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1. INTRODUCTION

In this paper we consider a class of one-dimensional variational problems arising

in continuum mechanics which was studied in [2-13]. Given x ∈ R2 we study the

infinite horizon problem of minimizing the expression
∫ T

0
f(w(t), w′(t), w′′(t))dt/T as

T grows to infinity where

w ∈ Ax = {v ∈ W 2,1
loc ([0,∞)): (v(0), v′(0)) = x}.

Here

W 2,1
loc ([0,∞)) = {f : [0,∞) → R : f ∈ W 2,1[0, T ], ∀T > 0}

[1] and f belongs to a space of functions to be described below. Namely, we study

the following variational problem

(P∞) Minimize lim inf
T→∞

∫ T

0

f(w(t), w′(t), w′′(t))dt/T, w ∈ Ax,

where x ∈ R2.

Now we describe a space of integrands which will be considered in the paper.

Denote by A the set of all continuous functions f : R3 → R1 such that for each

N > 0 the function |f(x, y, z)| → ∞ as |z| → ∞ uniformly on the set {(x, y) ∈ R2:

|x|, |y| ≤ N}. For the set A we consider the uniformity which is determined by the

following base:

E(N, ε,Γ) = {(f, g) ∈ A × A :

|f(x1, x2, x3) − g(x1, x2, x3)| ≤ ε (xi ∈ R1, |xi| ≤ N, i = 1, 2, 3),

(|f(x1, x2, x3)| + 1)(|g(x1, x2, x3)| + 1)−1 ∈ [Γ−1,Γ]
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(x1, x2, x3) ∈ R3, |x1|, |x2| ≤ N)},

where N > 0, ε > 0, Γ > 1. Clearly, the uniform space A is Hausdorff and has a

countable base. Therefore A is metrizable. It is not difficult to verify that the uniform

space A is complete.

Let a = (a1, a2, a3, a4) ∈ R4, ai > 0 (i = 1, 2, 3, 4) and let α, β, γ be positive

numbers such that 1 ≤ β < α, β ≤ γ, γ > 1. Denote by M(α, β, γ, a) the set of all

functions f ∈ A such that:

(1.1) f(w, p, r) ≥ a1|w|
α − a2|p|

β + a3|r|
γ − a4, (w, p, r) ∈ R3;

f, ∂f/∂p ∈ C2, ∂f/∂r ∈ C3, ∂2f/∂r2(w, p, r) > 0 for all (w, p, r) ∈ R3;

there is a monotone increasing function Mf : [0,∞) → [0,∞) such that for every

(w, p, r) ∈ R3

sup{f(w, p, r), |∂f/∂w(w, p, r)|, |∂f/∂p(w, p, r)|, |∂f/∂r(w, p, r)|} ≤

Mf (|w|+ |p|)(1 + |r|γ).

Denote by M̄(α, β, γ, a) the closure of M(α, β, γ, a) in A and consider any f ∈

M̄(α, β, γ, a). Of special interest is the minimal long-run average cost growth rate

(1.2) µ(f) = inf{lim inf
T→+∞

T−1

∫ T

0

f(w(t), w′(t), w′′(t))dt: w ∈ Ax}.

It was shown in [3] that µ(f) is well defined and is independent of the initial

vector x. A function w ∈ W 2,1
loc ([0,∞)) is called (f)-good if the function

φf
w: T →

∫ T

0

[f(w(t), w′(t), w′′(t)) − µ(f)]dt, T ∈ (0,∞)

is bounded.

Leizarowitz and Mizel [3] established that for every f ∈ M(α, β, γ, a) satisfying

µ(f) < inf{f(w, 0, s): (w, s) ∈ R2}

there exists a periodic (f)-good function. In [9] it was shown that this resut is valid

for every f ∈ M(α, β, γ, a).

Let f ∈ M(α, β, γ, a). It is easy to see that

µ(f) ≤ inf{f(t, 0, 0) : t ∈ R1}.

If

(1.3) µ(f) = inf{f(t, 0, 0) : t ∈ R1},

then there is an (f)-good function v which is a constant function. If

(1.4) µ(f) < inf{f(t, 0, 0) : t ∈ R1},
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then there exists a periodic (f)-good function which is not a constant function. It was

shown in [8] that if inequality (1.4) is valid, then extremals of (P∞) have important

asymptotic properties. In [12] we showed that inequality (1.4) holds for most of inte-

grands. More precisely, in [12] we denote by F the set of all f ∈ M̄(α, β, γ, a) which

satisfy (1.4) and establish that F (respectively F ∩ M(α, β, γ, a)) is an open every-

where dense subset of M̄(α, β, γ, a) (respectively, M(α, β, γ, a)). The main ingredient

of the proof of the main result of [12] is the following proposition [12, Proposition

2.3].

Proposition 1.1. Let f ∈ M(α, β, γ, a) satisfy

µ(f) = inf{f(t, 0, 0) : t ∈ R1}

and let ε be a positive number. Then there exists a nonnegative function φ ∈ C∞(R1)

such that

φ(x) = ε if |x| is large enough,

sup{φ(x) : x ∈ R1} ≤ ε

and the function

g(x1, x2, x3) = f(x1, x2, x3) + φ(x2), (x1, x2, x3) ∈ R3

belongs to M(α, β, γ, a) and satisfies

µ(g) < inf{g(t, 0, 0) : t ∈ R1}.

Surely, the functions f and g from Proposition 1.1 satisfy |f(x) − g(x)| ≤ ε for

all x ∈ R3 and are close in the C0-topology.

In [13, Theorem 1.1] we generalized Proposition 1.1 and showed that the functions

f and g can be close in the C1-topology. In this paper we study if the functions f and

g can be close in the C2-topology and obtain two main results. Our first main result

(Theorem 2.1) establishes that if f satisfies certain assumptions, then f and g are

close in the C2-topology. Theorem 2.1 is stated in Section 2 and is proved in Section

3. In Section 4 we state our second main result (Theorem 4.1) which establishes that

if f belongs to a certain subset of M(α, β, γ, a), then the functions f and g cannot

be close in the C2-topology. Theorem 4.1 is proved in Section 5.

In the sequel we use the following notation.

For each function h : R1 → R1 set

(1.5) ||h|| = sup{|h(t)| : t ∈ R1}.

For each function f ∈ C1(R3) denote by ∇f(z) the gradient of the function f at the

point z ∈ R3.

We denote by || · || the Euclidean norm of the space Rn and by < ·, · > the scalar

product in Rn. (Here n is a natural number).
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2. THE FIRST MAIN RESULT

In this paper we will establish the following result which shows that if an integrand

f satisfies certain conditions (see (2.1)-(2.3)), then there exists and integrand g which

is close to f in C2-topology and which satisfies µ(g) < inf{g(t, 0, 0) : t ∈ R1}.

Theorem 2.1. Let a function

(2.1) f(x1, x2, x3) = h(x1) +H(x2, x3), (x1, x2, x3) ∈ R3

belong to M(α, β, γ, a) where h : R1 → R1 and H : R2 → R1.

Assume that ε ∈ (0, 1), θ > 0 and t0 ∈ R1 satisfy

(2.2) f(t0, 0, 0) = inf{f(t, 0, 0) : t ∈ R1}

and

(2.3) 2h′′(t0) + θ2(∂2H/∂x2
2)(0, 0) + θ4(∂2H/∂x2

3)(0, 0) ≤ 0.

Then there exist a nonnegative function φ ∈ C∞(R1) and ε0 ∈ [0, ε) such that

(2.4) φ(x) = ε0 if |x| is large enough,

φ(x) = ε0 in a neighborhood of zero,

(2.5) sup{φ(t) : t ∈ R1} ≤ ε0,

(2.6) sup{|φ′(t)|, |φ′′(t)| : t ∈ R1} ≤ ε

and the function

(2.7) g(x1, x2, x3) = f(x1, x2, x3) + φ(x2), (x1, x2, x3) ∈ R3

belongs to M(α, β, γ, a) and satisfies

(2.8) µ(g) < inf{g(t, 0, 0) : t ∈ R1}.

Corollary 2.1. Let f ∈ M(α, β, γ, a) satisfy (2.1) where h : R1 → R1 and H : R2 →

R1 and let ε ∈ (0, 1). Assume that t0 ∈ R1 satisfies (2.2) and

h′′(t0) = 0, ∂2H/∂x2
2(0, 0) < 0.

Then there exist a nonnegative function φ ∈ C∞(R1) and ε0 ∈ [0, ε) such that (2.4)-

(2.6) hold and that the function g : R3 → R1 defined by (2.7) belongs to M(α, β, γ, a)

and satisfies (2.8).
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Corollary 2.2. Let f ∈ M(α, β, γ, a) satisfy (2.1) where h : R1 → R1 and H : R2 →

R1 and let ε ∈ (0, 1). Assume that t0 ∈ R1 satisfies (2.2) and

h′′(t0) > 0, ∂2H/∂x2
2(0, 0) < 0,

(∂2H/∂x2
2(0, 0))2 ≥ 8h′′(t0)(∂

2H/∂x2
3)(0, 0).

Then there exist a nonnegative function φ ∈ C∞(R1) and ε0 ∈ [0, ε) such that (2.4)-

(2.6) hold and that the function g : R3 → R1 defined by (2.7) belongs to M(α, β, γ, a)

and satisfies (2.8).

3. PROOF OF THEOREM 2.1

If µ(f) < inf{f(t, 0, 0) : t ∈ R1}, then the assertion of the theorem holds with

φ(t) = 0 for all t ∈ R1.

Assume that

(3.1) µ(f) = inf{f(t, 0, 0) : t ∈ R1}.

There exists a nonnegative function ψ ∈ C∞(R1) such that

(3.2) 0 ≤ ψ(x) ≤ 1 for all x ∈ R1,

ψ(x) = 0 for all x ∈ R1 satisfying |x| ≥ 1,

ψ(x) = 1 for all x ∈ [−1/2, 1/2].

Relations (2.1) and (2.2) imply that

(3.3) h′(t0) = 0, h′′(t0) ≥ 0.

In view of (1.1) and the Taylor’s theorem

lim
z→0

||z||−2[f((t0, 0, 0) + z) − f(t0, 0, 0)− < ∇f(t0, 0, 0), z >

(3.4) −2−1

3∑
i,j=1

∂2f/∂xi∂xj(t0, 0, 0)zizj] = 0.

Fix a positive number δ0 such that

(3.5) δ0 < (ε/8)(||ψ′||+ ||ψ′′||+ 1)−1(2π)−1(π/2− arcsin(3/4))(1 + θ2)−2 min{1, θ2}.

By (3.4) there exists ∆ ∈ (0, 1) such that for each z = (z1, z2, z3) ∈ R3 satisfying

(3.6) |z1|, |z2|, |z3| ≤ 2∆(1 + θ2)(θ + θ−1)

the following inequality holds:

|f((t0, 0, 0) + z) − f(t0, 0, 0) − 〈∇f(t0, 0, 0), z〉

− 2−1
3∑

i,j=1

∂2f/∂xi∂xj(t0, 0, 0)zizj| ≤ (δ0/4)||z||2.(3.7)
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Set

(3.8) ε0 = (ε/8)(||ψ′|| + ||ψ′′|| + 1)−1∆2.

Define

(3.9) φ(x) = ε0 − ψ(2∆−1x− 2)ε0, x ∈ R1.

Clearly φ is nonnegative, φ ∈ C∞(R1) and relations (2.5) and (2.4) hold. It follows

from (3.9) that for each x ∈ R1

(3.10) φ(x) = 0 if and only if ψ(2∆−1x− 2) = 1.

By (3.10) and (3.2)

(3.11) φ(x) = 0 for each x ∈ [(3/4)∆, (5/4)∆].

Define a function g : R3 → R1 by (2.7). Clearly g ∈ M(α, β, γ, a). In view of (2.7),

(3.9) and (3.2)

inf{g(t, 0, 0) : t ∈ R1} = inf{f(t, 0, 0) : t ∈ R1} + φ(0)

(3.12) = inf{f(t, 0, 0) : t ∈ R1} + ε0 − ε0ψ(−2) = inf{f(t, 0, 0) : t ∈ R1} + ε0.

Relations (3.8) and (3.9) imply that for each t ∈ R1

|φ′(t)| = 2|ψ′(2∆−1x− 2)|ε0∆
−1 ≤ 2||ψ′||ε0∆

−1 < ε,

|φ′′(t)| = |ψ′′(2∆−1x− 2)|ε0(2∆−1)2 ≤ ||ψ′′||ε0(2∆−1)2 < ε.

Therefore (2.6) holds.

By (2.2) and (3.12), in order to complete the proof of the theorem we need only

to show that

(3.13) µ(g) < ε0 + f(t0, 0, 0).

Set

(3.14) v(t) = t0 + ∆θ−1 cos(θt), t ∈ R1.

Then for each t ∈ R1

(3.15) v′(t) = −∆ sin(θt), v′′(t) = −∆θ cos(θt).

It is clear that for each t ∈ R1

(3.16) |v(t) − t0|, |v
′(t)|, |v′′(t)| ≤ ∆ max{θ−1, θ}.

For each t ∈ R1 set

(3.17) z(t) = (z1(t), z2(t), z3(t)) = (v(t), v′(t), v′′(t)) − (t0, 0, 0).

By (3.17), (3.16) and the choice of ∆ (see (3.6), (3.7)), for each t ∈ R1

|f(v(t), v′(t), v′′(t)) − f(t0, 0, 0)− < ∇f(t0, 0, 0), (v(t) − t0, v
′(t), v′′(t)) >
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(3.18) −2−1

3∑
i,j=1

(∂2f/∂xi∂xj)(t0, 0, 0)zi(t)zj(t)| ≤ (δ0/4)3∆2(max{1, θ2})2θ−2.

Relation (3.14) implies that for all t ∈ R1

(3.19) v(t+ 2πθ−1) = t0 + θ−1∆ cos(θt + 2π) = t0 + θ−1∆ cos(θt) = v(t).

It follows from (3.18), (2.1), (3.3), (3.15) and (3.17) that for each t ∈ R1

f(v(t), v′(t), v′′(t)) ≤ f(t0, 0, 0) + (∂H/∂x2)(0, 0)v′(t) + (∂H/∂x3)(0, 0)v′′(t)

+2−1h′′(t0)(v(t) − t0)
2 + 2−1(∂2H/∂x2

2)(0, 0)(v′(t))2 + 2−1(∂2H/∂x2
3)(0, 0)(v′′(t))2

+(∂2H/∂x2∂x3)(0, 0)v′(t)v′′(t) + (3δ0/4)∆2(max{1, θ2})2θ−2

≤ f(t0, 0, 0) + (∂H/∂x2)(0, 0)(−∆ sin(θt)) + (∂H/∂x3)(0, 0)(−∆θ cos(θ))

+2−1h′′(t0)(v(t) − t0)
2 + 2−1(∂2H/∂x2

2)(0, 0)∆2(sin(θt))2

+2−1(∂2H/∂x2
3)(0, 0)∆2θ2(cos(θt))2

+(∂2H/∂x2∂x3)(0, 0)∆2θ sin(θt) cos(θt) + (3δ0/4)∆2(max{1, θ2})2θ−2.

Together with (3.14) and (3.3), this inequality implies that

(2π)−1θ

∫ 2π/θ

0

f(v(t), v′(t), v′′(t))dt ≤ f(t0, 0, 0)

+(∂H/∂x2)(0, 0)(2π)−1θ

∫ (2π)/θ

0

−∆ sin(θt)dt

+(∂H/∂x3)(0, 0)(−∆θ)(2π)−1θ

∫ (2π)/θ

0

cos(θt)dt + 2−1h′′(t0)∆
2θ−2

+2−1(∂2H/∂x2
2)(0, 0)∆2(2π)−1θ

∫ 2π/θ

0

(sin(θt))2dt

+2−1(∂2H/∂x2
3)(0, 0)∆2θ2(2π)−1θ

∫ 2π/θ

0

(cos(θt))2dt

+(∂2H/∂x2∂x3)(0, 0)∆2θ(2π)−1θ

∫ 2π/θ

0

sin(θt) cos(θt)dt+(3δ0/4)∆2(max{1, θ2})2θ−2

≤ f(t0, 0, 0) + 2−1h′′(t0)∆
2θ−2 + 4−1(∂2H/∂x2

2)(0, 0)∆2

(3.20) +4−1(∂2H/∂x2
3)(0, 0)∆2θ2 + (3δ0/4)∆2(max{1, θ2})2θ−2.

By (3.19), (2.7) and (3.20)

µ(g) ≤ (2π)−1θ

∫ 2π/θ

0

g(v(t), v′(t), v′′(t))dt

= (2π)−1θ

∫ 2π/θ

0

f(v(t), v′(t), v′′(t))dt+ (2π)−1θ

∫ 2π/θ

0

φ(v′(t))dt

≤ f(t0, 0, 0) + 2−1h′′(t0)∆
2θ−2 + 4−1(∂2H/∂x2

2)(0, 0)∆2

+4−1(∂2H/∂x2
3)(0, 0)∆2θ2 + (3δ0/4)∆2(max{1, θ2})2θ−2
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(3.21) +(2π)−1θ

∫ 2π/θ

0

φ(v′(t))dt.

We estimate (2π)−1θ
∫ 2π/θ

0
φ(v′(t))dt. In view of (2.5), (3.9) and (3.2)

(3.22) 0 ≤ φ(v′(t)) ≤ ε0 for all t ∈ R1.

Now let

(3.23) t ∈ [−π(2θ)−1,−arcsin(3/4)θ−1].

By (3.15) and (3.23)

v′(t) = −∆ sin(tθ) ∈ [3∆/4,∆].

Combined with (3.11), this relations implies that φ′(v(t)) = 0. Thus

(3.24) φ(v′(t)) = 0 for all t ∈ [−π(2θ)−1,−arcsin(3/4)θ−1].

It follows from (3.24), (3.22) and (3.19) that

θ(2π)−1

∫ 2π/θ

0

φ(v′(t))dt ≤ θ(2π)−1[0 · (π(2θ)−1 − arcsin(3/4)θ−1)]

+θ(2π)−1ε0[2πθ
−1 − (π(2θ)−1 − arcsin(3/4)θ−1)] = (2π)−1ε0[(3/2)π + arcsin(3/4)].

Combined with (3.21), (2.3), (3.5) and (3.8) this relation implies that

µ(g) ≤ f(t0, 0, 0) + 2−1h′′(t0)∆
2θ−2 + 4−1(∂H/∂x2

2)(0, 0)∆2

+4−1(∂2H/∂x2
3)(0, 0)∆2θ2 + (3δ0/4)∆2(max{1, θ2})2θ−2

+(2π)−1ε0[(3/2)π + arcsin(3/4)] ≤ f(t0, 0, 0) + (3δ0/4)∆2(max{1, θ2})2θ−2

+(2π)−1ε0[(3/2)π + arcsin(3/4)] < f(t0, 0, 0)

+(3/4)∆2(ε/8)(||ψ′|| + ||ψ′′|| + 1)−1(2π)−1(π/2 − arcsin(3/4))

+(2π)−1ε0[(3/2)π + arcsin(3/4)]

= f(t0, 0, 0) + (3/4)ε0(2π)−1(π/2 − arcsin(3/4))

+(2π)−1ε0[(3/2)π + arcsin(3/4)] < f(t0, 0, 0) + ε0.

Thus (3.13) holds. This completes the proof of the theorem.
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4. THE SECOND MAIN RESULT

In this section, we state our second main result which shows that there exist

integrands f , such that for each integrand g which is close to f in the C2-topology

the equality µ(g) = inf{g(t, 0, 0) : t ∈ R1} holds.

We use the notation and definitions from Sections 1 and 2.

The following result will be proved in Section 5.

Theorem 4.1. Let f ∈ M(α, β, γ, a) and

(4.1) f(x1, x2, x3) = f1(x1) + f2(x2) + f3(x3), x = (x1, x2, x3) ∈ R3

where fi : R1 → R1, i = 1, 2, 3 and t0 ∈ R1 satisfy

(4.2) inf{f ′′

3 (t) : t ∈ R1} > 0,

(4.3) µ(f) = inf{f(t, 0, 0) : t ∈ R1} = f(t0, 0, 0).

Then there exists λ0 > 0 such that the following assertion holds.

Let λ ≥ λ0 and

(4.4) fλ(x1, x2, x3) = f(x1, x2, x3) + λ(x1 − t0)
2, (x1, x2, x3) ∈ R3.

Then fλ ∈ M(α, β, γ, a) and there exists δ > 0 such that if the functions φ1, φ2, φ3 ∈

C2(R1) satisfy

(4.5) |φi(t)|, |φ
′

i(t)|, |φ
′′

i (t)| ≤ δ for all t ∈ R1 and i = 1, 2, 3

and if the function g : R3 → R1 defined by

(4.6) g(x1, x2, x3) = fλ(x1, x2, x3) + φ1(x1) + φ2(x2) + φ3(x3), x = (x1, x2, x3) ∈ R3

belongs to M(α, β, γ, a), then g possesses a unique periodic (g)-good function which

is constant.

For each v ∈ W 2,1
loc ([0,∞)) we denote by Ω(v) the set of all limit points of

(v(t), v′(t)) as t→ ∞.

We say that an integrand f ∈ M(α, β, γ, a) has the asymptotic turnpike property,

or briefly (ATP), if Ω(v1) = Ω(v2) for each pair of (f)-good functions v1 and v2.

In the sequel, we use the following two results.

Proposition 4.1. Let f ∈ M(α, β, γ, a) and t0 ∈ R1 satisfy

µ(f) = inf{f(t, 0, 0) : t ∈ R1} = f(t0, 0, 0),

λ > 0 and let

(4.7) g(x1, x2, x3) = f(x1, x2, x3) + λ(x1 − t0)
2, (x1, x2, x3) ∈ R3.
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Then

g ∈ M(α, β, γ, a), µ(g) = g(t0, 0, 0) = f(t0, 0, 0)

and g has (ATP).

Proof. It is easy to see that (4.8) is valid. We can show that g has (ATP) by arguing

as in the proof of Theorem 3.2 of [7].

The next result follows from Theorem 2.2 of [7].

Proposition 4.2. Let f ∈ M(α, β, γ, a) possess (ATP) ε > 0 and let t0 ∈ R1 satisfy

µ(f) = f(t0, 0, 0). Then there exists δ > 0, such that for each h ∈ M(α, β, γ, a)

satisfying |f(x) − h(x)| ≤ δ for all x ∈ R3 and each (h)-good function v, we have

|(v(t), v′(t)) − (t0, 0)| ≤ ε for all large enough t ∈ [0,∞).

5. PROOF OF THEOREM 4.1

By (4.2), there exists c̄ ∈ (0, 1) such that

(5.1) f ′′

3 (t) ≥ c̄ for all t ∈ R1.

By Lemma 4.10 of [1], there exists

(5.2) λ0 > 4 + 8|f ′′

1 (t0)|

such that for each T ≥ 1 and each ξ ∈ C2([0, T ])

(5.3)∫ T

0

(ξ′(t))2dt ≤ 4−1(2 + |f ′′

2 (0)|)−1c̄

∫ T

0

(ξ′′(t))2dt+ (2 + |f ′′

2 (0)|)−18−1λ0

∫ T

0

|ξ(t)|2dt.

Let λ ≥ λ0 and let fλ be defined by (4.4). In view of Proposition 4.1

(5.4) fλ ∈ M(α, β, γ, a), µ(fλ) = f(t0, 0, 0)

and fλ possesses (ATP).

By (5.1) and the Taylor’s theorem for each t ∈ R1 there is s ∈ R1 such that

f3(t) = f3(0) + f ′

3(0)t+ f ′′

3 (s)t2/2 ≥ f3(0) + f ′

3(0)t+ (c̄/2)t2.

Thus

(5.5) f3(t) ≥ f3(0) + f ′

3(0)t+ (c̄/2)t2 for all t ∈ R1.

Fix ε0 ∈ (0, 1) and choose

(5.6) ε1 ∈ (0, ε0/2)

such that

(5.7) |f ′′

1 (t) − f ′′

1 (t0)| ≤ λ0/16 for each t ∈ [t0 − ε1, t0 + ε1],

(5.8) |f ′′

2 (t) − f ′′

2 (0)| ≤ 1 for each t ∈ [−ε1, ε1].
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Since fλ possesses (ATP), it follows from Proposition 4.2, (4.4) and (5.4) that there

is δ1 ∈ (0, 1) such that the following property holds:

(P1) If h ∈ M(α, β, γ, a) satisfies

|fλ(x1, x2, x3) − h(x1, x2, x3)| ≤ 4δ1

for all (x1, x2, x3) ∈ R3, then for each (h)-good function v the inequality

|(v(t), v′(t)) − (t0, 0)| ≤ ε1/8

holds for all sufficiently large t ∈ [0,∞).

Choose a positive number δ such that

(5.9) δ < min{δ1, 16−1ε21, c̄/4}.

Assume that φ1, φ2, φ3 ∈ C2(R1) satisfy (4.5) and the function g : R3 → R1

defined by (4.6) belongs to M(α, β, γ, a).

In order to complete the proof of the theorem, it is sufficient to show that the

function g possesses a unique periodic (g)-good function which is constant. By (4.5),

(4.6), property (P1) and the inequality δ < δ1 the following property holds:

(P2) For each (g)-good periodic function v we have

|(v(t), v′(t)) − (t0, 0)| ≤ ε1/8 for all t ∈ R1.

Set

(5.10) g1(t) = f1(t) + λ(t− t0)
2 + φ1(t), t ∈ R1.

Consider the restriction of the function g1 to the interval [−ε1, ε]. By (4.3)

(5.11) f ′

1(t0) = 0, f ′′

1 (t0) ≥ 0.

It follows from the Taylor’s theorem that for each t ∈ [t0 − ε1, t0 + ε1] there is ξ ∈

[t0 − ε1, t0 + ε1] such that

f1(t) + λ(t− t0)
2 + φ1(t) = f1(t0) + φ1(t0) + (f ′

1(t0) + φ′

1(t0))(t− t0)

(5.12) +2−1(f ′′

1 (ξ) + 2λ+ φ′′

1(ξ))(t− t0)
2.

Combined with (5.11), (5.7), (5.9) and (5.2), this inequality implies that for each

t ∈ [t0 − ε1, t0 + ε1]

(5.13) f1(t) + λ(t− t0)
2 + φ1(t) ≥ f1(t0) + φ1(t0) − δ|t− t0| + 2−1λ(t− t0)

2.

We will show that there is tg ∈ [t0 − ε1, t0 + ε1] such that

g1(tg) < g(t) for all t ∈ R1 \ {tg}.

By (5.13) and (5.10), for each real number t which satisfies

(5.14) t ∈ [t0 − ε1, t0 + ε1] and |t− t0| ≥ 8δλ−1
0
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we have

(5.15) g1(t) = f1(t)+λ(t−t0)
2+φ1(t) ≥ f1(t0)+φ1(t0)−(t−t0)

2λ08
−1+2−1λ(t−t0)

2

≥ f1(t0) + φ1(t) + 4−1λ(t− t0)
2 = g1(t0) + 4−1λ(t− t0)

2.

Since (5.15) holds for each real t satisfying (5.14), we conclude that

(5.16)

{τ ∈ [t0−ε1, t0+ε1] : g1(τ) ≤ g1(t) for all t ∈ [t0−ε1, t0+ε1]} ⊂ (t0−8δλ−1
0 , t0+8δλ−1

0 ).

In view of (5.10), (5.11), (5.7) and (5.9), for each t ∈ [t0 − ε1, t0 + ε1]

(5.17) g′′1(t) = f ′′

1 (t) + 2λ+ φ′′

1(t) ≥ 2λ− λ0/16 − δ ≥ λ.

There is

(5.18) tg ∈ [t0 − ε1, t0 + ε1]

such that

(5.19) g1(tg) = inf{g1(t) : t ∈ [t0 − ε1, t0 + ε1]}.

By (5.19) and (5.16)

(5.20) |tg − t0| < 8δλ−1
0 .

It follows from (5.19), (5.20), (5.9) and (5.2) that

(5.21) g′1(tg) = 0.

Let

(5.22) t ∈ [t0 − ε1, t0 + ε1] \ {tg}.

By the Taylor’s theorem there exists ξ ∈ [t0 − ε1, t0 + ε1] such that

g1(t) = g1(tg) + g′1(tg)(t− tg) + 2−1g′′1(ξ)(t− tg)
2.

Combined with (5.21), (5.17) and (5.22), this relation implies that

g1(t) = g1(tg) + 2−1g′′1(ξ)(t− tg)
2 ≥ g1(tg) + 2−1λ(t− tg)

2 > g1(tg).

Therefore

(5.23) g1(t) ≥ 2−1λ|t− tg|
2 + g1(tg) > g1(tg) for each t ∈ [t0 − ε1, t0 + ε1] \ {tg}.

Assume that t ∈ R1 satisfies

(5.24) |t− t0| > ε1.

By (5.10), (5.24), (4.5), (4.3), (4.1), (5.9), (5.2) and (5.19)

g1(t) = f1(t) + λ(t− t0)
2 + φ1(t) ≥ f1(t) + λε21 − δ

≥ f1(t0) + λε21 − δ ≥ f1(t0) + φ1(t0) + λε21 − 2δ

= g1(t0) + λε21 − 2δ > g1(t0) ≥ g1(tg).
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Therefore g1(t) > g1(tg) for all t ∈ R1 satisfying (5.24). Together with (5.23), this

implies that

(5.25) g1(tg) < g1(t) for each t ∈ R1 \ {tg}.

It is clear that

(5.26) µ(g) ≤ g1(tg) = g(tg, 0, 0).

Assume that w ∈ W 2,1
loc ([0,∞)) is a (g)-good periodic function. There is T > 0 such

that

(5.27) w(t+ T ) = w(t) for all t ∈ [0,∞).

We may assume that T ≥ 4. By [9, Proposition 4.1] w ∈ C4([0,∞)). We will show

that w(t) = tg for all t ≥ 0. In view of (P2)

(5.28) |(w(t), w′(t)) − (t0, 0)| ≤ ε1/8 for all t ∈ R1.

Relations (5.28) and (5.23) imply that for each t ∈ [0,∞)

(5.29) g1(w(t)) ≥ g1(tg) + 2−1λ(w(t) − tg)
2.

Let t ∈ [0,∞). By (5.28) and the Taylor’s theorem there is

(5.30) ξ ∈ [−4−1ε1, 4
−1ε1]

such that

(f2 + φ2)(w
′(t)) = (f2 + φ2)(0) + (f2 + φ2)

′(0)w′(t) + 2−1(f2 + φ2)
′′(ξ)(w′(t))2.

Together with (4.5), (5.30), (5.8) and (5.9), this relation implies that

(f2 + φ2)(w
′(t)) ≥ (f2 + φ2)(0) + (f2 + φ2)

′(0)w′(t) − 2−1(δ + 1 + |f ′′

2 (0)|)(w′(t))2

≥ (f2 + φ2)(0) + (f2 + φ2)
′(0)w′(t) − (2 + |f ′′

2 (0)|)(w′(t))2.

Therefore for each t ∈ [0,∞)

(5.31) (f2 + φ2)(w
′(t)) ≥ (f2 + φ2)(0) + (f2 + φ2)

′(0)w′(t) − (2 + |f ′′

2 (0)|)(w′(t))2.

Let t ∈ [0,∞). By (5.1), (4.5) and the Taylor’s theorem there is ξ ∈ R1 such that

(f3 + φ3)(w
′′(t)) = (f3 + φ3)(0) + (f3 + φ3)

′(0)w′′(t) + 2−1(f3 + φ3)
′′(ξ)(w′′(t))2

≥ (f3 + φ3)(0) + (f3 + φ3)
′(0)w′′(t) + 2−1(c̄− δ)(w′′(t))2

(5.32) ≥ (f3 + φ3)(0) + (f3 + φ3)
′(0)w′′(t) + 4−1c̄(w′′(t))2.

In view of (5.29)

(5.33) T−1

∫ T

0

g1(w(t))dt ≥ g1(tg) + 2−1λT−1

∫ T

0

(w(t) − tg)
2dt.
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By (5.31) and (5.27)

T−1

∫ T

0

(f2 + φ2)(w
′(t))dt ≥ (f2 + φ2)(0) + T−1(f2 + φ2)

′(0)

∫ T

0

w′(t)dt

(5.34) −T−1(2+|f ′′

2 (0)|)

∫ T

0

(w′(t))2dt = (f2+φ2)(0)−T−1(2+|f ′′

1 (0)|)

∫ T

0

(w′(t))2dt.

Relations (5.32) and (5.27) imply that

T−1

∫ T

0

(f3 + φ3)(w
′′(t))dt ≥ (f3 + φ3)(0) + T−1

∫ T

0

(f3 + φ3)
′(0)w′′(t)dt

(5.35) +(4T )−1c̄

∫ T

0

(w′(t))2dt ≥ (f3 + φ3)(0) + (4T )−1c̄

∫ T

0

(w′′(t))2dt.

Relations (5.10), (4.6), (4.4), (4.1), (5.26), (5.33), (5.34) and (5.35) imply that

g1(tg) + (f2 + φ2)(0) + (f3 + φ3)(0) = g(tg, 0, 0) ≥ µ(g)

= T−1

∫ T

0

g(w(t), w′(t), w′′(t))dt = T−1

∫ T

0

g1(w(t))dt

+T−1

∫ T

0

(f2 + φ2)(w
′(t))dt+ T−1

∫ T

0

(f3 + φ3)(w
′′(t))dt

≥ g1(tg) + 2−1λT−1

∫ T

0

(w(t) − tg)
2dt+ (f2 + φ2)(0)

−T−1(2 + |f ′′

2 (0)|)

∫ T

0

(w′(t))2dt+ (f3 + φ3)(0) + (4T )−1c̄

∫ T

0

(w′′(t))2dt.

This relation implies that

(2 + |f ′′

2 (0)|)

∫ T

0

(w′(t))2dt ≥ 2−1λ

∫ T

0

(w(t) − tg)
2dt+ 4−1c̄

∫ T

0

(w′′(t))2dt

and

(5.36)∫ T

0

(w′(t))2dt ≥ 2−1λ0(2+|f ′′

2 (0)|)−1

∫ T

0

(w(t)−tg)
2dt+4−1(2+|f ′′

2 (0)|)−1c̄

∫ T

0

(w′′(t))2dt.

Applying (5.3) to the function ξ = w(·) − tg, we obtain that
∫ T

0

(w′(t))2dt ≤ 8−1λ0(2+|f ′′

2 (0)|)−1

∫ T

0

(w(t)−tg)
2dt+4−1(2+|f ′′

2 (0)|)−1c̄

∫ T

0

(w′′(t))2dt.

Together with (5.36) this inequality implies that
∫ T

0

(w(t) − tg)
2dt = 0

and w(t) = tg for all t ≥ 0. We have shown that if w is a periodic (g)-good function,

then w(t) = tg for all t ∈ [0,∞). This completes the proof of Theorem 4.1.
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