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ABSTRACT. This paper presents a new theorem on the existence of triple nontrivial fixed points

and then investigates the existence of triple positive solutions of a class of nonlinear singular bound-

ary value problem by using this new fixed point theorem. Meanwhile, an example is worked out to

demonstrate the main result.
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1. INTRODUCTION

In recent years, singular boundary value problems(SBVP, for short) have been

studied extensively (see, for instance, [2, 8, 9, 13, 16, 17] and references therein)

since they arise quite naturally in physics, fluid theory and the study of radially

symmetric solutions to elliptic problems (see [14, 15], for example). The applicable

approaches to study such problem are mainly as follows: fixed point theorems (see e.g.

[2, 13]), shooting method (see e.g. [16, 17]), upper and lower solutions method (see

e.g. [8, 9]) etc. The fixed point theorems used to study SBVP are the Leray-Schauder

continuation theorem, the nonlinear alternative of Leray-Schauder, or Krasnoselskii’s

fixed point theorem. The results obtained in the literatures are the existence of one

or two positive solutions.

Work establishing the existence of three solutions of nonlinear equations using a

degree theoretic approach traces back to the Leggett-Williams multiple fixed point

theorem [12]. And lately, this theorem together with other two triple fixed point

theorems due to Avery [4] and Avery and Peterson [5] has bee applied to obtain

triple solutions of integral equations, certain boundary value problems for ordinary

differential equations as well as for their discrete analogues (see, for instance, [1, 3,

6, 10, 11] and reference therein). However, to our best knowledge, there is no paper

to consider SBVP by using the Leggett-Williams multiple fixed point theorem or its

generalizations when the nonlinear term is singular (in particular, the nonlinear term
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f(t, x) is singular at x = 0, for detail, please see Section 3). The main reason lies in

that such fixed point theorem can only solve the existence of fixed point for bounded

operator. Unfortunately, the operator converted into by SBVP is often unbounded.

Motivated by Leggett-Williams multiple fixed point theorem and Krasnoselskii’s

fixed point theorem, this paper investigates how to extend the Leggett-Williams the-

orem and how to solve SBVP by the obtained extension of Leggett-Williams theorem.

Theorem 2.2 obtained in Section 2 can solve SBVP not only when the nonlinear term

is sublinear at +∞ but also when it is superlinear at +∞. And in both cases, same

results is obtained.

The paper is organized as follows. Section 2 is devoted to the extension of Leggett-

Williams multiple fixed point theorem. Section 3 is concerned with the existence

of triple positive solutions of SBVP by applying the result obtained in Section 2.

Meanwhile, an examples is worked out to demonstrate the main result.

2. AN EXTENSION OF LEGGETT-WILLIAMS

FIXED POINT THEOREM

Let E be a real Banach space with norm ‖ · ‖ and P ⊂ E be a cone of E,

Pr = {x ∈ P : ‖x‖ < r} (r > 0). Then ∂Pr = {x ∈ P : ‖x‖ = r} and

P r = {x ∈ P : ‖x‖ ≤ r}. Consider nonnegative continuous and concave functional

α(x) defined on P , i.e., α : P → R+ = [0, +∞) is continuous and satisfies

(2.1) α(tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y), for x, y ∈ P and t ∈ [0, 1].

Let

(2.2) P (α, a, b) =: {x ∈ P
∣∣ a(x) ≥ a, ‖x‖ ≤ b},

where 0 < a < b. It is not difficult to see P (α, a, b) is a bounded closed convex subset

of P .

For convenience of comparing with our result, we state the well-known Leggett-

Williams multiple fixed point theorem.

Theorem 2.1 (Leggett-Williams fixed point theorem). Let operator A : P c → Pc be

completely continuous and let α be a nonnegative continuous concave functional on

P such that α(x) ≤ ‖x‖ for every x ∈ P c. Suppose that there exist 0 < d < a < b ≤ c

such that

(C1) {x
∣∣ x ∈ P (α, a, b), α(x) > a} 6= ∅ and α(Ax) > a for each x ∈ P (α, a, b);

(C2) ‖Ax‖ < d for x ∈ P d;

(C3) α(Ax) > a for x ∈ P (α, a, c) with ‖Ax‖ > b.

Then, A has at least three fixed points x1, x2 and x3 satisfying

x1 ∈ Pd, x2 ∈ U, and x3 ∈ P c \ (Pd ∪ U),
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where

U = {x : x ∈ P (α, a, c), α(x) > a}.

Now we are ready to give the main result of this section.

Theorem 2.2. Let operator A : P c \ Pe → P be completely continuous, where

c > e > 0. Suppose there exists a nonnegative continuous and concave functional

α(x) defined on P with α(x) ≤ ‖x‖ for every x ∈ P c. Also suppose there exist three

positive numbers a, b, and d with e < d < a < b ≤ c such that

(A1) {x
∣∣ x ∈ P (α, a, b), α(x) > a} 6= ∅ and α(Ax) > a for each x ∈ P (α, a, b).

(A2) α(Ax) > a for x ∈ {x ∈ P
∣∣ α(x) > a, ‖x‖ < c, and ‖Ax‖ > b}.

(A3) Ax 6≤ x for x ∈ ∂Pe, Ax 6≥ x for x ∈ ∂Pd, and either x 6= µAx for x ∈ ∂Pc and

µ ∈ [0, 1] or ‖Ax‖ > ‖x‖ for x ∈ ∂Pc.

Then the operator A has at least three positive fixed points x1, x2, and x3 satisfying

x1 ∈ Pd \ P e, x2 ∈ U, and x3 ∈ Pc \ (Pd ∪ U),

where

U = {x ∈ P
∣∣ α(x) > a and ‖x‖ < c}.

Remark 2.3. In Theorem 2.1, the operator A is not supposed to map P c into P c

as in Theorem 2.1. Thus, A may be unbounded on some neighbour fields of x = θ,

where x = θ is the zero element of Banach space E. So, it is natural that Ax 6≤ x for

x ∈ ∂Pe in condition (A3). On the other hand, the fixed point obtained in Theorem

2.1 may be trivial.

Remark 2.4. Conditions (A1) and (A2) are similar to conditions (C1) and (C3) of

Theorem 2.1. If c is sufficiently large, condition (A3) shows that the operator A is

allowed to belong to one of two cases, i.e., sublinear or superlinear at +∞. However,

condition (C2) means that A must be sublinear at +∞ if d is sufficiently large (for

detail, see Remark 3.4 in Section 3).

Proof of Theorem 2.2. By the extension theorem (see [7, Theorem A.5.1]), the op-

erator A has a completely continuous extension Â from P c into P , which satisfies

Â = Ax for x ∈ P c \ Pe. For conveniens, still denote Â by A. Let

(2.3) U =: {x ∈ P
∣∣ α(x) > a and ‖x‖ < c}.

Then by continuity of α(·) and ‖ · ‖, we know U is an open subset of P .

Now we show Ax 6= x for each x ∈ ∂U . Also we have U ⊂ Pc\P e since α(x) ≤ ‖x‖

for every x ∈ P c.

Suppose, on the contrary, there exists a x0 ∈ ∂U such that Ax0 = x0. This

together with condition (A3) guarantees α(x0) = a. If ‖x0‖ ≤ b, then by (2.2) we have
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x0 ∈ P (α, a, b), and consequently, by assumption (A1) we know α(x0) = α(Ax0) > a.

This is a contradiction. If ‖x0‖ > b, that is, ‖Ax0‖ > b, then from condition (A2) it

follows that α(Ax0) > a, i.e., α(x0) > a, which contradicts with α(x0) = a.

Therefore, Ax 6= x for each x ∈ ∂U . This means the fixed point index i(A, U, P )

is well defined. Next we show

(2.4) i(A, U, P ) = 1.

By assumption (A1), we can choose z0 ∈ P (α, a, b) such that α(z0) > a. From (2.3)

we know z0 ∈ U . Let

(2.5) h(t, x) = tz0 + (1 − t)Ax, for t ∈ [0, 1] and x ∈ U.

Obviously, h : [0, 1]×U → P is completely continuous. We now prove that x 6= h(t, x)

for every pair (t, x) ∈ [0, 1]×∂U . Indeed, if there exists (t0, x0) ∈ [0, 1]×∂U such that

h(t0, x0) = x0, then ‖x0‖ = c or α(x0) = a holds since x0 ∈ ∂U . In case ‖x0‖ = c, by

the definition of U and the condition (A3), we know t0 ∈ (0, 1). This together with

(2.5) guarantees that

c = ‖x0‖ ≤ t‖z0‖ + (1 − t)‖Ax0‖ < tb + (1 − t)c ≤ c,

which is a contradiction. If α(x0) = a holds, we have the following two cases to

consider. One case is that ‖Ax0‖ > b holds. In this case by condition (A2) we know

α(Ax0) > a. From (2.1) it follows that

α(x0) = α(h(t0, x0)) = α(t0z0 + (1 − t0)Ax0) ≥ t0α(z0) + (1 − t0)α(Ax0) > a,

which is a contradiction. The other case is that ‖Ax0‖ ≤ b holds. In this case we

know

‖x0‖ = ‖h(t0, x0)‖ = ‖t0z0 + (1 − t0)Ax0‖ ≤ t0‖z0‖ + (1 − t0)‖Ax0‖ ≤ b,

which means x0 ∈ P (α, a, b). This together with condition (A1) guarantees that

α(Ax0) > a. Therefore, similar as above, one can get α(x0) > a, which contradicts

with α(x0) = a.

Consequently, we obtain that h(t, x) 6= x for each pair (t, x) ∈ [0, 1] × ∂U . By

virtue of homotopy invariance and normality property of fixed point index we have

i(A, U, P ) = i(z0, U, P ) = 1,

which implies that (2.4) holds.

On the other hand, from assumption (A3) and the proof of [7, Theorem 2.3.3-

2.3.4], it is not difficult to see

(2.6) i(A, Pe, P ) = 0,

(2.7) i(A, Pd, P ) = 1,
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either

(2.8) i(A, Pc, P ) = 1

or

(2.9) i(A, Pc, P ) = 0.

Obviously, by (2.3) and the fact that α(x) ≤ ‖x‖ for x ∈ P c we know Pa

⋂
U = ∅.

Notice that

Pe ⊂ Pd ⊂ Pa ⊂ Pc and U ⊂ Pc.

Using the additivity property of fixed point index, (2.4), and (2.6)-(2.9), we obtain

that

i(A, Pd \ P e, P ) = i(A, Pd, P ) − i(A, Pe, P ) = 1 − 0 = 1,

either

i(A, Pc \ (Pd ∪ U), P ) = i(A, Pc, P )− i(A, Pd, P )− i(A, U, P ) = 1 − 1 − 1 = −1

or

i(A, Pc \ (Pd ∪ U), P ) = i(A, Pc, P )− i(A, Pd, P )− i(A, U, P ) = 0− 1− 1 = −2.

These together with (2.4) and the solution property of fixed point index guarantee

that there exist three positive fixed points x1, x2 and x3 of operator A satisfying

x1 ∈ Pd \ P e, x2 ∈ U, and x3 ∈ Pc \ (Pd ∪ U). �

From the proof of Theorem 2.2 and [7, Theorem 2.3.4], we can get the following

Corollary.

Corollary 2.5. Let operator A : P c \ Pe → P be completely continuous, where

c > e > 0. Suppose the assumptions (A1) and (A2) of Theorem 2.2 hold. Then the

operator A has at least one positive fixed point.

Corollary 2.6. Let operator A : P c → P be completely continuous. Suppose the

assumptions (A1) and (A2) of Theorem 2.2 hold. In addition assume

(A4) Ax 6≤ x for x ∈ ∂Pc.

Then operator A has at least two nonnegative fixed points.

Corollary 2.7. Let operator A : P c \ Pe → P be completely continuous, where

c > e > 0. Suppose the assumptions (A1) and (A2) of Theorem 2.2 hold. In addition

assume

(A5) Ax 6≤ x for x ∈ ∂Pe, Ax 6≥ x for x ∈ ∂Pd.

Then operator A has at least two positive fixed points.



538 Y. LIU

Corollary 2.8. Let operator A : P c → P be completely continuous. Suppose the

assumptions (A1) and (A2) of Theorem 2.2 hold. In addition assume

(A6) Ax 6≥ x for x ∈ ∂Pd and either Ax 6≥ x for x ∈ ∂Pc or Ax 6≤ x for x ∈ ∂Pc.

Then operator A has at least three nonnegative fixed points.

Remark 2.9. Corollary 2.8 is quite similar to Leggett-Williams theorem when Ax 6≥

x for x ∈ ∂Pc. However, the conditions of Corollary 2.8 are more extensive since

Corollary 2.8 demands that Ax 6≥ x or Ax 6≤ x only for x ∈ ∂Pc.

Remark 2.10. The assumption (A3) is used to guarantee (2.6)-(2.9) hold. Therefore,

we may replace (A3) with other suitable conditions to guarantee (2.6)-(2.9) hold. For

example, we may replace the condition that x 6= µAx for x ∈ ∂Pc and µ ∈ [0, 1] in

Theorem 2.2 with the condition that x 6≤ Ax for x ∈ ∂Pc.

3. APPLICATIONS TO NONLINEAR SINGULAR

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

In this section we use Theorem 2.2 obtained in Section 2 to investigate the exis-

tence of triple positive solutions for the following nonlinear singular Sturm-Liouville

boundary value problem

(3.1)





(p(t)x′(t))′ + f(t, x(t)) = 0, t ∈ (0, 1);

α1x(0) − β1p(0)x′(0) = 0,

α2x(1) + β2p(1)x′(1) = 0,

where p ∈ C[[0, 1], (0, +∞)], αi, βi ≥ 0 (i = 1, 2), β1α2 + α1α2 + α1β2 > 0; f ∈

C[(0, 1) × (0, +∞),R+], that is, f(t, x) may be singular at t = 0, t = 1, and x = 0,

R+ = [0, +∞). Let

τ0(t) =

∫ t

0

ds

p(s)
, τ1(t) =

∫ 1

t

ds

p(s)
, ρ2 = β1α2 + α1β2 + α1α2

∫ 1

0

dt

p(t)
, ρ > 0,

where p(t), α1, β1, α2, and β2 are the same as in (3.1). Also define

u(t) =
1

ρ
[β2 + α2τ1(t)], v(t) =

1

ρ
[β1 + α1τ0(t)].

Then α2v + α1u ≡ ρ.

The basic space used in this section is C[0, 1]. Obviously, it is a Banach space if

it is endowed with the norm ‖x‖ = max
t∈J

|x(t)| for every x ∈ C[0, 1], where J = [0, 1].

x ∈ C[0, 1] is said to be a positive solution of SBVP(3.1) if x ∈ C[0, 1] satisfies (3.1)

and x(t) > 0 for t ∈ (0, 1). Now we list the following lemma from the literature.
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Lemma 3.1 ([13], Lemma 2.1). Assume that a function x satisfies

(3.2)





(p(t)x′(t))′ + Q(t) = 0, t ∈ (0, 1);

α1x(0) − β1p(0)x′(0) = 0,

α2x(1) + β2p(1)x′(1) = 0,

where Q ∈ L1[0, 1], Q ≥ 0. Then

(3.3) x(t) =

∫ 1

0

G(t, s)Q(s)ds ≥ q(t)‖x‖, for t ∈ (0, 1)

and if the maximum of x on [0, 1] occurs at σ ∈ [0, 1], it is certain that x′(σ) = 0;

conversely, if x′(σ) = 0 for some σ ∈ [0, 1], then the function x on [0, 1] will get its

maximum at t = σ, where

(3.4) G(t, s) =

{
u(t)v(s), 0 ≤ s ≤ t ≤ 1;

u(s)v(t), 0 ≤ t ≤ s ≤ 1,

(3.5) q(t) = min
{ β1 + α1τ0(t)

β1 + α1τ0(1)
,

β2 + α2τ1(t)

β2 + α2τ1(0)

}
,

u(t) and v(t) are the same as above.

From Lemma 3.1 we can get that q(t) > 0 for t ∈ (0, 1). For the sake of obtaining

the existence of positive solutions for SBVP (3.1), let

(3.6) P = {x ∈ C[0, 1]
∣∣ x(t) ≥ q(t)‖x‖, ∀t ∈ J},

where J = [0, 1], q(t) is the same as in (3.5). It is easy to see that P is a nonempty,

convex and closed subset of C[0, 1]. Furthermore, one can prove that P is a cone of

Banach space C[0, 1].

For convenience, let us list the following assumptions.

(H1) There exist functions g, ĝ ∈ C[(0, 1), R+], h, ĥ ∈ C[(0, +∞), R+] satisfying

ĝ(t)ĥ(x) ≤ f(t, x) ≤ g(t)h(x), for t ∈ (0, 1) and x ∈ (0, +∞)

and
∫ 1

0

G(t, t)g(t)hr,R(t)dt < +∞, for ∀R ≥ r > 0,

where hr,R(t) =: max{h(u)
∣∣ u ∈ [rq(t), R]} for each t ∈ (0, 1), G(t, s) is the

same as in (3.4).

(H2) There exist two positive numbers a and b with q̄b ≥ a such that

a < q̄

∫ 3

4

1

4

G(s, s)ĝ(s)ds · min
u∈[a,b]

ĥ(u),

where q̄ = min{q(
1

4
), q(

3

4
)}, q is the same as in (3.5).
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(H3) There exists a positive number d with d < a such that
∫ 1

0

G(s, s)g(s)hd,d(s)ds < d.

(H4) lim
x→0+

h(x)

x
> l and either lim

x→+∞

h(x)

x
< L or lim

x→+∞

ĥ(x)

x
> L̂, where

l =:
(

max
t∈J

q(t) ·

∫ 1

0

G(s, s)ĝ(s)q(s)ds
)−1

, L̂ =:
(
q̄

∫ 3

4

1

4

G(s, s)ĝ(s)q(s)ds
)−1

,

L =:





p0

(
min{

∫ 1

2

0
sg(s)ds,

∫ 1
1

2

(1 − s)g(s)ds}
)−1

, β1 = β2 = 0;

(
p0

∫ 1

0
sg(s)ds

)−1

, β1 = 0, β2 6= 0;

(
p0

∫ 1

0
(1 − s)g(s)ds

)−1

, β1 6= 0, β2 = 0;

( ∫ 1

0
G(s, s)g(s)ds

)−1

, β1β2 6= 0,

p0 = min
t∈J

p(t).

(H5) lim
x→0+

h(x)

x
> l and either lim

x→+∞

h(x)

x
= 0 or lim

x→+∞

ĥ(x)

x
= +∞, where

l =:
(

max
t∈J

q(t) ·

∫ 1

0

G(s, s)ĝ(s)q(s)ds
)−1

.

Now we are ready to state the main result in this section.

Theorem 3.2. Assume that (H1)-(H4) are satisfied. Then SBVP(3.1) has at least

three positive solutions.

Since assumption (H5) means assumption (H4), we have the following corollary.

Corollary 3.3. Assume that (H1)-(H3) and (H5) are satisfied. Then SBVP (3.1)

has at least three positive solutions.

Remark 3.4. Condition lim
x→+∞

h(x)

x
= 0 in (H5) means f(t, x) is sublinear at +∞.

Condition lim
x→+∞

ĥ(x)

x
= +∞ in (H5) means f(t, x) is superlinear at +∞.

For the sake of proving Theorem 3.2, we first define an operator on P \ {θ} by

(3.7) (Ax)(t) =:

∫ 1

0

G(t, s)f(s, x(s))ds, for x ∈ P \ {θ},

where the function G(t, s) is the same as in (3.4), θ is the zero element of C[0, 1].

Then we have the following Lemma.
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Lemma 3.5. Assume that (H1) holds. Then the operator A is well defined on P \{θ}

and for each δ > 0, A : P \ Pδ → P is completely continuous, where Pδ = {x ∈

P
∣∣ ‖x‖ < δ}.

Proof. Notice from (3.4) and (3.5) that

(3.8) G(s, s) ≥ G(t, s) ≥ q(t)G(τ, s), for ∀t, s, τ ∈ J.

For each x ∈ P \ {θ}, by (3.6) we know that x(t) ∈ [q(t)‖x‖, ‖x‖] for each t ∈ (0, 1).

So from (H1) it follows that

0 ≤ f(t, x(t)) ≤ g(t)h(x(t)) ≤ g(t)h‖x‖,‖x‖(t), for t ∈ (0, 1).

This together with (3.7)-(3.8), (H1), and Lebesgue dominant convergence theorem

implies that (Ax)(t) is well defined and Ax ∈ P .

Now we show for each δ > 0, A : P \ Pδ → P is completely continuous.

For every bounded subset V of P \ Pδ, let AV =: {Ax
∣∣x ∈ V }, (AV )(t) =:

{(Ax)(t)
∣∣x ∈ V } and (AV )′(t) =: {(Ax)′(t)

∣∣x ∈ V } for t ∈ (0, 1).

First we show AV is relatively compact. Since there exists a positive number M

such that ‖x‖ ≤ M for each x ∈ V , applying (H1) we obtain

(3.9) 0 ≤ f(t, x(t)) ≤ g(t)h(x(t)) ≤ g(t)hδ,M(t), for t ∈ (0, 1).

This together with (3.7)-(3.8) and (H1) guarantees that there exists M̂ > 0 such

that ‖Ax‖ ≤ M̂ for each x ∈ V . So, AV is bounded. Now we show (AV )(t) are

equicontinuous on [0, 1].

To see this according to boundary conditions of SBVP (3.1), we need to consider

the following four cases.

Case (i) β1β2 6= 0. In this case, G(t, s) ≥
β1β2

ρ2
> 0. This together with (H1)

and (3.9) guarantees that

∫ 1

0

f(s, x(s))ds ≤

∫ 1

0

g(s)hδ,M(s)ds < +∞, ∀x ∈ V.

Combining the uniform continuity of G(t, s) on J × J , we obtain that (AV )(t) are

equicontinuous on J .

Case (ii) β1 = 0, β2 6= 0. In this case we may choose α1 = 1. Then v(t) =
1

ρ
τ0(t) =

1

ρ

∫ t

0

ds

p(s)
, v(0) = 0, and v(t) is increasing on J . We need to prove only that

lim
t→0+

(Ax)(t) = 0 uniformly with respect to x ∈ V and (AV )(t) are equicontinuous on

[δ̄, 1] for each δ̄ ∈ (0, 1).
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Notice that for x ∈ V , we have

(3.10)

(Ax)(t)

=

∫ 1

0

G(t, s)f(s, x(s))ds

=
∫ t

0
u(t)v(s)g(s)hδ,M(s)ds +

∫ 1

t
u(s)v(t)g(s)hδ,M(s)ds.

.

For arbitrary ε > 0, by (H1) there exists δ1 > 0 such that
∣∣∣
∫ t2

t1

G(s, s)g(s)hδ,M(s)ds
∣∣∣ < ε, for ∀t1, t2 ∈ J with |t1 − t2| < δ1.

Choose a positive number δ2 such that δ2 ≤ δ1 and v(δ2) ≤
ε

c
v(δ1), where

c =:

∫ 1

0

G(s, s)g(s)hδ,M(s)ds < +∞.

Then for each t ∈ (0, δ2) we have by the monotonicity of u(t) and v(t) on J that
∫ t

0

u(t)v(s)g(s)hδ,M(s)ds ≤

∫ t

0

G(s, s)g(s)hδ,M(s)ds < ε

and
∫ 1

t

u(s)v(t)g(s)hδ,M(s)ds

=

∫ δ1

t

u(s)v(t)g(s)hδ,M(s)ds +

∫ 1

δ1

u(s)v(t)g(s)hδ,M(s)ds

≤

∫ δ1

t

G(s, s)g(s)hδ,M(s)ds +
v(t)

v(δ1)

∫ 1

δ1

u(s)v(s)g(s)hδ,M(s)ds

≤ ε +
v(δ2)

v(δ1)

∫ 1

δ1

G(s, s)g(s)hδ,M(s)ds

≤ ε + ε = 2ε.

Combining the above two inequalities with (3.10) we obtain that lim
t→0+

(Ax)(t) = 0

uniformly with respect to x ∈ V .

To see the equicontinuity of (AV )(t) on [δ̄, 1] for each δ̄ ∈ (0, 1), notice from

(3.7)-(3.9), and (H1) that

u(1)
[ ∫ t

0

v(s)f(s, x(s))ds +

∫ 1

t

v(t)f(s, x(s))ds
]

≤

∫ t

0

u(t)v(s)f(s, x(s))ds +

∫ 1

t

u(s)v(t)f(s, x(s))ds

=

∫ 1

0

G(t, s)f(s, x(s))ds

≤

∫ 1

0

G(s, s)g(s)hδM(s)ds < +∞, for t ∈ (0, 1) and x ∈ V.
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This together with u(1) > 0 and the fact that v(t) ≥ v(δ̄) for t ∈ [δ̄, 1] guarantees

that

∫ t

0

v(s)f(s, x(s))ds and

∫ 1

t

f(s, x(s))ds are uniformly bounded with respect to

t ∈ [δ̄, 1] and x ∈ V .

Notice that for t ∈ (0, 1) and x ∈ V , we have

(Ax)′(t) = u′(t)

∫ t

0

v(s)f(s, x(s))ds + v′(t)

∫ 1

t

u(s)f(s, x(s))ds.

Taking into account the boundedness of u′(t), v′(t), and u(t) on J , we obtain that

(AV )′(t) are uniformly bounded on [δ̄, 1], which means (AV )(t) are equicontinuous

on [δ̄, 1].

Thus, (AV )(t) are equicontinuous on J in this case.

Case (iii) β1 6= 0, β2 = 0. Similar as in case (ii) we can prove in this case that

lim
t→1−0

(Ax)(t) = 0 uniformly with respect to x ∈ V and (AV )(t) are equicontinuous

on [0, δ̄] for each δ̄ ∈ (0, 1). So we omit it.

Case (iv) β1 = 0, β2 = 0. Similar as in case (ii) and (iii) we can prove in this

case that lim
t→0+

(Ax)(t) = 0 and lim
t→1−0

(Ax)(t) = 0 uniformly with respect to x ∈ V and

(AV )(t) are equicontinuous on [δ̄, 1 − δ̄] for each δ̄ ∈ (0,
1

2
).

Consequently, applying the well-known Ascoli-Arzela theorem, we get that A :

P \ Pδ → P is relatively compact.

Finally we prove the operator A : P \ Pδ → P is continuous. Suppose xn, x ∈

P \Pδ with ‖xn−x‖ → 0 as n → +∞. Then by (H1), (3.10), and Lebesgue dominant

convergence theorem we obtain that

lim
n→+∞

(Axn)(t) = (Ax)(t), for t ∈ J.

From above, one can see that {(Axn)(t)} are equicontinuous and uniformly bounded

on J(choosing V = {xn}). By virtue of Ascoli-Arzela theorem we know {Axn} is rel-

atively compact. Now it remains to show lim
n→+∞

‖Axn − Ax‖ = 0.

If not, then there exist some ε0 > 0 and {xni
} ⊂ {xn} such that

‖Axni
− Ax‖ ≥ ε0, for i = 1, 2, · · · .

Since {Axn} is relatively compact, there is a subsequence of {Axni
} converging to

some y ∈ C[J, P ]. we may still set, without loss of generality, that lim
i→∞

Axni
= y,

namely, lim
i→∞

‖Axni
− y‖ = 0. Then we know y = Ax. This is a contradiction.

Hence A is continuous on P \ Pδ.

In conclusion, the proof is complete.

Proof of Theorem 3.2. Define a functional α(x) on P by

(3.11) α(x) = min{x(t)
∣∣ t ∈ [

1

4
,

3

4
]}, ∀x ∈ P,
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where P is defined as in (3.6). It is easy to see that the functional α(x) is nonnegative

continuous and concave on P . Furthermore, we have α(x) ≤ ‖x‖ for each x ∈ P .

In the following we prove that there exist positive numbers e and c such that

conditions (A1)-(A3) of Theorem 2.2 hold. Taking into account (3.2) and (3.7), we

have

(3.12)
(
p(t)(Ax)′(t)

)′
= −f(t, x(t)) ≤ 0, for t ∈ (0, 1) and x ∈ P \ {θ}.

Suppose (Ax)(t) attains its maximum at σ ∈ [0, 1]. Then by Lemma 3.1 we know

(3.13) p(t)(Ax)′(t) ≥ 0, for t ∈ [0, σ]; p(t)(Ax)′(t) ≤ 0, for t ∈ [σ, 1].

Combining the fact that p(t) > 0 for t ∈ J , we obtain

(3.14) α(Ax) = min{(Ax)(
1

4
), (Ax)(

3

4
)}, for x ∈ P.

Notice from (2.2) that
a + b

2
∈ P (α, a, b) and α(

a + b

2
) > a, which means {x

∣∣ x ∈

P (α, a, b), α(x) > a} 6= ∅. On the other hand, for each x ∈ P (α, a, b), we have by

(2.2) and (3.11) that x(t) ∈ [a, b] for t ∈ [ 1
4
, 3

4
]. Therefore, applying (3.14), (3.8) ,

and conditions (H1)-(H2) we get

α(Ax) = min
{ ∫ 1

0

G(
1

4
, s)f(s, x(s))ds,

∫ 1

0

G(
3

4
, s)f(s, x(s))ds

}

≥ min
{
q(

1

4
), q(

3

4
)
}∫ 3

4

1

4

G(s, s)f(s, x(s))ds

≥ q̄

∫ 3

4

1

4

G(s, s)ĝ(s)ds · min
u∈[a,b]

ĥ(u)

> a, for x ∈ P (α, a, b),

which implies that condition (A1) of Theorem 2.2 is satisfied.

Next for each x ∈ {x ∈ P
∣∣ α(x) > a, ‖x‖ < c, and ‖Ax‖ > b}, we know by

Lemma 3.1 that Ax ∈ P . Then from (3.14) and condition (H2), we conclude that

α(Ax) ≥ min{q(
1

4
), q(

3

4
)}‖Ax‖ > q̄b ≥ a.

This means condition (A2) of Theorem 2.2 is met.

Now we are in position to show that condition (A3) of Theorem 2.2 is satisfied.

First choose a positive number with l1 > l such that lim
x→0+

h(x)

x
> l1. From

(H4) we know there exists a positive number e with e < d such that ĥ(u) > l1u for

u ∈ (0, e). Now we show

(3.15) Ax 6≤ x, for x ∈ ∂Pe.
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Suppose, on the contrary, there exists a x ∈ ∂Pe such that Ax ≤ x, that is,

x(t) ≥ (Ax)(t) ≥

∫ 1

0

G(t, s)ĝ(s)ĥ(x(s))ds ≥ q(t)

∫ 1

0

G(s, s)ĝ(s)
(
l1

∣∣x(s)
∣∣)ds

≥ q(t)

∫ 1

0

G(s, s)ĝ(s)q(s)ds · l1‖x‖, for t ∈ J,

which is a contradiction. This means (3.15) holds.

Next we show

(3.16) Ax 6≥ x, for x ∈ ∂Pd.

If this is false, then there exists a x ∈ ∂Pd such that Ax ≥ x, which implies

x(t) ≤

∫ 1

0

G(t, s)g(s)h(x(s))ds ≤

∫ 1

0

G(s, s)g(s)hd,d(s)ds < d, for t ∈ J.

in contradiction with ‖x‖ = d. So, (3.16) holds.

In the following we first suppose lim
x→+∞

h(x)

x
< L according to condition (H4).

Without loss of generality, assume that h(x) 6≡ 0. Then there exists a x0 ∈

(0, +∞) such that h(x0) > 0. Let

D1(x) =





max
u∈[x,x0]

h(u), x ∈ (0, x0);

h(x0), x ≥ x0.

Thus D1(x) > 0 is nonincreasing on (0, +∞). Again, let

(3.17) D(x) =

{
xh(x0)

x0D1(x)
, x ∈ (0, x0);

1, x ≥ x0.

Then D ∈ C[R+,R+] is a nondecreasing function satisfying D(x) > 0 as x > 0.

Notice that 0 ≤ h(x) ≤ D1(x) for x ∈ (0, x0). Thus, lim
x→0+

h(x)D(x) = 0. And

consequently, D(x)h(x) ∈ C[R+,R+]. Moreover,

(3.18) lim
x→+∞

D(x)h(x)

x
= lim

x→+∞

h(x)

x
< L.

Now we show that there exists a positive number c with c > b sufficiently large

such that

(3.19) x 6= µAx, for µ ∈ [0, 1] and x ∈ ∂Pc.

To see this we need to consider the following four cases.

Case (i) β1 = β2 = 0. In this case, from (H4) we can choose a positive number

L1 with L1 < L such that lim
x→+∞

h(x)

x
< L1. This together with (3.18) guarantees that
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there exists a positive number M1 such that D(x)h(x) ≤ L1x + M1 for each x ∈ R+.

From (3.17) and condition (H4) we know there exists c ≥ b satisfying

(3.20) p0

∫ c

0

D(u)du > (cL1 + M1) min{

∫ 1

2

0

sg(s)ds,

∫ 1

1

2

(1 − s)g(s)ds}.

Now we show the positive number c chosen as above satisfies our requirement,

that is, (3.19) holds.

Indeed, suppose, on the contrary, (3.19) does not hold. Then there exist µ ∈ [0, 1]

and x ∈ ∂Pc such that x = µAx. Using (3.7) we can obtain

(3.21)
(
p(t)x′(t)

)′
+ µf(t, x(t)) = 0, ∀t ∈ (0, 1).

Notice that β1 = β2 = 0 yields that x(0) = x(1) = 0. Then x(t) on [0, 1] takes

its maximum at σ ∈ (0, 1). By Lemma 3.1 and its proof (see [13, Lemma 2.1]) we

know x′(σ) = 0, x′(t) ≥ 0 on (0, σ), and x′(t) ≤ 0 on (σ, 1). Integrating (3.19) from

t (t ∈ (0, σ)) to σ together with the monotonicity of D(x) yields that

p(t)x′(t) = µ

∫ σ

t

f(s, x(s))ds ≤

∫ σ

t

g(s)h(x(s))ds

≤

∫ σ

t

g(s)
h(x(s))D(x(s))

D(x(s))
ds ≤

1

D(x(t))

∫ σ

t

g(s)[L1x(s) + M1]ds.

Therefore,

p(t)D(x(t))x′(t) ≤

∫ σ

t

g(s)[L1x(s) + M1]ds ≤ (cL1 + M1)

∫ σ

t

g(s)ds.

Integrate this inequality from 0 to σ to obtain

(3.22)

p0

∫ c

0
D(u)du ≤ (cL1 + M1)

∫ σ

0

∫ σ

t
g(s)dsdt

≤ (cL1 + M1)
∫ σ

0
sg(s)ds.

Very similarly, integrating (3.19) from σ to t (t ∈ (σ, 1)), one can conclude

p0

∫ c

0

D(u)du ≤ (cL1 + M1)

∫ 1

σ

(1 − s)g(s)ds.

From this and (3.22) we get a contradiction with (3.20). Therefore, (3.19) holds.

Case (ii) β1 = 0, β2 6= 0. In this case, from (3.17) and condition (H4) it follows

that there exists c ≥ b satisfying

(3.23) p0

∫ c

0

D(u)du > (cL1 + M1)

∫ 1

0

sg(s)ds,

where L1 is the same as in Case (i). Then (3.19) holds for such c.
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If not, then there exist µ ∈ [0, 1] and x ∈ ∂Pc such that x = µAx. Notice that

β1 = 0 and β2 6= 0 implies that x(0) = 0 and x(1) 6= 0. So, x(t) on [0, 1] takes its

maximum at σ ∈ (0, 1]. By a process similar to proving (3.22), one can get

p0

∫ c

0

D(u)du ≤ (cL1 + M1)

∫ σ

0

∫ σ

t

g(s)dsdt ≤ (cL1 + M1)

∫ 1

0

sg(s)ds

in contradiction with (3.23).

Case (iii) β1 6= 0, β2 = 0. The proof is similar to Case (ii).

Case (iv) β1β2 6= 0. As in Case (i), still choose L1 with L1 < L such that

lim
x→+∞

h(x)

x
< L1. Then there exists a positive number c such that

(3.24)
h(x)

x
< L1, for x > l̄c,

where l̄ =: min
{ β1

β1 + α1τ0(1)
,

β2

β2 + α2τ1(0)

}
. We show (3.19) also holds for such

c.

If not, then there exists a µ ∈ [0, 1] and x ∈ ∂Pc such that x = µAx. Notice by

(3.5) that q(t) ≥ l̄ for t ∈ J . Therefore, from (3.6) it follows that x(t) ≥ l̄c for t ∈ J .

Taking into account (3.24) and L1

∫ 1

0

G(s, s)g(s)ds < 1, we conclude that

x(t) = µ

∫ 1

0

G(t, s)f(s, x(s))ds ≤

∫ 1

0

G(t, s)g(s)h(x(s))ds

≤

∫ 1

0

G(s, s)g(s) max
u∈[cl̄,c]

h(u))ds ≤ cL1

∫ 1

0

G(s, s)g(s)ds < c,

which is in contradiction with x ∈ ∂Pc. Consequently, (3.19) holds.

Finally, suppose lim
x→+∞

ĥ(x)

x
> L̂ according to condition (H4). Choose a positive

number M with M > L̂ such that lim
x→+∞

ĥ(x)

x
> M . Therefore, by (H4) we have

(3.25) Mq̄

∫ 3

4

1

4

G(s, s)ĝ(s)q(s)ds > 1.

Since lim
x→+∞

ĥ(x)

x
> M , there exists c > 0 satisfying

(3.26) ĥ(x) ≥ Mx, for u ≥ cq̄.

Observe that for each x ∈ ∂Pc, we have

x(t) ≥ q(t)‖x‖ ≥ cq̄, as t ∈ [
1

4
,

3

4
].
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This together with (3.25) and (3.26) guarantees that

(Ax)(t) =

∫ 1

0

G(t, s)f(s, x(s))ds ≥ q̄

∫ 3

4

1

4

G(s, s)ĝ(s)ĥ(x(s))ds

≥ q̄

∫ 3

4

1

4

G(s, s)ĝ(s) · Mx(s)ds ≥ Mq̄

∫ 3

4

1

4

G(s, s)ĝ(s)q(s)ds · ‖x‖

> ‖x‖, for t ∈ [
1

4
,

3

4
] and x ∈ ∂Pc,

which means ‖Ax‖ > ‖x‖ for each x ∈ ∂Pc.

Thus, the condition (A3) of Theorem 2.2 holds.

In conclusion, by Theorem 2.2, SBVP(3.1) has at least three positive solutions.�

Example 3.6. Consider the following SBVP:

(3.27)

{
x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1);

x(0) = x(1) = 0,

where

(3.28) f(t, x) =





1

4
√

t(1 − t)

(1

x
+ xβ

)
, x ∈ (0, 1) ∪ (9, +∞);

258x − 256

4
√

t(1 − t)
, x ∈ [1, 2];

260

4
√

t(1 − t)
, x ∈ [2, 8];

((
1
9

+ 9β − 260
)
(x − 8) + 260

)

4
√

t(1 − t)
, x ∈ (8, 9),

for t ∈ (0, 1), β > 0, β 6= 1.

Then SBVP(3.27) has at least three positive solutions.

Proof. SBVP(3.27) can be regard as a SBVP of the form (3.1), where p(t) ≡ 1,

α1 = α2 = 1, and β1 = β2 = 0. Obviously, f ∈ C[(0, 1)× (0, +∞),R+], and f(t, x) is

singular at t = 0, t = 1, and x = 0. Let

(3.29) g(t) = ĝ(t) =
1

4
√

t(1 − t)
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and

(3.30) h(x) = ĥ(x) =





1

x
+ xβ, x ∈ (0, 1) ∪ (9, +∞);

258x − 256, x ∈ [1, 2];

260, x ∈ [2, 8];

(1

9
+ 9β − 260

)
(x − 8) + 260, x ∈ (8, 9),

Notice here that

G(t, s) =





t(1 − s), 0 ≤ t ≤ s ≤ 1;

s(1 − t), 0 ≤ s ≤ t ≤ 1.

q(t) = min{t, 1− t}, q̄ =
1

4
. Combining (3.28)-(3.30), it is not difficult to see (H1) is

satisfied.

Next we show (H2) is met. Choose a = 2 and b = 8. Then

q̄

∫ 3

4

1

4

G(s, s)ĝ(s)ds · min
u∈[a,b]

ĥ(u) =
1

4

∫ 3

4

1

4

s(1 − s)

4
√

s(1 − s)
ds ·260 >

1

4
×

1

4
×

1

4
×

1

2
×260 > 2,

which means (H2) is satisfied.

Thirdly, we show (H3) is satisfied. Notice that

∫ 1

0

√
s(1 − s)ds =

π

8
,

∫ 1

0

ds√
s(1 − s)

= π, hd,d(s) = h1,1(s) ≤
1

s(1 − s)
+ 1.

Then, one can see that

∫ 1

0

G(s, s)g(s)hd,d(s)ds ≤

∫ 1

0

s(1− s)
1

4
√

s(1 − s)

( 1

s(1 − s)
+ 1

)
ds ≤

1

4

(
π +

π

8

)
< 1.

This implies condition (H3) is satisfied for d = 1.

Finally, from (3.30) we obtain that

lim
x→0+

h(x)

x
= +∞, lim

x→+∞

h(x)

x
= 0 if β < 1, and lim

x→+∞

ĥ(x)

x
= +∞ if β > 1.

So, condition (H4) is satisfied.

Consequently, by Theorem (3.1), SBVP(3.27) has at least three positive solutions.



550 Y. LIU

Acknowledgment. The author wishes to thank Professor Ravi P. Agarwal

for his suggestion. The Project was supported by NNSF of P.R.China (10571111),

China Scholarship Council and Natural Science Foundation of Shandong Province

(Y2006A22).

REFERENCES

[1] R. P. Agarwal and D. O’Regan, A fixed point theorem of Leggett-Williams type with applications

to single and multivalued equations, Georgian Math. Journal, 8:13-25, 2001.

[2] R.P. Agarwal and D. O’Regan, Twin solutions to singular Dirichlet problems, J. Math. Anal.

Appl., 240:433-445, 2003.

[3] D. Andersion, R.I. Avery and A.C. Peterson, Three positive solutions to a discrete focal boundary

value problem, J. Comput. Appl. Math., 88:103-118, 1998.

[4] R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-

line,2:9-14, 1998.

[5] R. I. Avery and A. C. Peterson, Three positive fixed points of nonlinear operators on ordered

Banach spaces, Comput. Math. Appl., 42:312-322, 2001.

[6] Z. Bai, Y. Wang and W. Ge, Triple positive solutions for a class of two-point boundary value

problems, Electronic Journal Differential Equations,06:1-8, 2004.

[7] ] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Inc., New

York, 1988.

[8] K. Ha and Y. Lee, Existence of multiple positive solutions of singular boundary value problems,

Nonlinear Analysis, 28:1429-1438, 1997.

[9] P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden-Fowler equation,

J. Math. Anal. Appl., 181:684-700, 1994.

[10] X. He and W. Ge, Triple solutions for second order three point boundary value problems, J.

Math. Anal. Appl., 268:256-265, 2002.

[11] J. Henderson and H.B. Thompson, Multiple symmetric positive solutions for a second order

boundary value problem, Proc. Amer. Math. Soc., 128:2373-2379, 2000.

[12] R.W. Leggett and L.R. Williams, Multiple positive fixed points of nonlinear operators on or-

dered Banach spaces, Indian Univ. Math., 28:673-688, 1979.

[13] Y. Liu and B. Yan, Multiple solutions of singular boundary value problems for differential

systems, J. Math. Anal. Appl., 287: 540-556, 2003.

[14] D. O’Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994.

[15] D. O’Regan, Nonresonance and existence for singular boundary value problem, Nonlinear Anal-

ysis, 23:165-186, 1994.

[16] S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis, 3:897-904,

1979.

[17] F. Wong, Existence of positive solutions of singular boundary value problems, Nonlinear Anal-

ysis, 21:397-406, 1993.


