
Dynamic Systems and Applications 16 (2007) 551-559

EXISTENCE, UNIQUENESS AND QUENCHING OF THE

SOLUTION FOR A NONLOCAL DEGENERATE SEMILINEAR

PARABOLIC PROBLEM

C. Y. CHAN AND H. T. LIU

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA

70504-1010, USA (chan@louisiana.edu)

Department of Applied Mathematics, Tatung University, 40 Chung Shan North

Road, Sec. 3, Taipei, Taiwan 104 (tliu@ttu.edu.tw)

ABSTRACT. Let a and T be positive constants, D = (0, a), D̄ = [0, a], Ω = D × (0, T ], and

Lu = xqut − uxx, where q is a nonnegative number. This article studies the following problem,

Lu(x, t) =

∫ x

0

k(y)f(u(y, t))dy in Ω,

where k is a positive function on D̄, f > 0, f ′ ≥ 0, f ′′ ≥ 0, and limu→1− f(u) = ∞, subject to the

initial condition u(x, 0) = 0 on D̄, and the boundary conditions u(0, t) = 0 = u(a, t) for 0 < t ≤ T .

Existence of a unique solution, the critical length, and the quenching behavior of the solution are

studied.

AMS (MOS) Subject Classification. 35K57, 35K60, 35K65.

1. INTRODUCTION

Let a and T be constants, D = (0, a), D̄ = [0, a], Ω = D× (0, T ], ∂Ω be the parabolic

boundary, and Lu = xqut − uxx, where q is a nonnegative number. We consider the

following nonlocal initial-boundary value problem,

(1.1) Lu(x, t) =

∫ x

0

k(y)f(u(y, t))dy in Ω,

(1.2) u(x, 0) = 0 on D̄, u(0, t) = 0 = u(a, 0) for 0 < t ≤ T,

where k is a positive function on D̄, f > 0, f ′ > 0, f ′′ ≥ 0, and limu→1− f(u) = ∞.

Chan and Kong [2], and Chan and Liu [3] studied existence, uniqueness and quenching

behavior of the solution u in the case
∫ x

0
k(y)f(u(y, t))dy being replaced by f(u). We

show that the problem (1.1)-(1.2) has a unique classical solution, and give a criterion

for quenching to occur and for global existence.
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2. EXISTENCE AND UNIQUENESS

Since k(x) > 0 on D̄, we have
∫ x

0
k(y)f(u(y, t))dy > 0 for x > 0. From the strong

maximum principle (cf. Friedman [5]), u > 0 in Ω.

We now prove the comparison results.

Lemma 2.1. Let w be a function such that

Lw >

∫ x

0

g(y, t)w(y, t)dy in Ω,

where g(x, t) is a bounded nonnegative function on Ω̄, and w > 0 on ∂Ω, then w > 0

on Ω̄.

Proof. Suppose that w ≤ 0 somewhere on Ω̄. Let

t̃ = inf{t : w(x, t) ≤ 0 for some x ∈ D̄}.

Since w > 0 on ∂Ω, we have t̃ > 0, and there exists some x̃ ∈ D such that w(x̃, t̃) = 0,

w(x, t̃) ≥ 0 on D̄, wt(x̃, t̃) ≤ 0, and wxx(x̃, t̃) ≥ 0. This implies 0 ≥ x̃qwt(x̃, t̃) >

wxx(x̃, t̃) +
∫ x̃

0
g(y, t̃)w(y, t̃)dy ≥ 0. We have a contradiction. Thus, w > 0 on Ω̄. �

Theorem 2.2. If w satisfies the inequality

Lw ≥

∫ x

0

g(y, t)w(y, t)dy in Ω,

where g(x, t) is a bounded nonnegative function on Ω̄, and w ≥ 0 on ∂Ω, then w ≥ 0

on Ω̄.

Proof. For a fixed positive number η, let

V (x, t) = w(x, t) + η(1 + x
1

2 )ect,

where c is some positive constant to be determined. Since g(x, t) is bounded on Ω̄,

let M̄ = supt∈[0,T ]

{∫ a

0
g(x, t)(1 + x1/2)dx

}

. We have Vxx = wxx − ηx−3/2ect/4. Let s

be the first positive zero of x−3/2/4 − M̄ . If s ≥ a, then for any x ∈ D̄,

(2.1) cxq(1 + x
1

2 ) +
1

4
x−

3

2 − M̄ > 0.

If s < a, then for any x ∈ (0, s), the inequality (2.1) holds. For x ∈ [s, a], let us choose

c such that c > M̄/sq. Then on [s, a], cxq(1+x1/2) > M̄(1+x1/2) > M̄ > M̄−x−3/2/4,

and the inequality (2.1) holds. Thus for any x ∈ D̄,

xqcη(1 + x
1

2 )ect > ηect
(

−1
4
x−

3

2 + M̄
)

> −1
4
ηx−

3

2 ect + ηect

∫ a

0

g(x, t)(1 + x
1

2 )dx

≥ −1
4
ηx−

3

2 ect + ηect

∫ x

0

g(y, t)(1 + y
1

2 )dy.
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This gives

xqVt > wxx +

∫ x

0

g(y, t)w(y, t)dy

−1
4
ηx−

3

2 ect + ηect

∫ x

0

g(y, t)(1 + y
1

2 )dy

= wxx −
1

4
ηx−

3

2 ect +

∫ x

0

g(y, t)
[

w(y, t) + η(1 + y
1

2 )ect
]

dy

= Vxx (x, t) +

∫ x

0

g(y, t)V (y, t) dy.

Since w ≥ 0 on ∂Ω, we have V > 0 on ∂Ω. By Lemma 2.1, we have V > 0 on Ω̄. As

η → 0, we obtain w ≥ 0 on Ω̄. �

Theorem 2.3. Suppose that u is a solution of the problem (1.1)-(1.2), and v satisfies

Lv ≥

∫ x

0

k(y)f(v(y, t))dy in Ω, v ≥ 0 on ∂Ω,

then v ≥ u on Ω̄.

Proof. We have L(v − u) ≥
∫ x

0
k(y)(f(v) − f(u))dy. By the mean value theorem,

L(v−u) ≥
∫ x

0
k(y)(f ′(ξ)(v(y, t)−u(y, t))dy for some ξ between u and v. By Theorem

2.2, v − u ≥ 0 on Ω̄. �

As a consequence of the comparison theorem, we have the following results.

Theorem 2.4. The problem (1.1)-(1.2) has at most one solution.

Let ua denote the solution of the problem (1.1)-(1.2).

Theorem 2.5. If a1 > a2, then ua1(x, t) ≥ ua2(x, t) for (x, t) ∈ [0, a2] × [0, T ].

Proof. We have ua1(0, t) = 0 and ua1(a2, t) ≥ 0. Since ua2(0, t) = 0 = ua2(a2, t), it

follows from Theorem 2.3 that ua1(x, t) ≥ ua2(x, t). �

We now show existence of the solution. Let Ωt0 = D × (0, t0], and Ω̄t0 be its

closure.

Theorem 2.6. There exists some t0(> 0) such that the problem (1.1)-(1.2) has a

unique nonnegative solution u ∈ C(Ω̄t0) ∩ C2,1(Ωt0).

Proof. Let δ and t0 be positive constants with δ < a, Ωδ = (δ, a) × (0, t0], Sδ =

{δ, a} × (0, t0], Ω̄δ be the closures of Ωδ, and uδ be the solution of the problem,

(2.2)















Luδ =

∫ x

δ

k(y)f(uδ(y, t))dy in Ωδ,

uδ(x, 0) = 0 on [δ, a]; uδ(x, t) = 0 on Sδ.
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Let us construct an upper solution h(x, t) for all uδ as follows:

(i) Let θ(x) = xγ(a − x)γ , where γ ∈ (0, 1); also let k1 be a positive constant such

that 1 > k1θ(x).

(ii) Let ε be a positive number such that k1θ(x) < 1 − ε < 1.

(iii) Since θ′′(x) tends to −∞ as x tends to 0 or a, there exists a positive number

k2 ∈ D such that k1θ
′′(x) + f(1 − ε)

∫ a

0
k(y)dy ≤ 0 for x ∈ (0, k2) ∪ (a − k2, a).

(iv) Let g(t) be the solution of the initial value problem,

kq
2g

′(t)θ(k2) =

(
∫ a

0

k(y)dy

)

f

(

(a

2

)2γ

g(t)

)

, g(0) = k1.

(v) Since (a/2)2γk1 < 1−ε and g′(t) > 0, we can choose t0 > 0 such that (a/2)2γg(t0) =

1 − ε.

To show that h(x, t) = θ(x)g(t) is an upper solution of uδ, let J = Lh−
∫ a

0
k(y)f(h(y, t))dy.

By a direct computation,

J(x, t) = xqθ(x)g′(t) − θ′′(x)g(t) −

∫ a

0

k(y)f (θ(y)g(t))dy.

For x ∈ (0, k2) and t ∈ (0, t0],

J(x, t) ≥ −θ′′(x)g(t) −

∫ a

0

k(y)f(θ(y)g(t))dy

≥ −k1θ
′′(x) − f(1 − ε)

∫ a

0

k(y)dy

≥ 0.

For x ∈ [k2, a − k2] and t ∈ (0, t0],

J(x, t) ≥ xqθ(x)g′(t) −

∫ a

0

k(y)f(θ(y)g(t))dy

≥ kq
2θ(k2)g

′(t) −

(
∫ a

0

k(y)dy

)

f

(

(a

2

)2γ

g(t)

)

= 0.

For x ∈ (a − k2, a) and t ∈ (0, t0],

J(x, t) ≥ −θ′′(x)g(t) −

∫ a

0

k(y)f(θ(y)g(t))dy

≥ −k1θ
′′(x) − f(1 − ε)

∫ a

0

k(y)dy

≥ 0.

Now, h(x, 0) = k1θ(x) ≥ 0. Since h(δ, t) > 0, and h(a, t) = 0, it follows from Theorem

2.3 that h is an upper solution.
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We note that x−q ∈ Cα,α/2(Ω̄δ),
∣

∣

∣

∣

x−q

∫ x

δ

k(y)f(uδ(y, t))dy

∣

∣

∣

∣

≤ δ−q

∫ x

δ

k(y)f(uδ(y, t))dy for (x, t, u) ∈ Ω̄δ × R.

Since v ≡ 0 is a lower solution, it follows from Theorem 4.2.2 of Ladde, Laksh-

mikantham and Vatsala [6, p.143] that the problem (2.2) has a unique solution

uδ ∈ C2+α,1+α/2(Ω̄δ). Since uδ1 < uδ2 in Ωδ1 for δ1 > δ2, limδ→0 uδ exists for all

(x, t) ∈ Ω̄t0 .

For any (x1, t1) ∈ Ωt0 , there is a set Q = [b1, b2] × [t2, t3] ⊂ Ωt0 , where b1, b2,

t2 and t3 are positive numbers such that b1 < x1 < b2 < a and t2 < t1 ≤ t3. Since

uδ ≤ h(x, t) in Q and h(x, t) < 1, we have for some constant p1 > 1, and some positive

constants k3 and k4,

||uδ||Lp1(Q) ≤ ||h(x, t)||Lp1(Q) ≤ k3,
∥

∥

∥

∥

x−q

∫ x

δ

k(y)f(uδ(y, t))dy

∥

∥

∥

∥

Lp1 (Q) ≤b−q
1

∥

∥

∥

∥

∫ x

0

k(y)f(h(y, t))dy

∥

∥

∥

∥

Lp1 (Q) ≤k4.

By Ladyženskaja, Solonnikov and Ural′ceva [7, pp. 341-342], uδ ∈ W 2,1
p1

(Q). By the

embedding theorems there [7, pp. 61 and 80], W 2,1
p1

(Q) ↪→ Hα,α/2(Q) by choosing

p1 > 2/(1 − α) with α ∈ (0, 1). Then, ||uδ||Hα,α/2(Q) ≤ k5 for some constant k5. For

x1 < x2,
∥

∥x−q
∫ x

δ
k(y)f(uδ(y, t))dy

∥

∥

Hα,α/2(Q)

≤ b−q
1

∥

∥

∫ x

0
k(y)f(h(y, t))dy

∥

∥

∞

+ sup

(x1, t) ∈ Q

(x2, t) ∈ Q

∣

∣x−q
1

∫ x1

δ
k(y)f(uδ(y, t))dy − x−q

2

∫ x2

δ
k(y)f(uδ(y, t))dy

∣

∣

|x1 − x2|α

+ sup

(x, t1) ∈ Q

(x, t2) ∈ Q

x−q
∣

∣

∫ x

δ
k(y)f(uδ(y, t1))dy −

∫ x

δ
k(y)f(uδ(y, t2))dy

∣

∣

|t1 − t2|α/2
,

the first term of which is bounded while the second term,

sup

(x1, t) ∈ Q

(x2, t) ∈ Q

∣

∣x−q
1

∫ x1

δ
k(y)f(uδ(y, t))dy − x−q

2

∫ x2

δ
k(y)f(uδ(y, t))dy

∣

∣

|x1 − x2|α

≤ sup

(x1, t) ∈ Q

(x2, t) ∈ Q

∣

∣x−q
1

∫ x1

δ
k(y)f(uδ(y, t))dy − x−q

2

∫ x1

δ
k(y)f(uδ(y, t))dy

∣

∣

|x1 − x2|α
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+ sup

(x1, t) ∈ Q

(x2, t) ∈ Q

∣

∣x−q
2

∫ x1

δ
k(y)f(uδ(y, t))dy − x−q

2

∫ x2

δ
k(y)f(uδ(y, t))dy

∣

∣

|x1 − x2|α

≤ sup

(x1, t) ∈ Q

(x2, t) ∈ Q

∣

∣

∫ x1

δ
k(y)f(uδ(y, t))dy

∣

∣

∣

∣x−q
1 − x−q

2

∣

∣

|x1 − x2|α

+ sup

(x1, t) ∈ Q

(x2, t) ∈ Q

∣

∣x−q
2

∣

∣

∣

∣

∣

∫ x1

x2
k(y)f(uδ(y, t))dy

∣

∣

∣

|x1 − x2|α

≤

∣

∣

∣

∣

sup
D̄

k(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
D̄×[0,t0]

f(uδ(x, t))

∣

∣

∣

∣

∣

sup

(x1, t) ∈ Q

(x2, t) ∈ Q

|x1 − δ|
∣

∣x−q
1 − x−q

2

∣

∣

|x1 − x2|α

+ b−q
1

∣

∣

∣

∣

sup
D̄

k(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
D̄×[0,t0]

f(uδ(x, t))

∣

∣

∣

∣

∣

sup

(x1, t) ∈ Q

(x2, t) ∈ Q

|x1 − x2|

|x1 − x2|α

≤ a

∣

∣

∣

∣

sup
D̄

k(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
D̄×[0,t0]

f(h (x, t))

∣

∣

∣

∣

∣

∣

∣

∣

∣x−q
∣

∣

∣

∣

Hα,α/2(Q)

+ b−q
1

∣

∣

∣

∣

sup
D̄

k(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
D̄×[0,t0]

f(h(x, t))

∣

∣

∣

∣

∣

sup

(x1, t) ∈ Q

(x2, t) ∈ Q

|x1 − x2|
1−α

≤ k6 for some constant k6,

and the last term,

sup

(x, t1) ∈ Q

(x, t2) ∈ Q

x−q
∣

∣

∫ x

δ
k(y)f(uδ(y, t1))dy −

∫ x

δ
k(y)f(uδ(y, t2))dy

∣

∣

|t1 − t2|α/2

≤ b−q
1

∥

∥

∫ a

0
k(y)f ′(h(y, t))dy

∥

∥

∞
sup

(x, t1) ∈ Q

(x, t2) ∈ Q

|uδ(x, t1) − uδ(x, t2)|

|t1 − t2|α/2

≤ k7 for some constant k7.
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Hence,
∥

∥x−q
∫ x

δ
k(y)f(uδ(y, t))dy

∥

∥

Hα,α/2(Q)
≤ k8 for some constant k8 which is inde-

pendent of δ. By Theorem 4.10.1 of Ladyženskaja, Solonnikov and Ural′ceva [7, pp.

351-352], we have

‖uδ‖H2+α,1+α/2(Q) ≤ K

for some constant K, which is independent of δ. This implies that uδ, (uδ)t, (uδ)x

and (uδ)xx are equicontinuous in Q. By the Ascoli-Arzela theorem,

‖u‖H2+α,1+α/2(Q) ≤ K,

and the partial derivatives of u are the limits of the corresponding partial derivatives

of uδ. Thus, u ∈ C(Ω̄t0) ∩ C2,1(Ωt0). �

Let T = sup{t̄ : the problem (1.1)-(1.2) has a solution on D̄ × [0, t̄)}. A proof

similar to that of Theorem 2.5 of Floater [4] gives the following result.

Theorem 2.7. There is a unique solution u ∈ C(D̄ × [0, T )) ∩ C2,1(D × (0, T )). If

T < ∞, then sup u tends to 1 as t → T .

Existence of an upper solution guarantees a global existence result of the solution.

Theorem 2.8. For a sufficiently small, the solution u exists globally.

Proof. Let w(x) = ε(a2 − x2), where ε is a positive number such that εa2/4 < 1.

Then

wxx +

∫ x

0

k(y)f(w(y))dy = −2ε +

∫ x

0

k(y)f(w(y))dy

≤ −2ε + f

(

εa2

4

)
∫ a

0

k(y)dy.

Since
∫ a

0
k(y)dy → 0 as a → 0, the right-hand side of the above inequality is negative

when a is small. On the other hand, w(0) > 0, and w(a) = 0. This implies w is an

upper solution which is bounded away from 1 when a is small. �

3. QUENCHING

Let us consider the Sturm-Liouville problem,

ϕ′′ + λxqϕ = 0, ϕ(0) = 0 = ϕ(a).

For q = 0, the eigenfunctions exist. For q > 0, Chan and Chan [1] showed that the

eigenfunctions are given by

φ̃i(z) = 21/2z1/(q+2)J1/(q+2)

(

2λ
1/2
i

q + 2
z

)

�

∣

∣

∣

∣

∣

J[1/(q+2)]+1

(

2λ
1/2
i

q + 2

)
∣

∣

∣

∣

∣

,

where z = x(q+2)/2, i = 1, 2, 3, · · · , and J1/(q+2) is the Bessel function of the first kind

of order 1/(q + 2). Since {φ̃i(z)} forms an orthonormal set with the weight function

zq/(q+2), we have {φi(x)} forms an orthonormal set with the weight function xq. Let
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β denote the first positive zero of J1/(q+2), ϕ(x) be the fundamental eigenfunction

with
∫ a

0
xqϕ(x)dx = 1, and µ be the fundamental eigenvalue. By ϕ(a) = 0, we have

(2µ1/2a(q+2)/2)/(q + 2) = β. This gives µaq−1 = a−3 [β(q + 2)/2]2. Hence, µaq−1

decreases when a increases. We now give a condition for the solution u to quench in

a finite time.

Theorem 3.1. If f(0) inf k(x) > µaq−1, then the solution u of the problem (1.1)-(1.2)

quenches in a finite time.

Proof. Let F (t) =
∫ a

0
xqϕ(x)u(x, t)dx. Then,

F ′(t) =

∫ a

0

(

uxx(x, t) +

∫ x

0

k (y) f (u(y, t))dy

)

ϕ(x)dx

=

∫ a

0

u(x, t)ϕ′′(x)dx +

∫ a

0

ϕ(x)

∫ x

0

k (y) f (u(y, t))dydx

≥ −µF (t) + f(0) inf k(x)

∫ a

0

ϕ(x)xdx

≥ −µF (t) +
f(0)

aq−1
inf k(x).

By a direct calculation,

F (t) ≥ f(0)
inf k(x)

µaq−1
(1 − e−µt).

Since f(0) inf k(x) > µaq−1, there exists t0 > 0 such that F (t0) ≥ 1. Hence, u

quenches somewhere in a finite time. �

We note that the condition f(0) inf k(x) > µaq−1 can be satisfied if a is large

enough. Therefore, by combining Theorems 2.5, 2.8, and 3.1 we get the following

result.

Theorem 3.2. There exists a∗ > 0 such that the solution u quenches in a finite time

for a < a∗ and the solution exists globally for a > a∗.
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