Dynamic Systems and Applications 16 (2007) 551-559

EXISTENCE, UNIQUENESS AND QUENCHING OF THE
SOLUTION FOR A NONLOCAL DEGENERATE SEMILINEAR
PARABOLIC PROBLEM

C. Y. CHAN AND H. T. LIU

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA
70504-1010, USA  (chan@louisiana.edu)
Department of Applied Mathematics, Tatung University, 40 Chung Shan North
Road, Sec. 3, Taipei, Taiwan 104 (tliu@ttu.edu.tw)

ABSTRACT. Let a and T be positive constants, D = (0,a), D = [0,a], @ = D x (0,T], and

Lu = x%u; — ugy, where g is a nonnegative number. This article studies the following problem,
Lu(e,t) = [ k) (u(y)dy i 9
0

where k is a positive function on D, f >0, f' >0, f” > 0, and lim,_,;~ f(u) = oo, subject to the
initial condition u(x,0) = 0 on D, and the boundary conditions u(0,t) = 0 = u(a,t) for 0 <t < T.
Existence of a unique solution, the critical length, and the quenching behavior of the solution are
studied.
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1. INTRODUCTION

Let a and T be constants, D = (0,a), D = [0,al], Q@ = D x (0, 7], 092 be the parabolic
boundary, and Lu = x%u; — u,,, where ¢ is a nonnegative number. We consider the

following nonlocal initial-boundary value problem,

(L1) Lu(z,t) = / k() fuy, 1) dy in 9,

(1.2) u(z,0) =0 on D, u(0,t) =0=u(a,0) for 0<t<T,

where k is a positive function on D, f > 0, f/ > 0, f” > 0, and lim,_,- f(u) = oo.
Chan and Kong [2], and Chan and Liu [3] studied existence, uniqueness and quenching
behavior of the solution u in the case [i k(y)f(u(y,t))dy being replaced by f(u). We
show that the problem (1.1)-(1.2) has a unique classical solution, and give a criterion

for quenching to occur and for global existence.
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2. EXISTENCE AND UNIQUENESS

Since k(z) > 0 on D, we have [ k(y)f(u(y,t))dy > 0 for > 0. From the strong

maximum principle (cf. Friedman [5]), u > 0 in €.

We now prove the comparison results.

Lemma 2.1. Let w be a function such that
Lw> [ gl Ol 0dy in 0,
0

where g(z,t) is a bounded nonnegative function on Q, and w > 0 on 09, then w > 0
on €.

Proof. Suppose that w < 0 somewhere on . Let
t = inf{t : w(z,t) < 0 for some z € D}.

Since w > 0 on 0, we have £ > 0, and there exists some # € D such that w(Z, t) =

0,
w(z,t) > 0 on D, wy(7,t) < 0, and w,,(Z,1) > 0. This implies 0 > F%w,(7,%) >
Wer(Z,1) + [ 9y, )w(y, t)dy > 0. We have a contradiction. Thus, w >0on Q. O

Theorem 2.2. If w satisfies the inequality
Loz [ gl 0dy in 9,
0

where g(z,t) is a bounded nonnegative function on Q, and w > 0 on 0K, then w > 0
on €.

Proof. For a fixed positive number 7, let
V(z,t) = w(z,t) +n(l +z2)e,
where c is some positive constant to be determined. Since g(x,t) is bounded on €2,

let M = supcioq { [y g(z, t)(1+2'/?)dz}. We have Vop = wey — nz =32 /4. Let s
be the first positive zero of x7%/2/4 — M. If s > a, then for any z € D,

1 _
(2.1) (14 27) + Zx_% — M > 0.

If s < a, then for any = € (0, s), the inequality (2.1) holds. For x € [s, a], let us choose

csuch that ¢ > M /s?. Then on [s,a], cx?(1+2'/?) > M(1+2'?) > M > M—273/2 /4,
and the inequality (2.1) holds. Thus for any x € D,
zlen(l+ x2)et > pect (—i:v_% + M)

gz, t)(1+x

T

gy, )(1 +y2)dy.

[NIES

> —%nx‘%e“ + net Ydx

Z _inx—%ect + 77€Ct

S—
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This gives

BV, > we + / 9y, w(y, D)y
0

_3 . a [ 1
—inz~2e + ne t/ g(y, t)(1+y2)dy
0

1 x
— = g e [ gnt) [l ) + 1+ e dy
0

Since w > 0 on 052, we have V > 0 on d9). By Lemma 2.1, we have V > 0 on Q. As
nﬁO,weobtainszonQ. O

Theorem 2.3. Suppose that u is a solution of the problem (1.1)-(1.2), and v satisfies
Lv> / B(y)F 0y, 1))dy in ©, v >0 on O,
0
then v > u on §).

Proof. We have L (v—u) > [ k(y)( — f(u))dy. By the mean value theorem,
Lv—u) > [ k(y)(f'(€)(v(y, t) —uly, ))dy for some & between v and v. By Theorem
2.2,v—u200n§2. U

As a consequence of the comparison theorem, we have the following results.

Theorem 2.4. The problem (1.1)-(1.2) has at most one solution.

Let u® denote the solution of the problem (1.1)-(1.2).
Theorem 2.5. If a; > ay, then u™(x,t) > u®(x,t) for (z,t) € [0,as] x [0,T7].

Proof. We have u®(0,t) = 0 and u® (as,t) > 0. Since u®(0,t) = 0 = u*(aq, 1), it
follows from Theorem 2.3 that u® (z,t) > u®(x,1t). O
We now show existence of the solution. Let Q,, = D x (0,0, and Qy, be its

closure.

Theorem 2.6. There exists some to(> 0) such that the problem (1.1)-(1.2) has a

unique nonnegative solution u € C(Qy,) N CZ1(Q,).

Proof. Let § and ty be positive constants with § < a, Qs = (J,a) x (0,%], S5 =
{6,a} x (0,t0], Qs be the closures of Qs, and u; be the solution of the problem,

Lus = /w k(y)f(us(y,t))dy in s,
(2.2) ’

us(x,0) =0 on [0, a]; us(x,t) =0 on Ss.
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Let us construct an upper solution h(z,t) for all us as follows:

(i) Let 0(z) = 27(a — )7, where v € (0,1); also let k; be a positive constant such
that 1 > k,0(z).
(ii) Let € be a positive number such that k10(x) <1 —e€ < 1.
(iii) Since 6”(x) tends to —oo as « tends to 0 or a, there exists a positive number
ks € D such that k10" (z) + f(1 —€) [ k(y)dy < 0 for = € (0,k2) U (a — ks, a).
(iv) Let g(t) be the solution of the initial value problem,

ootk = ([ xan) 1((5)7 o0 a0 =

(v) Since (a/2)*'k; < 1—e and ¢/(t) > 0, we can choose to > 0 such that (a/2)*7g(ty) =
1—e

To show that h(z,t) = 6(x)g(t) is an upper solution of ug, let J = Lh— [" k(y) f(h(y, t))dy.

By a direct computation,

ant) = 28 (0) - 0"(a)g(0) ~ [ W) (60)a(e)
For « € (0, ko) and t € (0, %],
Hant) = =0 (@)att) = [ k)OO
> —kit"() ~ £ =) [ k)
> 0.

For z € [k, a — ko] and t € (0, ¢o],

J(z,t) > 290(x /0 g9(t))dy
0-([ o

> k30(
o
For z € (a— ka,a) and € (0, t],
Hant) = =0 (@)att) = [ k)OO
> k0" (z) — f(1—€) /Oak(wdy
> 0.

Now, h(z,0) = k10(x) > 0. Since h(d,t) > 0, and h(a,t) = 0, it follows from Theorem
2.3 that h is an upper solution.
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We note that 277 € C*/2(€);),

74 /;]{;(wf(u(s(y,t))dy‘ < §¢ Kk@)f(w(y,t))dy for (z,t,u) € Qs x R.

Since v = 0 is a lower solution, it follows from Theorem 4.2.2 of Ladde, Laksh-
mikantham and Vatsala [6, p.143] that the problem (2.2) has a unique solution
us € CHel+a/2(Q5). Since us, < us, in Qs, for §; > s, lims_ou;s exists for all
(z,t) € Q.

For any (z1,t1) € Q, there is a set @ = [by, bo] X [to,t3] C §,, where by, bo,
ty and t3 are positive numbers such that b; < 1 < by < a and ty < t; < t3. Since
us < h(x,t) in @ and h(z,t) < 1, we have for some constant p; > 1, and some positive
constants ks and ky,

|usl| 1 (@) < [1h(z, )| (@) < ks,

/ ") f (s, )y < / k() F(h(y, 1))y

By Ladyzenskaja, Solonnikov and Ural’ceva [7, pp. 341-342], us € W''(Q). By the
embedding theorems there [7, pp. 61 and 80], W2H(Q) — H**/%(Q) by choosing
p1 > 2/(1 —a) with o € (0,1). Then, |[us||gaaszqy < ks for some constant ks. For

o1 (Q) <b o1(Q) <ki.

T, < Tg,

Hx qfa flus(y,t dyHHaa/z(Q)

< || Sy K() £ Orly, 0)dy])

s 07 [ R (y) f(us(y, ) dy — 237 [ k(y) f (us(y, t))dy]
(z1,1) € Q =z
(z2,1) € Q
(z,t1) €Q
(z,t2) € Q

the first term of which is bounded while the second term,

27 [ k() f(us(y, £)dy — 230 [77 k(y) f(us(y, t))dy]

sup
(r1.1) € Q |71 — ]
(z2,t) € Q
< s |20 [ k() fus(y, ©)dy — 237 [ k(y) f (us(y. t))dy]
(r1.1) € Q |2y — 2o

(.CL’Q, t) - Q
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|27 [ k(y) fus(y, t)dy — x37 [ k(y) f(us(y, t))dy|

+ sup |x1 — @\0‘
(Ilat) € Q
(IQat) € Q
< aw s k(y)f(u‘(s(y, t))dl?i‘ |27 — 23]
(xbt) € Q o =
(x2>t) € Q
|| 2 k() f sy, £)) |
+ sup 7 = 2ol
(Ilat) € Q ! 2
(x27t> € Q
Sl g — e
<|supk(z)|| sup f(us(z,t)) sup 21 | }:)31 T2 }
D Dx[0,to] (21,1) € Q B
(x27t) S Q
0 k()| | swp s sp 2L
D Dx[0,to] (21,1) € Q |21 — 22
(I27t) € Q
<alsupk(z)|| sup f(h (x,t))‘ HZE_qHHa,a/z(Q)
D Dx[0,to]
+ b, |sup k()| | sup f(h(x,t))‘ sup |2y — |7
D Dx[0,t0] (.flfl,t) e Q
($2,t) € Q

< kg for some constant kg,

and the last term,

ap LIRS (aly i)y — 5 k() sy )y

(2,t1) € Q |t] — to|o/2
(x7t2) S Q
<SR B )y, sup B0 ujg,w)\
(x,t1) € Q [t =t
(x>t2) € Q

< k7 for some constant k.
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Hence, ||z79 [ k(y) f (us(y, t))dy|| ... ... < kg for some constant ks which is inde-
5 Hewo/2(Q)

pendent of §. By Theorem 4.10.1 of Ladyzenskaja, Solonnikov and Ural’ceva [7, pp.

351-352], we have

|us ||H2+a,l+o¢/2(Q) < K

for some constant K, which is independent of 0. This implies that us, (us)s, (Us)s

and (us),, are equicontinuous in (). By the Ascoli-Arzela theorem,
||u||H2+a,1+a/2(Q) S K,

and the partial derivatives of u are the limits of the corresponding partial derivatives
of us. Thus, u € C(Qy) N C?1(Qy,). O

Let T = sup{t : the problem (1.1)-(1.2) has a solution on D x [0,£)}. A proof
similar to that of Theorem 2.5 of Floater [4] gives the following result.

Theorem 2.7. There is a unique solution uw € C(D x [0,T)) N C%Y(D x (0,7)). If
T < oo, then supu tends to1 ast — T.

Existence of an upper solution guarantees a global existence result of the solution.

Theorem 2.8. For a sufficiently small, the solution u exists globally.

Proof. Let w(x) = e(a® — x?), where € is a positive number such that ea?/4 < 1.
Then

Wy + /0 k) fw(y)dy = 22+ /O k() f (w(y))dy

< -2+ f (%az) /ak(y)dy-
0

Since foa k(y)dy — 0 as a — 0, the right-hand side of the above inequality is negative
when a is small. On the other hand, w(0) > 0, and w(a) = 0. This implies w is an

upper solution which is bounded away from 1 when a is small. U

3. QUENCHING

Let us consider the Sturm-Liouville problem,

"+ Xxlp =0, ¢(0) =0 = ¢(a).

For ¢ = 0, the eigenfunctions exist. For ¢ > 0, Chan and Chan [1] showed that the

oN/2
J v
/@21 | 55

where z = 2(972/2 j =1,2,3,- -, and Jy (442 is the Bessel function of the first kind

of order 1/(¢ + 2). Since {¢;(z)} forms an orthonormal set with the weight function

eigenfunctions are given by

1/2
le(z) _ 21/2Z1/(q+2)J1/( ) 2, %
q q + 2

Y

29/a+2) " we have {¢;(x)} forms an orthonormal set with the weight function z?. Let
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B denote the first positive zero of Ji442), @(x) be the fundamental eigenfunction
with [i'29%¢(x)dz = 1, and p be the fundamental eigenvalue. By ¢(a) = 0, we have
(2u2a1tD/2) /(g + 2) = B. This gives pat™' = a3 [B(q+2)/2]°. Hence, pa?™!
decreases when a increases. We now give a condition for the solution u to quench in

a finite time.

Theorem 3.1. If f(0)inf k(z) > pa?!, then the solution u of the problem (1.1)-(1.2)

quenches in a finite time.

Proof. Let F(t) = [ 2%p(x)u(z,t)dz. Then,

Py = [ (um@,w + [k <u<y,t>>dy) o)
= [Cute i@+ [ o) [Tk f ) dydo

> —pF(0) + SO ko) [ plo)ado

> —uF(t)+ % inf k(z).

By a direct calculation,

inf k(x) it
F(t) > f(0) e (1 —e™H).
Since f(0)infk(x) > pa?™!, there exists to > 0 such that F(ty) > 1. Hence, u
quenches somewhere in a finite time. O

We note that the condition f(0)infk(z) > pa?! can be satisfied if a is large
enough. Therefore, by combining Theorems 2.5, 2.8, and 3.1 we get the following

result.

Theorem 3.2. There exists a* > 0 such that the solution u quenches in a finite time

for a < a* and the solution exists globally for a > a*.
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