)

)
+

∫ b

a

f0

(
t, xσ(t), u(t)

)
∆t(C)

x∆(t) = f
(
t, xσ(t), u(t)

)
, t ∈ [a, ρ(b)],(1.3)

ϕ
(
x(a)

)
= 0, x(b) = B.

The problem (C) is hybrid and the time scale system (1.3) is a hybrid control system,

whose paradigm is particularily useful in modelling applications where high-level de-

cision making is used to supervise process behavior. Therefore, these systems appear

in many important applications stemming for instance from aerospace and power sys-

tems, where the system has to switch between various setpoints or operational modes

to extend its effective operating range. Hybrid systems embrace a diverse set of ap-

plications from engineering to biology, see e.g. [22, 23] and the references therein.

Over the last ten years there has been considerable activitity in this area.

The mathematical description of these systems can be characterized by impulsive

differential equations. In the case where the resetting events of the equations are

defined by a prescribed sequence of times that are independent of the state of the

system, the system of impulsive equations is known as time-dependent. See for exam-

ple [2, 3, 8, 10, 11, 22]. In those references the time interval [t0, tf ] is connected and

the state function x is discontinuous but left continuous at the resetting instances

{t1, t2, . . . }. The impulsive differential equations have been studied there by splitting

them into continuous-time and discrete-time systems. However, one can find a time

scale of the form

T = [t0, t1] ∪ [t1 + ε1, t2] ∪ [t2 + ε2, t3] ∪ · · · ⊆ [t0, tf + ε]

such that the system of impulsive differential equations is equivalent to a time scale

system over T. Therefore, time-dependent impulsive control systems can be viewed

as special cases of the time scale control systems (1.3). Hence any result obtained for

the variational problems (P) and (C) over time scales could be applied to impulsive

variational problems.

In this paper we focus our attention on the variational problem (P). The corre-

sponding time scale Jacobi equation is defined to be

(J)
[
R(t) η∆ + QT (t) ησ

]∆
= P (t) ησ + Q(t) η∆.

In the continuous-time setting a characterization of the nonnegativity of J (η)

was obtained in terms of the conjugate points theory in [21, 27] and in terms of the

Riccati differential equation corresponding to (J) in [25]. However, a characterization

of the positivity of J (η) in terms of the conjugate points, the conjoined basis of (J),
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and the Riccati equation were derived in [21, 24, 26]. These results are valid under

the strengtened Legendre condition

(1.4) R(t) ≥ αI.

For the discrete-time setting the nonnegativity and positivity of J (η) was charac-

terized in terms of the conjugate “intervals”, the natural conjoined basis of (J), and

the Riccati difference equation in [4, 18], see also the survey paper [20] and the ref-

erences therein. As opposed to the continuous-time case, no discrete analog of (1.4)

is needed in the discrete-time case. However, it is required that R(t) + QT (t) be

invertible. Moreover, for the derivation of the Riccati difference equation results, the

invertibility of R(t) is also needed.

For the general time scale or hybrid quadratic functional with rd-continuous

coefficients, a characterization of the positivity of J (η) in terms of the principal

solution of (J) is obtained in [1, 5, 13, 14, 16]. Moreover, such a result in terms of

the time scale Riccati equation is known only for the case of fixed endpoints [15].

However, no concept playing the role of conjugate points or intervals is known for

the general time scale quadratic functional . Furthermore, the characterization of the

nonnegativity of J (η) in this general setting in completely untouched. In addition,

the equivalence between the positivity of J (η) and conditions involving the Riccati

equation (in the case of variable endpoint(s)) remains unknown.

The purpose of this paper is to answer the above mentioned problems that are

open even for the case when the coefficients of J (η) are piecewise rd-continuous. More

specifically, we introduce in Section 3 a concept of “conjugate points” for the time

scale variational problem (P). In Theorem 5.1 (Section 5) we establish one of the main

results of this paper, namely, the characterization of the nonnegativity of J (η) over

(1.1) in terms of the nonexistence of “conjugate points”, the natural conjoined basis

of the hybrid Jacobi equation (J), and the existence of a solution to the time scale (or

hybrid) Riccati equation. The strengthening of the conditions in Theorem 5.1 yields

a characterization of the positivity of J (η) over (1.1) and is displayed in Theorem 6.1

(Section 6). The underlying hypotheses for these results are

(1.5) S(t) := R(t) + µ(t) QT(t) and R(t) are invertible for all t ∈ [a, ρ(b)],

where µ(t) is the “graininess” of T at t and ρ(b) stands for the “backward jump”

function at b, and the strengthened Legendre condition

(1.6) R(t±) > 0 for all dense points t ∈ [σ(a), ρ(b)],

where R(t+) and R(t−) are the corresponding right-hand and left-hand limits at t.

These hypotheses are natural extension of the corresponding conditions required for

each of the continuous-time and discrete-time settings. At the end of the paper we

display an example illustrating how the results of this paper apply to a hybrid problem
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that is neither on a continuous time, nor on a discrete-time interval, but is defined

on a mixed set. Furthermore, we present an example of an optimal impulsive control

problem (IC) and we show how this problem can be reduced to a variational problem

over a time scale. Then we use the results developed for this latter case to find the

optimal solution for (IC).

2. SOME PREREQUISITIES ABOUT TIME SCALES

Let T be a time scale, i.e. a nonempty closed subset of R. The forward jump

operator σ : T → T is defined by σ(t) := inf{s ∈ T | s > t} (together with inf ∅ :=

sup T). The backward jump operator ρ : T → T is defined by ρ(t) := sup{s ∈ T | s < t}
(together with sup ∅ := inf T). A point t ∈ T\{sup T} is right-dense or right-scattered

if σ(t) = t or σ(t) > t, respectively. A point t ∈ T\{inf T} is left-dense or left-scattered

if ρ(t) = t or ρ(t) < t, respectively. A point t ∈ T is dense if it is either left-dense or

right-dense. The graininess function µ is defined by µ(t) := σ(t) − t. The set T
κ is

defined as T without the left-scattered maximum of T (in case it exists).

A function f on T (with values in a Banach space) is regulated if the right-hand

limit f(t+) exists (finite) at all right-dense points t ∈ T and the left-hand limit f(t−)

exists (finite) at all left-dense points t ∈ T. A function f is rd-continuous (we write

f ∈ Crd) if it is regulated and if it is continuous at all right-dense points t ∈ T. A

function f is piecewise rd-continuous (we write f ∈ Cprd) if it is regulated and if it is

rd-continuous at all, except possibly at finitely many, right-dense points t ∈ T.

Remark 2.1. At the right-dense points {t1, · · · , tk} where a given Cprd-function

f is not continuous, the statements and conditions involving the values f(ti), i ∈
{1, . . . , k}, simply mean that these statements and conditions hold when the value

f(ti) is replaced by f(t+i ). This convention will be assumed throughout the paper

without further recall.

It is a known fact that a composition of a continuous function g with f ∈ Crd or

f ∈ Cprd is respectively rd-continuous or piecewise rd-continuous, i.e. g ◦ f ∈ Crd or

g ◦ f ∈ Cprd.

A matrix-function F is regressive if I + µ(t) F (t) is invertible for all t ∈ T
κ.

Remark 2.2. (i) Recall that if f, g ∈ Crd then f +g ∈ Crd, fg ∈ Crd. To the contrary,

even if g(t) 6= 0 for all t ∈ T, then f/g does not need to be rd-continuous, because

even if g never vanishes, 1/g may not be regulated. As an example we can take

T = [−1, 0] ∪ {1, 2}, f(t) ≡ 1, g(t) = −t for t ∈ [−1, 0) and g(t) = 1 for t ∈ {0, 1, 2}.
Then f, g ∈ Crd but 1/g 6∈ Crd, because (1/g)(0−) = ∞ is not finite. In this paper

we will consider inverses of certain (piecewise) rd-continuous functions and, because

of the above example, one has to be careful as to when such an inverse is actually

(piecewise) rd-continuous.
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(ii) On the other hand, if a matrix function F ∈ Crd is regressive, then (I +µF )−1

is rd-continuous. Similarly, if matrix functions F , G, and G−1 are (piecewise) rd-

continuous, then (G+µF )−1 is (piecewise) rd-continuous whenever this inverse exists.

(iii) Let G be a regulated matrix function with G(t±) > 0 for all dense points

t. Then, for some α > 0, G(t±) ≥ αI for all dense points t. Hence, a nonsingular

regulated (Crd, Cprd) matrix function G with G(t±) > 0 for all dense points t has

a regulated (Crd, Cprd) inverse for all t. Consequently, the strengthened Legendre

condition (1.6) and

R(t±) ≥ αI for all dense points t ∈ [σ(a), ρ(b)],

for some constant α > 0, are equivalent.

(iv) On the other hand, the condition

R(t) > 0 for all dense points t ∈ [σ(a), ρ(b)]

with R ∈ Crd is not appropriate for the theory on time scales, since it does not

necessarily yield the boundedness of R−1. For instance, let T := {−1/n}∞n=1 ∪ {0}
and define R(t) on T by R(t) := −t for t < 0 and R(0) := 1.

The time scale ∆-derivative of a function f was introduced by Hilger in [12] and

is defined by

f∆(t) := lim
s→t

f
(
σ(t)

)
− f(s)

σ(t) − s
, where s → t, s ∈ T \ {σ(t)}.

It is understood by definition that lims→t f(s) = f(t) when t is an isolated point.

When t := max T exists and is left-scattered, then f∆(t) is not well-defined. When

f∆ exists it is shown in [12] that

(2.1) f∆(t) = {fσ(t) − f(t)} /µ(t).

A function f is rd-continuously ∆-differentiable (we write f ∈ C1
rd) if f∆(t) exists

for all t ∈ T
κ and f∆ ∈ Crd. A continuous function f is piecewise rd-continuously

∆-differentiable (we write f ∈ C1
prd) if f is continuous and f∆ exists at all, except

possibly at finitely many, t ∈ T
κ and f∆ ∈ Cprd. Note that if f ∈ C1

prd then the points

ti where f∆(ti) does not exist (but we know that f∆(t+i ) and f∆(t−i ) exist since f∆

is regulated) are necessarily left-dense and right-dense at the same time.

For c, d ∈ T, the time scale integral is denoted by
∫ d

c
f(t) ∆t and is defined as the

Cauchy integral associated with the ∆-differentiation. It is known [6, Theorem 1.74]

that whenever f ∈ Crd (f ∈ Cprd) this integral is well-defined. In general, a function

f is said to be ∆-integrable on [c, d] if
∫ d

c
f(t) ∆t exists (finite). Note that it can be

shown that
∫ σ(c)

c

f(t) ∆t = µ(c) f(c).
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We shall denote by fσ and f ρ the compositions f ◦ σ and f ◦ ρ of a function f

with σ and ρ, respectively.

Remark 2.3. If f and g are in Cprd and f(t) = g(t) except at finitely many right-

dense points, then
∫ b

a
f(t) ∆t =

∫ b

a
g(t) ∆t. In particular, when f(t) > 0 except at

finitely many right-dense points, then
∫ b

a
f(t) ∆t > 0.

3. CONCEPTS AND BASIC PROPERTIES

The coefficients P (t), Q(t), and R(t) are assumed to be piecewise rd-continuous

on [a, ρ(b)], i.e. P, Q, R ∈ Cprd, and the matrices P (t), R(t), and Γ̂a are assumed to

be symmetric. Furthermore, we suppose throughout the paper that (1.5) and (1.6)

hold.

If a function f is defined at the points a and b, then we will use a common

notation f(t) |ba := f(b) − f(a).

A time scale linear Hamiltonian system equivalent to (J) is

(H) η∆ = A(t) ησ + B(t) q, q∆ = C(t) ησ − AT (t) q,

where

A(t) := −R−1(t) QT (t), B(t) := R−1(t), C(t) := P (t) − Q(t) R−1(t) QT (t),

and

(3.1) q(t) := R(t) η∆(t) + QT (t) ησ(t), i.e. µ(t) q(t) = S(t) ησ(t) − R(t) η(t).

Note that, under (1.5) and (1.6), the functions R−1(t), S(t), S−1(t), A(t), B(t),

C(t), and Ã(t) := [I − µ(t) A(t)]−1 = S−1(t) R(t) are piecewise rd-continuous, by

Remark 2.2.

For a given function η ∈ C1
prd we always associate the corresponding q ∈ Cprd by

(3.1), so that, equivalently, the pair (η, q) solves the first equation of (H). Such a pair

(η, q) is called admissible. In particular, η solves (J) if and only if (η, q) solves (H).

With q given by (3.1), the functional J takes the form J (η) = I(η, q), where

I(η, q) := ηT (a) Γ̂a η(a) +

∫ b

a

{
(ησ)T C ησ + qT B q

}
(t) ∆t.

In particular, the integrand of I is a piecewise rd-continuous and hence, a regulated

function, so that this integral is well defined.

Definition 3.1 (Nonnegativity and positivity). The quadratic functional J is non-

negative (or nonnegative definite), we write J ≥ 0, if J (η) ≥ 0 for all η ∈ C1
prd

satisfying (1.1). The quadratic functional J is positive (or positive definite), we write

J > 0, if J (η) > 0 for all η ∈ C1
prd satisfying (1.1) and η 6≡ 0.
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Remark 3.2. Equivalently, the quadratic functional I is nonnegative (or nonnegative

definite), we write I ≥ 0, if I(η, q) ≥ 0 for all admissible (η, q) satisfying (1.1). The

quadratic functional I is positive (or positive definite), we write I > 0, if I(η, q) > 0

for all admissible (η, q) satisfying (1.1) and η 6≡ 0.

First we establish the Legendre condition for the quadratic functional J .

Lemma 3.3 (Legendre condition). If J ≥ 0, then the Legendre condition holds:

(3.2) R(t±) ≥ 0, for all dense points t ∈ [σ(a), ρ(b)].

Proof. It is similar to the proof of [5, Result 1.3] and is therefore omitted.

Remark 3.4. If the Legendre condition (3.2) holds and R(t) is invertible on [a, b],

then we do not necessarily obtain the strengthened Legendre condition (1.6).

An n × n matrix solution X of (J), or equivalently (X, U) of (H), is a conjoined

basis if XT (t)U(t) is symmetric and rank(XT (t), UT (t)) = n at some (and hence at

any) t ∈ [a, b]. Here U is defined similarly to q in (3.1), that is, by

(3.3) U(t) := R(t) X∆(t) + QT (t) Xσ(t), i.e. µ(t) U(t) = S(t) Xσ(t) − R(t) X(t).

For any two conjoined bases X and X̃ of (J) the expression {XT Ũ −UT X̃}(t) (called

the Wronskian) is constant on [a, b]. This is verified by showing {XT Ũ −UT X̃}∆ = 0.

Two conjoined bases X and X̃ of (J) are normalized if their Wronskian is the identity

matrix. A natural conjoined basis of (J) is the matrix solution X of (J) given by the

inital conditions

X(a) = I −Ma, U(a) = Γ̂a + Ma.

This and (3.3) imply that

(3.4) Xσ(a) = S−1(a)
{

[R(a) + µ(a) Γ̂a] X(a) + µ(a)Ma

}

.

When the left endpoint is zero, i.e. when Ma = I, the natural conjoined basis reduces

to the principal solution X̂, which is given by the initial conditions

X̂(a) = 0, Û(a) = I.

Note that if a is right-scattered, then X̂σ(a) = µ(a) S−1(a) is invertible.

Lemma 3.5. Let X be the natural conjoined basis of (J). A solution η of (J) satisfies

(3.5) Maη(a) = 0, q(a) = Γ̂aη(a) + Maγa,

if and only if (η, q) = (Xα, Uα) on [a, b] for some vector α ∈ R
n.

Proof. Sufficiency is trivial, while necessity follows from the uniqueness of solutions

of (H) upon taking α = η(a) + Maγa.
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In the next lemma we characterize the invertibility of Xσ(a) in (3.4). When a is

right-dense, i.e. when µ(a) = 0, this result is trivial and says that X(a) is invertible

if and only if Ma = 0.

Lemma 3.6. Let X be the natural conjoined basis of (J). The matrix Xσ(a) in (3.4)

is invertible if and only if

Ker (I −Ma) [ R(a) + µ(a) Γ̂a ] ∩ Ker µ(a)Ma = {0}.

Proof. “⇒” Suppose that there is a vector α ∈ R
n such that (I − Ma) [R(a) +

µ(a) Γ̂a] α = 0 and µ(a)Maα = 0. Then

[S(a) Xσ(a)]T α =
{
X(a) [R(a) + µ(a) Γ̂a] + µ(a)Ma

}
α = 0,

i.e. [Xσ(a)]T ST (a) α = 0. Hence, α = 0, since both Xσ(a) and S(a) are invertible.

“⇐” Suppose that Xσ(a) is not invertible so that [Xσ(a)]T is not invertible as

well. Then [Xσ(a)]T α = 0 for some nonzero vector α ∈ R
n, i.e.

(3.6)
{
X(a)[R(a) + µ(a) Γ̂a] + µ(a)Ma

}
β = 0,

where β := ST−1(a) α 6= 0. Multiplying (3.6) by I − Ma, we get (I − Ma) [R(a) +

µ(a) Γ̂a] β = 0, while multiplying (3.6) by Ma we get µ(a)Maβ = 0. Hence, β ∈
Ker(I −Ma) [R(a) + µ(a) Γ̂a] ∩ Ker µ(a)Ma. This implies by the assumption β = 0,

which is a contradiction.

Lemma 3.7. Let η be a solution of (J) satisfying (3.5). For a left-dense point c ∈
(a, b] define the pair (η̃, q̃) by

(3.7) η̃(t) :=







η(t) for t ∈ [a, c],

0 for t ∈ (c, b],
q̃(t) :=







q(t) for t ∈ [a, c),

0 for t ∈ [c, b].

For a left-scattered point c ∈ [σ(a), b] define the pair (η̃, q̃) by

(3.8) η̃(t) :=







η(t) for t ∈ [a, ρ(c)],

0 for t ∈ [c, b],
q̃(t) :=







q(t) for t ∈ [a, ρ(c)),

−
{

1
µ

Rη
}ρ

(c) for t = ρ(c),

0 for t ∈ [c, b].

Then (η̃, q̃) is admissible, satisfies Maη̃(a) = 0, η̃(b) = 0, and

J (η̃) = I(η̃, q̃) =







ηT (c) q(c) if c is left-dense,
{

1
µ

ηT S ησ
}ρ

(c) if c is left-scattered.

Proof. Let c ∈ (a, b] be left-dense and define (η̃, q̃) by (3.7). Then

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) +

{∫ c

a

+

∫ b

c

}
{
(η̃σ)T C η̃ + q̃T B q̃

}
(t) ∆t

= ηT (a) Γ̂a η(a) + ηT (t) q(t)
∣
∣
c

a
= ηT (c) q(c).
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Let c ∈ [σ(a), b] be left-scattered and define (η̃, q̃) by (3.8). Then

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) +

{
∫ ρ(c)

a

+

∫ c

ρ(c)

+

∫ b

c

}

{
(η̃σ)T C η̃ + q̃T B q̃

}
(t) ∆t

= ηT (a) Γ̂a η(a) + ηT (t) q(t)
∣
∣
ρ(c)

a
+
{
µ (η̃σ)T C η̃σ + µ q̃TB q̃

}ρ
(c)

=
{

ηT (Rη∆ + QT ησ) + 1
µ

ηTRη
}ρ

(c) =
{

1
µ

ηT S ησ
}ρ

(c).

The proof is complete.

The above result motivates the concept of conjugate points to a.

Definition 3.8 (Conjugate point). Let c ∈ (a, b]. We say that c is conjugate to a if

there exists a nontrivial solution η of (J) satisfying condition (3.5) for some vector

γa ∈ R
n, and

η(c) = 0 if c is left-dense,

ηρ(c) 6= 0, [ηρ(c)]T Sρ(c) η(c) ≤ 0 if c is left-scattered.(3.9)

A (left-scattered) point c is strictly conjugate to a if it is conjugate to a and the

associated solution η satisfies the strict inequality in (3.9).

Remark 3.9. (i) If c is left-scattered, then one could adopt the notion of “(ρ(c), c]

conjugate to a”, which is equivalent to saying that “c is conjugate to a”, since the

set (ρ(c), c] is in fact {c} in this case. While this conjugate interval notion is more

consistent with the corresponding notion in the discrete-time setting, it would not

represent the continuous-time case where (ρ(c), c] = ∅.
(ii) When Ma = I ((P) has fixed endpoints), (3.5) reduces to η(a) = 0. When

Ma = 0 ((P) has free left endpoint), (3.5) reduces to q(a) = Γ̂a η(a).

4. NEEDED PREVIOUSLY KNOWN RESULTS

The results recalled in this section will be needed in our work. The time scale

Riccati matrix equation associated with (J) is defined to be

(R) R[W ](t) := W ∆ − P (t) + [W σ − µ(t) P (t) − Q(t)] S−1(t) [W − QT(t)] = 0.

This implies the identity

µ(t)R[W ](t) = [W σ − µ(t) P (t) − Q(t)] S−1(t) [R(t) + µ(t) W ] + Q(t) − W,

from which it follows that W σ can be explicitly calculated from W only if R + µW

is invertible. If this is the case, then the Riccati equation (R) can be written in the

symmetric form

W∆ = P (t) − [W − Q(t)] [R(t) + µ(t) W ]−1 [W − QT(t)].
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With any symmetric matrix function W (t) we associate the symmetric matrix func-

tion

D(t) : =
{
B − µBÃT (W σ − µC) ÃB

}
(t)

=
{
ST−1 (R + µQ + µQT − µW σ + µ2P ) S−1

}
(t).(4.1)

We have the following result. Note that compared to [13, Lemma 2] we do not require

here η(a) ∈ Im X(a), since W (t) satisfies R[W ](t) = 0 on [a, ρ(b)].

Proposition 4.1 (Picone’s identity). [13, Lemma 2, Proposition 2] Let W (t), t ∈
[a, b], be a symmetric solution of (R) on [a, ρ(b)] and let (η, q) be admissible, i.e. (3.1)

holds. Then
∫ b

a

{
(ησ)T C ησ + qT B q

}
(t)∆t = ηT (t) W (t) η(t)

∣
∣b

a
+

∫ b

a

{
zTDz

}
(t) ∆t,

where z(t) := q(t) − W (t) η(t) on [a, b], and D(t) is the function corresponding to W

in (4.1). Furthermore, the following identity holds

η(t) + µ(t)D(t) z(t) = D(t) S(t) ησ(t) for all t ∈ [a, ρ(b)].

Let X and X̃ be any normalized conjoined bases of (J). Define the n×n matrices

W (t), W̃ (t) and the 2n × 2n matrix W ∗(t) by (we skip the argument (t) below)

W := UX† + (UX†X̃ − Ũ)(I − X†X)UT ,(4.2)

W̃ := X† + X†X̃(I − X†X)UT ,(4.3)

W ∗ :=

(

−X†X̃X†X W̃

W̃ T W

)

,(4.4)

From [4, Lemma 2] it follows that W in (4.2) is symmetric and satisfies WX = UX †X.

Remark 4.2. Suppose that X and X̃ are normalized conjoined bases of (J) such that

X(t) is invertible for all t ∈ (a, b), resp. t ∈ (a, b]. Then formulas (4.2), (4.3), (4.4),

and (4.1) yield for t ∈ (a, b), resp. t ∈ (a, b], that

W (t) = U(t) X−1(t), W̃ (t) = X−1(t), W ∗(t) =

(

−X−1X̃ X−1

XT−1 W

)

(t),(4.5)

D(t) = X(t) [Xσ(t)]−1S−1(t) = [R(t) + µ(t) W (t)]−1.

Furthermore, W satisfies R[W ](t) = 0 on (a, ρ(b)), resp. on (a, ρ(b)], and hence, using

this W , Proposition 4.1 applies on a subinterval [c, d] ⊆ (a, b), resp. [c, d] ⊆ (a, b]. If

a is right-scattered then [13, Lemma 3] yields that R[W ](a) X(a) = 0.

For convenience we set for α, η ∈ R
n

(4.6) F (t, α, η) :=

(

α

η

)T

W ∗(t)

(

α

η

)
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and recall that F
(
t, α, η(t)

)
|ba := F

(
b, α, η(b)

)
− F

(
a, α, η(a)

)
.

Proposition 4.3 (Extended Picone’s identity). [13, Proposition 3] Suppose that X

and X̃ are normalized conjoined bases of (J) such that X(t) is invertible for all t ∈
(a, b]. Let (η, q) be admissible, i.e. (3.1) holds, and α ∈ R

n with α + UT (a) η(a) ∈
Im XT (a). Then

∫ b

a

{
(ησ)T C ησ + qT B q

}
(t) = F

(
t, α, η(t)

) ∣
∣b

a
+

∫ b

a

{
zTDz

}
(t) ∆t,

where W (t), W̃ (t), and W ∗(t) are defined by (4.2), (4.3), and (4.4) on [a, b], z(t) :=

q(t) − W (t) η(t) − W̃ T (t) α on [a, b], and D(t) is given by (4.1).

The following result is Corollary 1.2.4 of [21]. There, the proof is purely al-

gebraical (it uses the properties of normalized conjoined bases) and requires a limit

argument as ε → 0+ at a. For the time scale version we need the same limit argument

at the right-dense point a.

Proposition 4.4. [21, Corollary 1.2.4] Let a be right-dense and let an ↘ a be a right-

sequence for a. Suppose that X and X̃ are any normalized conjoined bases of (J) with

X(b) and X(an) invertible for all n sufficiently large. Let η(t) be (rd-)continuous at

t = a with η(a) = X(a) d for some d ∈ R
n. Then for

αn := −UT (an) η(an) + XT (an) U(a) d

we have

lim
n→∞

F
(
t, αn, η(t)

) ∣
∣b

an

= ηT (b) W (b) η(b) − dT XT (a) U(a) d,

where F (t, α, η) is defined by (4.6) with matrices W (t) and W ∗(t) as in (4.5).

In Proposition 4.4, the matrix X(b) is invertible while X(a) could be singular. In

order to treat the opposite situation, namely the case when X(a) is invertible while

X(b) could be singular, a time-reversed version of Proposition 4.4 is obtained by the

transformation t 7→ a + b − t.

Proposition 4.5. Let b be left-dense and let bn ↗ b be a left-sequence for b. Suppose

that X and X̃ are any normalized conjoined bases of (J) with X(a) and X(bn) invert-

ible for all n sufficiently large. Let η(t) be continuous at t = b with η(b) = X(b) d for

some d ∈ R
n. Then for

βn := −UT (bn) η(bn) + XT (bn) U(b) d

we have

lim
n→∞

F
(
t, βn, η(t)

) ∣
∣bn

a
= dT XT (b) U(b) d − ηT (a) W (a) η(a),

where F (t, α, η) is defined by (4.6) with matrices W (t) and W ∗(t) as in (4.5).
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5. NONNEGATIVITY OF J

The following theorem is one of the main results of this paper.

Theorem 5.1 (Characterization of J ≥ 0). Let (1.5) and the strengthened Legendre

condition (1.6) hold. Then the following conditions are equivalent.

(i) J ≥ 0 over Maη(a) = 0 and η(b) = 0.

(ii) The interval (a, b) contains no points conjugate to a, and b is not strictly conju-

gate to a if b is left-scattered, i.e. the Jacobi condition holds.

(iii) The natural conjoined basis X of (J) has X(t) invertible for all t ∈ (a, b), and

satisfies

XT (a) S(a) Xσ(a) > 0 on KerMa, if a is right-scattered,(5.1)

XT (t) S(t) Xσ(t) > 0 for all t ∈ (a, ρ(b)),(5.2)

[Xρ(b)]T Sρ(b) X(b) ≥ 0 if b is left-scattered.(5.3)

(iv) There exists a symmetric solution W (t) on (a, b) of the explicit Riccati equation

(R), t ∈ (a, ρ(b)), satisfying

R(a) + µ(a) W (a) > 0 on KerMa, if a is right-scattered,(5.4)

R[W ](a) (I −Ma) = 0 and W (a) = Γ̂a if a is right-scattered,(5.5)

lim
t→a+

W (t) X(t) = Γ̂a + Ma if a is right-dense,(5.6)

µ(a)D(a)Ma = 0,(5.7)

R(t) + µ(t) W (t) > 0 for all t ∈ (a, ρ(b)),(5.8)

Rρ(b) + µ(ρ(b)) W ρ(b) ≥ 0 if b is left-scattered,(5.9)

where the matrix D(a) is defined by (4.1) and X is the natural conjoined basis

of (J).

Remark 5.2. From [19], the nonnegativity of the second variation at the optimal

solution ŷ of the nonlinear problem (P) is a necessary condition for optimality. Thus,

under (1.5) and (1.6), Theorem 5.1 provides equivalent second order necessary opti-

mality conditions.

When specialized to the zero initial endpoint, Theorem 5.1 yields the following

result. Note that in this case σ(a) cannot be conjugate to a if a is right-scattered (i.e.

if σ(a) is left-scattered).

Corollary 5.3 (Characterization of J ≥ 0, zero endpoints). Let (1.5) and the

strengthened Legendre condition (1.6) hold, and Ma = I. Then the following condi-

tions are equivalent.

(i) J ≥ 0 over η(a) = 0 and η(b) = 0.
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(ii) The interval (a, b) contains no points conjugate a, and b is not strictly conjugate

to a if b is left-scattered.

(iii) The principal solution X̂ of (J) has X̂(t) invertible for all t ∈ (a, b), and satisfies

conditions (5.2), (5.3).

(iv) There exists a symmetric solution W (t) on (a, b) of the explicit Riccati equation

(R), t ∈ (a, ρ(b)), satisfying conditions (5.8), (5.9), and

W (a) = 0 if a is right-scattered,(5.10)

lim
t→a+

W (t) X̂(t) = I if a is right-dense,(5.11)

µ(a)D(a) = 0.(5.12)

For the case of the free left endpoint we have that X(a) = I is invertible, so that

the solution W (t) of the Riccati equation always exists at t = a, i.e. W (t) is always

defined on [a, b).

Corollary 5.4 (Characterization of J ≥ 0, free left endpoint). Let (1.5) and the

strengthened Legendre condition (1.6) hold, and Ma = 0. Then the following condi-

tions are equivalent.

(i) J ≥ 0 over η(b) = 0.

(ii) The interval (a, b) contains no points conjugate a, and b is not strictly conjugate

to a if b is left-scattered.

(iii) The solution X̃ of (J) given by X̃(a) = I, Ũ(a) = Γ̂a is invertible for all t ∈ [a, b),

X̃T (t) S(t) X̃σ(t) > 0 for all t ∈ [a, ρ(b)),

and satisfies condition (5.3).

(iv) There exists a symmetric solution W (t) on [a, b) of the explicit Riccati equation

(R), t ∈ [a, ρ(b)), satisfying W (a) = Γ̂a,

R(t) + µ(t) W (t) > 0 for all t ∈ [a, ρ(b)),

and condition (5.9) holds.

Proof of Theorem 5.1. The proof will consist of the following implications

(i)
L.5.5 +3 (ii)

L.5.6

��

(iv)
L.5.8ks

(iii)

L.5.9

\dAAAAAAA

AAAAAAA L.5.7

9A
{{{{{{{

{{{{{{{

with the aid of Lemmas 5.5-5.9 proven below.

Assume (1.5) and (1.6). The rest of this section is devoted to the proof of The-

orem 5.1. In order to shorten our calculations, we abbreviate the integrand of the
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functional I by Ω(t), i.e.

Ω(t) :=
{
(ησ)T C ησ + qT B q

}
(t), Ω̃(t) :=

{
(η̃σ)T C η̃σ + q̃T B q̃

}
(t).

Lemma 5.5. In Theorem 5.1, (i) implies (ii).

Proof. Assume J ≥ 0. Let η be a nontrivial solution of (J) satisfying (3.5). Then, by

Lemma 3.5, (η, q) = (Xα, Uα) on [a, b] for some vector α 6= 0, where X is the natural

conjoined basis of (J). If condition (ii) of Theorem 5.1 does not hold, then there exist

α 6= 0 and c ∈ (a, b) such that for (η, q) := (Xα, Uα) one of the following Cases I-III

holds true:

• Case I (c is left-dense point and η(c) = 0). Then X(c) α = 0. Define (η̃, q̃)

by (3.7). Then Lemma 3.7 yields J (η̃) = ηT (c) q(c) = 0. Since we assume J ≥ 0,

it follows that η̃ is optimal for J and hence, by [19, Theorem 1 ], η̃ solves the

Jacobi equation (J) on [a, ρ(b)]. But since η̃(t) ≡ 0 on [c, b] (note that c < b), i.e.

η̃(t) = 0 at least at two consecutive points, it results that η̃(t) ≡ 0 on [a, b]. Hence,

η(t) = η̃(t) = 0 on [a, c), which implies that η∆(a) = 0 (use a < c). Consequently,

q(a) = 0. Therefore, we have

X(a) α = η(a) = 0, U(a) α = q(a) = 0.

This in turn yields α = 0, which is a contradiction.

• Case II (c is left-scattered such that [ηρ(c)]T Sρ(c) η(c) ≤ 0 and ηρ(c) 6= 0).

Define (η̃, q̃) by (3.8). Then Lemma 3.7 yields J (η̃) = { 1
µ

ηT S ησ}ρ(c) ≤ 0. As we

assume J ≥ 0, it follows that J (η̃) = 0, i.e. η̃ is optimal for J . Thus, η̃ must solve the

Jacobi equation (J). But since η̃ ≡ 0 on [c, b], i.e. η̃(t) = 0 at least at two consecutive

points (note c < b), we get η̃(t) ≡ 0 on [a, b]. This yelds that ηρ(c) = η̃ρ(c) = 0, which

contradicts ηρ(c) 6= 0.

• Case III (the point b is left-scattered, ηρ(b) 6= 0, and [ηρ(b)]T Sρ(b) η(b) < 0).

Define (η̃, q̃) by (3.8) with c = b. Then Lemma 3.7 (with c = b) yields J (η̃) =

{ 1
µ

ηT S ησ}ρ(b) < 0. This however contradicts the assumption J ≥ 0.

Lemma 5.6. In Theorem 5.1, (ii) implies (iii).

Proof. Suppose that the condition (ii) of Theorem 5.1 holds. Let X be the natural

conjoined basis of (J). If the conditions in (iii) of Theorem 5.1 are not satisfied, then

one of the following Cases I-IV holds true:

• Case I (a is right scattered and dTXT (a) S(a) Xσ(a) d ≤ 0 for some nonzero

vector d ∈ KerMa). We set η(t) := X(t) d and q(t) := U(t) d on [a, b]. Then (η, q)

solves (H), satisfies (3.5), and η(a) = d 6= 0. Moreover, since ηT (a) S(a) ησ(a) =

dT XT (a) S(a) Xσ(a) d ≤ 0, it follows that σ(a) ∈ (a, b) is conjugate to a. This is a

contradiction.
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• Case II (there exists a point c ∈ (a, b) such that X(c) is not invertible). Then

X(c) d = 0 for some nonzero vector d ∈ R
n. Set η(t) := X(t) d and q(t) := U(t) d on

[a, b]. Then (η, q) is a nontrivial solution of (H) satisfying (3.5) such that η(c) = 0.

. Suppose that c is left-dense. Then c ∈ (a, b) is a point conjugate to a, which is

a contradiction.

. Suppose that c is left-scattered. Depending on the value of ηρ(c), we have the

following subcases:

− Subcase IIa (ηρ(c) = 0). Since also η(c) = 0, it follows that η(t) ≡ 0 on

[a, b], and hence, q(t) ≡ 0 on [a, b] and thus there is a contradiction.

− Subcase IIb (ηρ(c) 6= 0). Then [ηρ(c)]T Sρ(c) η(c) = 0. As c < b, this means

that c ∈ (a, b) is conjugate to a, which is a contradiction.

• Case III (there exists a point c ∈ (a, ρ(b)) such that XT (c) S(c) Xσ(c) 6> 0).

Since the strengthened Legendre condition (1.6) holds, such a point c must be right-

scattered and σ(c) < b. Then there exists a nonzero vector d ∈ R
n such that

dT XT (c) S(c) Xσ(c) d ≤ 0. Set η(t) := X(t) d and q(t) := U(t) d on [a, b]. Then

(η, q) is a nontrivial solution of (H) satisfying (3.5) and, for c̄ := σ(c) we have

(5.13) [ηρ(c̄)]T Sρ(c̄) η(c̄) =
{
ηT S ησ

}ρ
(c̄) = ηT (c) S(c) ησ(c) ≤ 0.

Depending on the value of η(c) we have the following:

. If η(c) 6= 0, i.e. ηρ(c̄) 6= 0, then, by using c̄ < b, equation (5.13) means that

the left-scattered point σ(c) = c̄ ⊆ (a, b) and is conjugate to a, which is a

contradiction.

. If η(c) = 0, then we will distinguish further subcases (note that we use a < c):

− Subcase IIIa (c is left-dense). Then c ∈ (a, b) is conjugate to a, which is a

contradiction.

− Subcase IIIb (c is left-scattered). Dividing into another subsubcases we have:

∗ Subsubcase IIIb1 (ηρ(c) = 0). This condition together with η(c) = 0

implies that η(t) ≡ 0 on [a, b], which is a contradiction.

∗ Subsubcase IIIb2 (ηρ(c) 6= 0). Then we have [ηρ(c)]T Sρ(c) η(c) = 0, so

that c ∈ (a, b) is conjugate to a, which is a contradiction.

• Case IV ([Xρ(b)]T Sρ(b) X(b) 6≥ 0 if b is left-scattered). Then there exists a

nonzero vector d ∈ R
n such that dT [Xρ(b)]T Sρ(b) X(b) d < 0. Set η(t) := X(t) d and

q(t) := U(t) d on [a, b]. Then η is a nontrivial solution of (J) satisfying (3.5) such

that [ηρ(b)]T Sρ(b) η(b) < 0 and ηρ(b) 6= 0. Hence, b is strictly conjugate to a, which

is a contradiction.

Lemma 5.7. In Theorem 5.1, (iii) implies (iv).

Proof. Let X be the natural conjoined basis of (J) and define the function W by (4.2).

Then if a is right-scattered, set W (a) := Γ̂a. By Remark 4.2, W (t) = U(t) X−1(t) on
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(a, b), W (t) is symmetric on [a, b), it solves (R) on (a, ρ(b)) and satisfies both (5.5)

and (5.6).

For (5.4), let a be right-scattered and 0 6= α ∈ KerMa. Then α = X(a) α and

αT
{
R(a) + µ(a) W (a)

}
α = αTXT (a)

{
R(a) + µ(a) Γ̂a

}
X(a) α

= αTXT (a) S(a) Xσ(a) α > 0,

by (5.1) and (3.4). Hence, (5.4) holds. In this case, {0} = KerXσ(a) ⊆ Ker X(a),

and thus, by [4, Lemma 2], the symmetric matrix D(a) equals to the matrix D(a) :=

X(a) [Xσ(a)]−1S−1(a), so that

µ(a)D(a)Ma = µ(a) DT (a)Ma = µ(a) ST−1(a) [Xσ(a)]T−1(I −Ma)Ma = 0.

Thus, (5.7) holds. Next, using (2.1) and that WX = UX †X it follows that for

t ∈ [a, ρ(b)] we have (the argument (t) is omitted in the next computations)

(5.14) XT SXσ = XT S(ÃX + µÃBU) = XT (R + µW )X.

Hence, for t ∈ (a, ρ(b)), where X(t) is invertible, we get from (5.14) that XT SXσ > 0

if and only if R + µW > 0, i.e. (5.8) holds. For t = ρ(b) we obtain from (5.14) that

XT SXσ ≥ 0 if and only if (5.9) holds.

Lemma 5.8. In Theorem 5.1, (iv) implies (ii).

Proof. Let η be a solution of (J) satisfying (3.5) and η(t) 6≡ 0. By Lemma 3.5,

η(t) = X(t) α and q(t) = U(t) α on [a, b], where α ∈ R
n is a nonzero vector and where

X is the natural conjoined basis of (J). Let W (t) be the solution of (R) from the

condition (iv) of Theorem 5.1. If the condition (ii) of Theorem 5.1 is not satisfied,

there exist α 6= 0 and c ∈ (a, b) such that for (η, q) := (Xα, Uα) one of the following

Cases I-III holds true:

• Case I (c is left-dense point and η(c) = 0). Define (η̃, q̃) by (3.7). Then by

Lemma 3.7, J (η̃) = I(η̃, q̃) = ηT (c) q(c) = 0. On the other hand, we can calculate

the value of J (η̃) by using the Picone identity:

. Subcase I-A (a is right-dense). Let an ↘ a be a right-sequence for a. Then the

Picone identity (Proposition 4.1) on [an, c], η(c) = 0, and Remarks 2.1, 2.3 yield

∫ c

an

Ω̃(t) ∆t = ηT (c) W (c) η(c)− ηT (an) W (an) η(an) +

∫ c

an

{
zTDz

}
(t) ∆t,
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where z = q̃−Wη̃ and D = (R+µW )−1 on [an, c]. Hence, by using η(t) = X(t)α,

X(a) = I −Ma, and (5.6), we get

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) + lim
n→∞

{∫ c

an

+

∫ b

c

}

Ω̃(t) ∆t

= ηT (a) Γ̂a η(a) − lim
n→∞

{

ηT (an) W (an) η(an) +

∫ c

an

{
zTDz

}
(t) ∆t

}

= lim
n→∞

{

ηT (an) [Ma + Γ̂a − W (an) X(an)] α +

∫ c

an

{
zTDz

}
(t) ∆t

}

=

∫ c

a

{
zTDz

}
(t) ∆t.

Consequently, using (5.8), we obtain D(t) z(t) = 0 on (a, c).

. Subcase I-B (a is right-scattered). Then the Picone identity (Proposition 4.3

with α = 0) on [a, σ(a)] and (Proposition 4.1) on [σ(a), c], (5.5), (5.7), (5.8),

and Remarks 2.1, 2.3 yield

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) +

{
∫ σ(a)

a

+

∫ c

σ(a)

+

∫ b

c

}

Ω̃(t) ∆t

= ηT (a) [Γ̂a − W (a)] η(a) + ηT (c) W (c) η(c) +

{
∫ σ(a)

a

+

∫ c

σ(a)

}

{
zTDz

}
(t) ∆t

= µ(a) zT (a)D(a) z(a) +

∫ c

σ(a)

{
zTDz

}
(t) ∆t

where z = q̃ − Wη̃ on [a, c] and D = (R + µW )−1 > 0 on [σ(a), c). By using

(5.5) and (3.5) we get µ(a) z(a) = µ(a)Maγa. Together with (5.7) we obtain

(5.15) µ(a) zT (a)D(a) z(a) = zT (a) {µ(a)D(a)Ma}γa = 0,

which implies that J (η̃) ≥
∫ c

a

{
zTDz

}
(t) ∆t. Hence, D(t) z(t) = 0 on [σ(a), c).

Thus, in both Subcases I-A & I-B we have D(t) z(t) = 0 on (a, c), i.e. z(t) = 0 on

(a, c). This implies that q̃(t) = W (t) η̃(t) on (a, c), i.e. we have from the definition

of (η̃, q̃) that U(t) α = W (t) X(t) α on (a, c). As the point c is left-dense, take now a

left-sequence cn ↗ c. Since X, U , and W are continuous at t = c, and since η(c) = 0,

we get

U(c) α = lim
n→∞

U(cn) α = lim
n→∞

W (cn) X(cn) α = W (c) X(c) α = W (c) η(c) = 0.

Thus, we have U(c) α = 0, which together with X(c) α = 0 yields α = 0. This

contradicts α 6= 0.

• Case II (c is left-scattered such that [ηρ(c)]T Sρ(c) η(c) ≤ 0 and ηρ(c) 6= 0).

Define (η̃, q̃) by (3.8). Then by Lemma 3.7, J (η̃) = I(η̃, q̃) = { 1
µ

ηT S ησ}ρ(c) ≤ 0.

On the other hand, by using the Picone identity, we have the following:
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. Subcase II-A (a is right-dense). Let an ↘ a be a right-sequence for a. Then the

Picone identity (Proposition 4.1) on [an, ρ(c)], (5.8), and Remarks 2.1, 2.3 yield

∫ ρ(c)

an

Ω̃(t) ∆t = ηT (t) W (t) η(t)
∣
∣ρ(c)

an

+

∫ ρ(c)

an

{
zTDz

}
(t) ∆t

≥ [ηρ(c)]T W ρ(c) ηρ(c) − ηT (an) W (an) η(an),

where z = q̃ − Wη̃ and D = (R + µW )−1 > 0 on [an, ρ(c)]. Hence, by using

η(t) = X(t)α, η̃(c) = 0, (3.5) and (5.6), we get

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) + lim
n→∞

{
∫ ρ(c)

an

+

∫ c

ρ(c)

+

∫ b

c

}

Ω̃(t) ∆t

≥ ηT (a) Γ̂a η(a) − lim
n→∞

ηT (an) W (an) η(an)

+
{
ηTW η + (µ η̃σ)T C η̃σ + µ q̃T B q̃

}ρ
(c)

=
{

1
µ

ηT (R + µW ) η
}ρ

(c) > 0.

Thus, we showed J (η̃) > 0.

. Subcase II-B (a is right-scattered). We need to distinguish further subsubcases:

− Subsubcase II-B1 (c > σ(a)). Then the Picone identity (Proposition 4.3

with α = 0) on [a, σ(a)] and (Proposition 4.1) on [σ(a), ρ(c)], (5.15), (5.8),

and Remarks 2.1, 2.3 yield

∫ ρ(c)

a

Ω̃(t) ∆t = ηT (t) W (t) η(t)
∣
∣ρ(c)

a
+

{
∫ σ(a)

a

+

∫ ρ(c)

σ(a)

}

{
zTDz

}
(t) ∆t

≥ µ(a) zT (a)D(a) z(a) − ηT (a) W (a) η(a) + [ηρ(c)]T W ρ(c) ηρ(c)

= −ηT (a) W (a) η(a) + [ηρ(c)]T W ρ(c) ηρ(c),

where z = q̃ − Wη̃ on [a, ρ(c)] and D = (R + µW )−1 > 0 on [σ(a), ρ(c)].

Hence, by using (5.5), η̃(c) = 0, and (5.8) at t = ρ(c) we get

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) +

{
∫ ρ(c)

a

+

∫ c

ρ(c)

+

∫ b

c

}

Ω̃(t) ∆t

≥ ηT (a) [Γ̂a − W (a)] η(a) +
{
ηT W η + µ (η̃σ)T C η̃σ + µ q̃TB q̃

}ρ
(c)

=
{

1
µ

ηT (R + µW ) η
}ρ

(c) > 0.

Thus, we showed J (η̃) > 0.
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− Subsubcase II-B2 (c = σ(a)). This yields η(a) = ηρ(c) 6= 0. By using

η̃σ(a) = 0, W (a) = Γ̂a, and (5.4),

J (η̃) = I(η̃, q̃) = η̃T (a) Γ̂a η̃(a) +

{
∫ σ(a)

a

+

∫ b

σ(a)

}

Ω̃(t) ∆t

=
{

ηT Γ̂a η + µ (η̃σ)T C η̃σ + µ q̃TB q̃
}

(a)

= 1
µ(a)

ηT (a) [R(a) + µ(a) W (a)] η(a) > 0.

Thus, J (η̃) > 0.

Hence, in both Subcases II-A & II-B(1,2) we showed that 0 < J (η̃) ≤ 0, which

is a contradiction.

• Case III (b is left-scattered and [ηρ(b)]T Sρ(b) η(b) < 0). Define (η̃, q̃) by (3.8)

with c = b. Then by Lemma 3.7, J (η̃) = I(η̃, q̃) = { 1
µ

ηT S ησ}ρ(b) < 0. On the

other hand, the Picone identity yields, by the Subcases II-A & II-B1 with c = b,

that J (η̃) ≥ { 1
µ

ηT (R + µW ) η}ρ(b) ≥ 0, by (5.9). Hence, 0 ≤ J (η̃) < 0, which is a

contradiction. The proof of this lemma is therefore complete.

Lemma 5.9. In Theorem 5.1, (iii) implies (i).

Proof. Let X be the natural conjoined basis of (J). Set W (t) := U(t)X−1(t) for

t ∈ (a, b) and W (a) := Γ̂a if a is right-scattered. Then the proof of Lemma 5.7

shows that W (t) satisfies condition (iv) of Theorem 5.1. Let (η, q) be admissible with

Maη(a) = 0 and η(b) = 0.

• Case I (a is right-dense and b is left-dense). Let an ↘ a be a right-sequence

for a and bn ↗ b a left-sequence for b. Then we can pick a point c ∈ (a, b) such that

an < c < bn for n large enough. Then

J (η) = I(η, q) = ηT (a) Γ̂a η(a) + lim
n→∞

{∫ c

an

+

∫ bn

c

}

Ω(t) ∆t

= ηT (a) Γ̂a η(a) + lim
n→∞

∫ c

an

Ω(t) ∆t

︸ ︷︷ ︸

L1

+ lim
n→∞

∫ bn

c

Ω(t) ∆t

︸ ︷︷ ︸

L2

.

We know that X(t) is invertible on (a, b), in particular, X(c) is invertible. To calculate

L1, we first apply the Picone identity (Proposition 4.3) on [an, c] with α = αn,

(5.16) αn := −UT (an) η(an) + XT (an) U(a) η(a).

Note that αn + UT (an) η(an) = XT (an) U(a) η(a) ∈ Im XT (an) holds. Hence, we get
∫ c

an

Ω(t) ∆t = F
(
t, αn, η(t)

) ∣
∣c

an

+

∫ c

an

{
zTDz

}
(t) ∆t,

where z = q − Wη − XT−1αn and D = (R + µW )−1 > 0 on [an, c]. Thus, by

Proposition 4.4 on [a, c] with d = η(a), with αn as in (5.16), and by Remarks 2.1, 2.3
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we have

L1 = lim
n→∞

{

F
(
t, αn, η(t)

) ∣
∣
c

an

+

∫ c

an

{
zTDz

}
(t) ∆t

}

≥ ηT (c) W (c) η(c)− ηT (a) XT (a) U(a) η(a).

Similarly, for L2, the application of the extended Picone identity (Proposition 4.3) on

[c, bn] with α := βn,

(5.17) βn := −UT (bn) η(bn),

yields (note βn ∈ Im XT (c) since X(c) is invertible)
∫ bn

c

Ω(t) ∆t = F
(
t, βn, η(t)

) ∣
∣bn

c
+

∫ bn

c

{
zTDz

}
(t) ∆t,

where z = q − Wη − XT−1βn and D = (R + µW )−1 > 0 on [c, bn]. Thus, by

Proposition 4.5 on [c, b] with d = 0, i.e. η(b) = 0 = X(b) d, with βn as in (5.17), and

by Remarks 2.1, 2.3 we have

L2 = lim
n→∞

{

F
(
t, βn, η(t)

) ∣
∣
bn

c
+

∫ bn

c

{
zTDz

}
(t) ∆t

}

≥ dT XT (b) U(b) d − ηT (c) W (c) η(c) = −ηT (c) W (c) η(c).

Hence,

J (η) = ηT (a) Γ̂a η(a) + L1 + L2 ≥ ηT (a) Γ̂a η(a) − ηT (a) XT (a) U(a) η(a) = 0,

since XT (a) U(a) = Γ̂a. Thus, J (η) ≥ 0. This ends Case I.

• Case II (a right-scattered and b left-dense). Let bn ↗ be a left sequence for b

and without loss of generality assume that σ(a) < bn for n large enough. Then

J (η) = I(η, q) = ηT (a) Γ̂a η(a) + lim
n→∞

{
∫ σ(a)

a

+

∫ bn

σ(a)

}

Ω(t) ∆t

= ηT (a) Γ̂a η(a) +

∫ σ(a)

a

Ω(t) ∆t

︸ ︷︷ ︸

L3

+ lim
n→∞

∫ bn

σ(a)

Ω(t) ∆t

︸ ︷︷ ︸

L4

.

For L3, note η(a) ∈ Im X(a) holds and the Picone identity (Proposition 4.3 with

α = 0) on [a, σ(a)] yields

L3 = ηT (t)W (t)η(t)
∣
∣σ(a)

a
+

∫ σ(a)

a

{
zTDz

}
(t) ∆t =

{
(ησ)T W σησ− ηTW η + µ zTD z

}
(a),

where z(a) := q(a) − W (a) η(a). Now use (5.15) to obtain µ(a) zT (a)D(a) z(a) = 0.

For L4, use first the extended Picone identity (Proposition 4.3) on [σ(a), bn] with

α = βn given by (5.17) (note βn ∈ Im[Xσ(a)]T , since Xσ(a) is invertible),
∫ bn

σ(a)

Ω(t) ∆t = F
(
t, βn, η(t)

) ∣
∣bn

σ(a)
+

∫ bn

σ(a)

{
zTDz

}
(t) ∆t,
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where z = q − Wη − XT−1βn and D = (R + µW )−1 > 0 on [σ(a), bn]. Next, apply

Proposition 4.5 on [σ(a), b] with α = βn and d = 0 and Remarks 2.1, 2.3 to get

L4 = lim
n→∞

{

F
(
t, βn, η(t)

) ∣
∣bn

σ(a)
+

∫ bn

σ(a)

{
zTDz

}
(t) ∆t

}

≥ dT XT (b) U(b) d − [ησ(a)]T W σ(a) ησ(a) = −[ησ(a)]T W σ(a) ησ(a).

Thus, in view of (5.15),

J (η) = ηT (a) Γ̂a η(a) + L3 + L4

≥
{

ηT (Γ̂a − W ) η + (ησ)T W σησ − (ησ)T W σησ
}

(a) = 0.

Hence, we showed that J (η) ≥ 0. This ends Case II.

• Case III (a right-dense and b left-scattered). Let an ↘ a be a right-sequence

for a and without loss of generality assume that an < ρ(b) for n large enough. Then

J (η) = I(η, q) = ηT (a) Γ̂a η(a) + lim
n→∞

{
∫ ρ(b)

an

+

∫ b

ρ(b)

}

Ω(t) ∆t

= ηT (a) Γ̂a η(a) + lim
n→∞

∫ ρ(b)

an

Ω(t) ∆t

︸ ︷︷ ︸

L5

+

∫ b

ρ(b)

Ω(t) ∆t

︸ ︷︷ ︸

L6

.

For L5, apply first the extended Picone identity (Proposition 4.3) on [an, ρ(b)] with

α = αn given by (5.16) (note αn ∈ Im XT (an), since X(an) is invertible),
∫ ρ(b)

an

Ω(t) ∆t = F
(
t, αn, η(t)

) ∣
∣
ρ(b)

an

+
{
zTDz

}
(t) ∆t,

where z = q − Wη − XT−1αn on [an, ρ(b)] and D = (R + µW )−1 > 0 on [an, ρ(b)).

Next, apply Proposition 4.4 on [a, ρ(b)] with d = η(a) and αn as in (5.16) and Re-

marks 2.1, 2.3 to get

L5 = lim
n→∞

{

F
(
t, αn, η(t)

) ∣
∣
ρ(b)

an

+

∫ ρ(b)

an

{
zTDz

}
(t) ∆t

}

≥ [ηρ(b)]T W ρ(b) ηρ(b) − ηT (a) XT (a) U(a) η(a).

For L6, observe that since η(b) = 0, the equation of motion at t = ρ(b) yields

ηρ(b) = −{µ B q}ρ(b), and thus we obtain

L6 =
{
µ (ησ)T C ησ + µ qT B q

}ρ
(b) =

{
1
µ

ηT R η
}ρ

(b).

Therefore, from (5.9) it follows that

J (η) = ηT (a) Γ̂a η(a) + L5 + L6

≥
{

ηT (Γ̂a−XT U) η
}

(a)+
{

ηT W η + 1
µ

ηT R η
}ρ

(b) =
{

1
µ

ηT (R+µW ) η
}ρ

(b) ≥ 0.

Hence, we again have J (η) ≥ 0 and this ends Case III.
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• Case IV (a right-scattered and b left-scattered). Then

J (η) = I(η, q) = ηT (a) Γ̂a η(a) +

∫ ρ(b)

a

Ω(t) ∆t

︸ ︷︷ ︸

L7

+

∫ b

ρ(b)

Ω(t) ∆t

︸ ︷︷ ︸

L6

.

For L7, note that η(a) ∈ Im X(a) and apply the Picone identity (Proposition 4.3 with

α = 0) on [a, ρ(b)],
∫ ρ(b)

a

Ω(t) ∆t = ηT (t) W (t) η(t)
∣
∣ρ(b)

a
+

∫ ρ(b)

a

{
zTDz

}
(t) ∆t,

where z = q − Wη on [a, ρ(b)] and D = (R + µW )−1 > 0 on [σ(a), ρ(b)). Hence, by

using (5.15), (5.9), and Remarks 2.1, 2.3 we get

J (η) = ηT (a) [Γ̂a − W (a)] η(a) +
{

ηT W η + 1
µ

ηT Rη
}ρ

(b)

+

{
∫ σ(a)

a

+

∫ ρ(b)

σ(a)

}

{
zTDz

}
(t) ∆t,

≥
{

1
µ

ηT (R + µW ) η
}ρ

(b) +
{
µzTDz

}
(a) ≥ 0.

Thus, we proved J (η) ≥ 0, which ends Case IV. The proof of this lemma is now

complete.

Remark 5.10. In the proof of Theorem 5.1 we closed the loop(s) by showing “(iv)

⇒ (ii)” and “(iii) ⇒ (i)”. For the case of both zero endpoints, as in Corollary 5.3,

the proof can be much simpler by directly showing “(iv) ⇒ (i)”. The method is the

same as the one of Lemma 5.9, but a different conjoined basis X̄ is used instead

of the natural one. This is proven below. The proof below also shows that, in the

case of zero endpoints, the limit condition (5.11) is not needed in the statement of

Corollary 5.3.

Proof of “(iv) ⇒ (i)” in Corollary 5.3. Let W (t) be the solution of (R) from condi-

tion (iv) of Corollary 5.3. First we construct an auxiliary conjoined basis (X̄, Ū) of

(H) with X̄(t) invertible on (a, b). Let c ∈ (a, b) be fixed and define X to be the

solution of the system

(5.18) X∆ = Ã(t) [A(t) + B(t) W (t)] X, X(c) = I, t ∈ (a, b).

Note that equation (5.18) has a unique solution, since the coefficient matrix is rd-

continuous and regressive, i.e. I + µÃ(A + BW ) = S−1(R + µW ) is invertible. Then

X(t) is invertible for all t ∈ (a, b). Set U(t) := W (t) X(t) on (a, b). Then (X, U) solves

(H) on (a, b). Now let (X̄, Ū) be the solution of (H) given by the initial conditions

X̄(c) = X(c) = I and Ū(c) = U(c) = W (c). This conjoined basis is now defined

on [a, b] and, by the uniqueness of solutions of (H), (X̄, Ū) coincides with (X, U) on

(a, b), i.e. X̄(t) is invertible for all t ∈ (a, b).
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Now we can proceed in proving that J ≥ 0 over η(a) = 0 = η(b) by the same way

as in the proof of Lemma 5.9. More precisely, in each of the Cases I-IV we will use the

conjoined basis X̄ instead of the natural conjoined basis. Furthermore, whenever we

needed in the proof of Lemma 5.9 that η(a) lies in the image of the natural conjoined

basis, we use now η(a) = 0 ∈ Im X̄(a).

6. POSITIVITY OF J

By strengthening of the conditions of Theorem 5.1 at t = ρ(b) we obtain the

characterization of the positivity of J . For the C1
rd solutions, the equivalence of

J > 0 with the (natural) conjoined basis condition can be obtained from the known

results in [1, 13, 14, 15, 16].

Theorem 6.1 (Characterization of J > 0). Let (1.5) and the strengthened Legendre

condition (1.6) hold. The following conditions are equivalent.

(i) J > 0 over Maη(a) = 0, η(b) = 0, and η 6≡ 0.

(ii) The interval (a, b] contains no points conjugate to a, i.e. the strengthened Jacobi

condition holds.

(iii) The natural conjoined basis X of (J) has X(t) invertible for all t ∈ (a, b], satisfies

condition (5.1), and

(6.1) XT (t) S(t) Xσ(t) > 0 for all t ∈ (a, ρ(b)].

(iv) There exists a symmetric solution W (t) on (a, b] of the explicit Riccati equation

(R), t ∈ (a, ρ(b)], satisfying conditions (5.4), (5.5), (5.6), (5.7), and

(6.2) R(t) + µ(t) W (t) > 0 for all t ∈ (a, ρ(b)].

Proof. The proof follows the same implications as the proof of Theorem 5.1. More

precisely, in the proof of “(i) ⇒ (ii)” (as in Lemma 5.5) we only have Case I with

c ∈ (a, b]. In the proof of “(ii) ⇒ (iii)” (as in Lemma 5.6) we have Case I, Case II

with c ∈ (a, b], and Case III with c ∈ (a, ρ(b)]. In the proof of “(iii) ⇒ (iv)” (as in

Lemma 5.7) we have W (t) := U(t) X−1(t) on (a, b]. In the proof of “(iv) ⇒ (ii)” (as

in Lemma 5.8) we have Case I with c ∈ (a, b], and Case II with c ∈ [σ(a), ρ(b)]. In the

proof of “(iii) ⇒ (i)” (as in Lemma 5.9) we distinguish only two cases (a right-dense

or right-scattered) and apply the Picone identity on [an, b] if a is right-dense, or on

[a, b] if a is right-scattered. This way we obtain J ≥ 0. In order to prove J > 0, we

must show that J (η) = 0 implies η(t) ≡ 0 on [a, b]. If J (η) = 0 for some admissible

η with Maη(a) = 0 and η(b) = 0, then the proof of Lemma 5.9 yields

(6.3) D(t) z(t) = 0







on [an, ρ(b)] if a is right-dense,

on [a, ρ(b)] if a is right-scattered,
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where z(t) := q(t)−W (t) η(t) on [a, b], W (t) := U(t) X−1(t) on (a, b], and W (a) := Γ̂a

if a is right-scattered. Note that this W (t) satisfies condition (iv) of this theorem, by

the earlier implication “(iii) ⇒ (iv)”. Since, by (6.2), D = (R+µW )−1 is invertible on

(a, ρ(b)], it follows from (6.3) that in both cases we have q(t) = W (t) η(t) on (a, ρ(b)].

Hence, the definition of q in (3.1) yields

(6.4) η∆(t) = S−1(t) [W (t) − QT (t)] η(t) for all t ∈ (a, ρ(b)].

Since I + µS−1(W −QT ) = S−1(R + µW ) is invertible, the coefficient matrix in (6.4)

is regressive and rd-continuous. Thus, the initial value problem (6.4) with η(b) = 0

possesses only the trivial solution, namely η(t) ≡ 0 on (a, b].

Now, if a is right-dense, then the continuity of η(t) at a yields η(a) = 0. If a

is right-scattered, the condition D(a) z(a) = 0 in (6.3) implies q(a) − W (a) η(a) =

µ(a)Maγa for some γa ∈ R
n. Multiplying the latter equation by µ(a) and using (3.1)

at t = a, we get

{Sησ − (R + µW ) η}(a) = µ2(a)Maγa.

Now use the fact that ησ(a) = 0 and then multiply the above equation by ηT (a) from

the left to obtain
{
ηT (R + µW ) η

}
(a) = 0. But then (5.4) implies η(a) = 0.

Hence, η(t) ≡ 0 on [a, b] and, therefore, J > 0. The proof is complete.

For completeness and comparison, we also state below the special cases of The-

orem 6.1 for the zero endpoints and for the free left endpoint. For the C1
rd solutions,

the equivalence (i) ⇔ (iii) in Corollary 6.2 is [1, Result 3].

Corollary 6.2 (Characterization of J > 0, zero endpoints). Let (1.5) and the

strengthened Legendre condition (1.6) hold, and Ma = I. Then the following condi-

tions are equivalent.

(i) J > 0 over η(a) = 0, η(b) = 0, and η 6≡ 0.

(ii) The interval (a, b] contains no points conjugate to a.

(iii) The principal solution X̂ of (J) has X̂(t) invertible for all t ∈ (a, b] and satisfies

condition (6.1).

(iv) There exists a symmetric solution W (t) on (a, b] of the explicit Riccati equation

(R), t ∈ (a, ρ(b)], satisfying conditions (5.10), (5.11), (5.12), and (6.2).

Remark 6.3. The proof of Corollary 6.2 can be simpler than that of Theorem 6.1

by showing directly “(iv) ⇒ (i)” as in Remark 5.10.

Corollary 6.4 (Characterization of J > 0, free left endpoint). Let (1.5) and the

strengthened Legendre condition (1.6) hold, and Ma = 0. Then the following condi-

tions are equivalent.

(i) J > 0 over η(b) = 0 and η 6≡ 0.
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(ii) The interval (a, b] contains no points conjugate to a.

(iii) The solution X̃ of (J) given by X̃(a) = I, Ũ(a) = Γ̂a has X̃(t) invertible for all

t ∈ [a, b] and satisfies

X̃T (t) S(t) X̃σ(t) > 0 for all t ∈ [a, ρ(b)].

(iv) There exists a symmetric solution W (t) on [a, b] of the explicit Riccati equation

(R), t ∈ [a, ρ(b)], satisfying W (a) = Γ̂a and

(6.5) R(t) + µ(t) W (t) > 0 for all t ∈ [a, ρ(b)].

Remark 6.5. For the zero endpoints and C1
rd solutions, [15, Theorem 1] or [7, The-

orem 10.52] yields a characterization of the positivity of J > 0 via a solution W (t)

of the Riccati equation (R) on the closed interval [a, ρ(b)], like in condition (iv) of

Corollary 6.4. The “dense-normality” assumption in [15, Theorem 1] holds in the

present setting trivially, since R(t) is assumed to be invertible. Hence, each of the

conditions (i)-(iv) of Corollary 6.2 is also equivalent to the following.

(v) There exists a solution X of (J) such that X(t) invertible for all t ∈ [a, b] and

satisfying

XT (t) S(t) Xσ(t) > 0 for all t ∈ [a, ρ(b)].

(vi) There exists a symmetric solution W (t) on [a, b] of the explicit Riccati equation

(R), t ∈ [a, ρ(b)], satisfying condition (6.5).

In the following example we show how the results of this paper can be applied to

an impulsive control dynamical system.

Example 6.6. Consider the following time-dependent impulsive control dynamical

system on the connected interval [0, 3π
4

],

(6.6)







for t 6= π
4
, ẋ(t) = u(t), ẏ(t) = −x2(t) + u2(t),

for t = π
4
, δx(t) = π

4
u(t),

δy(t) =
(

π
4

)2
u2(t) + π

2
(1 −

√
2) x(t) u(t) + 2 (1 −

√
2) x2(t),

with x(0) = 0 = y(0) and x
(

3π
4

)
= 0. Here, for a function z, δz(t) stands for

z(t+) − z(t). For more details about such impulsive systems, see e.g. [2, 9, 10, 11].

The optimal control problem is

(IC) minimize y(3π
4

) subject to (x, y, u) satisfying (6.6).

The state functions x and y are real valued and are usually discontinuous at the

resetting time t = π
4
, but they are supposed to be left continuous there. The control

function u is piecewise continuous.
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We shall see that the impulsive optimal control problem (IC) can be reformulated

as minimizing a quadratic functional of the form J , for a specific choice of the time

scale T and the functions P , Q, and R. In fact, for given functions (x, y, u) set

(
η(t), ξ(t), w(t)

)
:=







(
x(t), y(t), u(t)

)
, for t ∈ [0, π

4
],

(
x(π

4
+), y(π

4
+), u(π

4
+)
)
, for t = π

2
,

(
x(t − π

4
), y(t − π

4
), u(t − π

4
)
)
, for t ∈ (π

2
, π],

Consider now the time scale T := [0, π
4
] ∪ [π

2
, π]. From the above definition it

follows that on this time scale, the functions η and ξ are in C1
prd and the function

w is in Cprd. Furthermore, one can easily show that: (x, y, u) satisfies the impulsive

system (6.6) with the associated boundary conditions is equivalent to saying that the

above defined triplet (η, ξ, w) satisfies on T

(6.7)







for t 6= π
4
, η∆(t) = w(t), ξ∆(t) = −η2(t) + w2(t),

for t = π
4
, η∆(t) = w(t),

ξ∆(t) = π
4
w2(t) + 2 (1 −

√
2) η(t) w(t) + 8

π
(1 −

√
2) η2(t),

with η(0) = 0 = ξ(0) and η(π) = 0. Recall that here η∆(t) = η̇(t) for t 6= π
4

and

η∆(π
4
) = [ η(π

2
)− η(π

4
) ] / π

4
, similarily is the case for ξ∆(t) when t 6= π

4
and for ξ∆(π

4
).

The objective function y( 3π
4

) for (IC) is ξ(π) which can be calculated by integrat-

ing the system (6.7) as

ξ(π) =

∫ π/4

0

{
w2(t) − η2(t)

}
dt +

∫ π

π/2

{
w2(t) − η2(t)

}
dt

+ π
4

{
8
π

(1 −
√

2)
(
ησ(π

4
)
)2 − 2 (1 −

√
2) ησ(π

4
) η∆(π

4
) + π

4

(
η∆(π

4
)
)2
}

.

Thus, the problem (IC) is equivalent to

(TSC) minimize J (η) :=

∫ π

0

{

P (t)
(
ησ(t)

)2
+2 Q(t) ησ(t) η∆(t)+R(t)

(
η∆(t)

)2
}

∆t

subject to η ∈ C1
prd satisfying the boundary conditions η(0) = 0 = η(π), where the

time scale is T := [0, π
4
]∪ [π

2
, π] and the coefficients are defined by P (t) := −1, Q(t) :=

0, R(t) := 1 for t 6= π
4

while P (π
4
) := 8

π
(1 −

√
2), Q(π

4
) :=

√
2 − 1, and R(π

4
) := π

4
.

It follows that P (·), Q(·), R(·) are rd-continuous, R(t) and S(t) = R(t) + µ(t) Q(t)

are invertible for all t ∈ T so that (1.5) is satisfied, and our strengthened Legendre

condition (1.6) holds. The principal solution X̂(t) = sin t on T of the associated

Jacobi equation (J) is nonzero for all t ∈ (0, π) ∩ T and satisfies condition (iii) of

Corollary 5.3. Hence, by this corollary, J ≥ 0. Note that the solution W (t) of

the Riccati equation satisfying condition (iv) of Corollary 5.3 is W (t) = cot t for

t ∈ (0, π) ∩ T. Obviously, J (X̂) = 0.
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By the equivalence between the two problems (TSC) and (IC) it turns out that

the impulsive optimal control problem (IC) has a nonnegative objective function with

a minimum value equal to 0. In fact, set

(
x̂(t), ŷ(t)

)
:=







(
sin t, 1

2
sin 2t

)
, for t ∈ [0, π

4
],

(
sin(t + π

4
), 1

2
sin(2t + π

2
)
)
, for t ∈ (π

4
, 3π

4
],

and

û(t) :=







cos t, for t ∈ [0, π
4
),

2
π

(2 −
√

2), for t = π
4
,

cos(t + π
4
), for t ∈ (π

4
, 3π

4
].

Then, the triplet (x̂, ŷ, û) is admissible for the problem (IC) and satisfies ŷ( 3π
4

) = 0,

hence it is optimal.

Example 6.7. Consider the same data as in the problem (TSC) with the exception

of the time scale which is now Tb = [0, π
4
] ∪ [π

2
, b] with π

2
< b < π. We have, by

Corollary 6.2, that J > 0 over the zero endpoints η(0) = 0 = η(b). On the other

hand, for b > π we get by Corollary 5.3 that J 6≥ 0.

Remark 6.8. In [19] it is shown that the coercivity of the second variation of (P)

over (1.1) is a second order sufficient condition for the strict weak local optimality

in (P). For the discrete-time case and for the continuous-time case over absolutely

continuous admissible functions η it is known in [26] that the positivity and coercivity

of J (η) are equivalent. This result is still open for the general time scale setting, and

so does the conclusion regarding the sufficiency for the problem (P) of the conditions

involved in Theorem 6.1 and the subsequent corollaries.
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