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ABSTRACT. Let T be a time scale that is unbounded above and below and such that 0 ∈ T. Let

τ : T → T be such that τ(T) is a time scale. We use fixed point theorems to obtain stability results

about the zero solution of the nonlinear neutral dynamic equation with functional delay

x∆(t) = −a(t)xσ(t) + c(t)x∆̃(τ(t)) + q
(

x(t), x(τ(t))
)

, t ∈ T,

where f∆ is the ∆-derivative on T and f ∆̃ is the ∆-derivative on τ(T).
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1. INTRODUCTION

In this paper we consider the neutral nonlinear dynamic equation on a time scale,

(1.1) x∆(t) = −a(t)xσ(t) + c(t)x∆̃(τ(t)) + q
(

x(t), x(τ(t))
)

, t ∈ T,

where T is unbounded above and below. Throughout this paper we assume that

0 ∈ T for convenience. We also assume that a, b : T → R are continuous and that

c : T → R is continuously delta-differentiable. In order for the function x(τ(t)) to

be well-defined and differentiable over T, we assume that τ : T → T is an increasing

mapping such that τ(T) is closed.

For the reader who is unfamiliar with the theory of dynamic equations on time

scales, we include some basic definitions and theorems in the appendix. For more

information, we refer the reader to the texts [1] and [2]. Throughout this paper,

intervals subscripted with a T represent real intervals intersected with T. For example,

for a, b ∈ T, [a, b]T = [a, b] ∩ T = {t ∈ T : a ≤ t ≤ b}.

In the case T = R, it has been shown that neutral differential equations have

many applications. For example, these equations arise in the study of two or more
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simple oscillatory systems with some interconnections between them [4] and [7], and

in modelling physical problems such as vibration of masses attached to an elastic bar

[7].

For T = R, in [6] the second author studied the stability of the zero solution.

Recently, in [5] the authors considered (2.1) and (2.12) when the delay is constant

and showed the existence of a periodic solution by appealing to Krasnosel’skii fixed

point theorem. Also, the uniqueness of the periodic solution was deduced by using

the contraction mapping principle.

2. STABILITY VIA FIXED POINT THEORY

We begin by considering the dynamic equation

(2.1) x∆(t) = −a(t)xσ(t) + b(t)x(τ(t)) + c(t)x∆̃(τ(t)), t ∈ T.

In addition to the conditions on τ mentioned in Section 1, we need that

(2.2) τ∆(t) 6= 0

for all t ∈ T. Furthermore, the exponential function ea(t, 0) must satisfy

(2.3) e	a(t, 0) → 0 as t→ ∞,

as well as the initial value problem y∆(t) = ay(t), y(0) = 1. As such, we require that

a(t) ≥ 0 for all t ∈ T. Since a(t) ≥ 0 for all t ∈ T, then 1 + µ(t)a(t) ≥ 1 > 0 for all t

and so a ∈ R+.

Lemma 2.1. Suppose (2.2) holds. Then x is a solution of equation (2.1) if and only

if

(2.4)

x(t) =

(

x(0) −
c(0)

τ∆(0)
x(τ(0))

)

e	a(t, 0) +
c(t)

τ∆(t)
x
(

τ(t)
)

−

∫ t

0

[

r(s)xσ(τ(s)) − b(s)x(τ(s))
]

e	a(t, s) ∆s

where

(2.5) r(s) =

(

c∆(s) + cσ(s)a(s)
)(

τ∆(s)
)

+ τ∆∆(s)c(s)
(

τ∆(s)
)(

τ∆(σ(s))
) .

Proof. We begin by rewriting (2.1) as

x∆(t) + a(t)xσ(t) = b(t)x(τ(t)) + c(t)x∆̃(τ(t)).

Multiply both sides of the above equation by ea(t, 0) and integrate from 0 to t to

obtain
∫ t

0

[

ea(s, 0)x(s)
]∆

∆s =

∫ t

0

[

b(s)x(τ(s)) + c(s)x∆̃(τ(s))
]

ea(s, 0) ∆s.
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As a consequence, we arrive at

ea(t, 0)x(t) − x(0) =

∫ t

0

[

b(s)x(τ(s)) + c(s)x∆̃(τ(s))
]

ea(s, 0) ∆s.

Add x(0) to both sides and multiply both sides by e	a(t, 0) to conclude

(2.6) x(t) = x(0)e	a(t, 0) +

∫ t

0

[

b(s)x(τ(s)) + c(s)x∆̃(τ(s))
]

e	a(t, s) ∆s.

Here we have used Lemma 3.8 to simplify the exponential. We want to pull the factor

x∆(τ(s)) from under the integral in (2.6). Clearly,
∫ t

0

c(s)x∆̃(τ(s))e	a(t, s) ∆s =

∫ t

0

x∆̃(τ(s))
(

τ∆(s)
)

·
c(s)

τ∆(s)
e	a(t, s) ∆s.

Using the integration by parts formula,
∫ t

0

f∆(s)h(s) ∆s = (fh)(t) − (fh)(0) −

∫ t

0

h∆(s)fσ(s) ∆s,

and Theorems 3.6 and 3.7 we obtain,

(2.7)

∫ t

0

c(s)x∆̃(τ(s))e	a(t, s) ∆s =

c(t)

τ∆(t)
x(τ(t)) −

c(0)

τ∆(0)
x(τ(0))e	a(t, 0) −

∫ t

0

r(s)xσ(τ(s)) ∆s,

where r(s) is given by (2.5). Finally, substituting the right hand side of (2.7) into

(2.6) completes the proof.

Let ψ : (−∞, 0]T → R be a given bounded ∆-differentiable initial function. We

say x := x(·, 0, ψ) is a solution of (2.1) if x(t) = ψ(t) for t ≤ 0 and satisfies (2.1) for

t ≥ 0.

We say the zero solution of (1.1) is stable at t0 if for each ε > 0, there is a

δ = δ(ε) > 0 such that
[

ψ : (−∞, t0]T → R with ‖ψ‖ < δ
]

implies |x(t, t0, ψ)| < ε.

Let Crd = Crd(T,R) be the space of all rd-continuous functions from T → R and

define the set S by

S = {ϕ ∈ Crd : ϕ(t) = ψ(t) if t ≤ 0, ϕ(t) → 0 as t→ ∞, and ϕ is bounded} .

Then
(

S, || · ||
)

is a complete metric space where || · || is the supremum norm.

For the next theorem we assume there is an α > 0 such that

(2.8)

∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

+

∫ t

0

|r(s) − b(s)|e	a(t, s) ∆s ≤ α < 1, t ≥ 0,

and

(2.9) τ(t) → ∞ as t→ ∞.
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Theorem 2.2. If (2.2), (2.3), (2.8) and (2.9) hold, then every solution x(·, 0, ψ) of

(2.1) with small continuous initial function ψ, is bounded and goes to zero as t→ ∞.

Moreover, the zero solution is stable at t0 = 0.

Proof. Define the mapping P : S → S by

(

Pϕ
)

(t) = ψ(t), if t ≤ 0

and

(

Pϕ
)

(t) =

(

ϕ(0) −
c(0)

τ ∆̃(0)
ϕ(τ(0))

)

e	a(t, 0) +
c(t)

τ ∆̃(t)
ϕ
(

τ(t)
)

−

∫ t

0

[

r(s)ϕσ(τ(s)) − b(s)ϕ(τ(s))
]

e	a(t, s) ∆s, t ≥ 0.

It is clear that for ϕ ∈ S, Pϕ is continuous. Let ϕ ∈ S with ||ϕ|| ≤ K, for

some positive constant K. Let ψ be a small given continuous initial function with

‖ψ‖ < δ, δ > 0. Then using (2.8) in the definition of (Pϕ)(t), we have

‖Pϕ‖ ≤

∣

∣

∣

∣

1 −
c(0)

τ ∆̃(0)

∣

∣

∣

∣

δ +

∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

K +

∫ t

0

|r(s) − b(s)|e	a(t, s) ∆sK

≤

∣

∣

∣

∣

1 −
c(0)

τ ∆̃(0)

∣

∣

∣

∣

δ + αK,(2.10)

which implies that, ‖Pϕ‖ ≤ K, for the right δ. Thus, (2.10) implies that Pϕ is

bounded. Next we show that
(

Pϕ
)

(t) → 0 as t→ ∞. The first term on the right side

of Pϕ tends to zero, by condition (2.3). Also, the second term on the right side tends

to zero, because of (2.9) and the fact that ϕ ∈ S. It is left to show that the integral

term goes to zero as t→ ∞.

Let ε > 0 be given and ϕ ∈ S with ||ϕ|| ≤ K, K > 0. Then, there exists a t1 > 0

so that for t > t1, |ϕ(τ(t))| < ε. Due to condition (2.3), there exists a t2 > t1 such

that for t > t2 implies that e	a(t, t1) <
ε

αK
. For t > t2, we have

∣

∣

∣

∫ t

0

[r(s)ϕσ(τ(s)) − b(s)ϕ(τ(s))]e	a(t, s) ∆s
∣

∣

∣

≤ K

∫ t1

0

|r(s) − b(s)|e	a(t, s) ∆s+ ε

∫ t

t1

|r(s) − b(s)|e	a(t, s) ∆s

≤ Ke	a(t, t1)

∫ t1

0

|r(s) − b(s)|e	a(t1, s) ∆s+ αε

≤ αKe	a(t, t1) + αε

≤ ε+ αε.

Hence,
(

Pϕ
)

(t) → 0 as t → ∞. It is left to show that Pϕ is a contraction under the

supremum norm.
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Let ζ, η ∈ S. Then

∣

∣

∣
(Pζ)(t) − (Pη)(t)

∣

∣

∣
≤

{
∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

+

∫ t

0

|r(s) − b(s)|e	a(t, s) ∆s

}

‖ζ − η‖

≤ α‖ζ − η‖.

Thus, by the contraction mapping principle, P has a unique fixed point in S which

solves (2.1), bounded and tends to zero as t tends to infinity. The stability of the

zero solution at t0 = 0 follows from the above work by simply replacing K by ε. This

completes the proof.

Example 2.3. Let

T = (−∞,−1] ∪
{

(

1/2
)

Z

− 1
}

= (−∞,−1] ∪ {. . . , (1 − 2n) /2n, . . . ,−3/4,−1/2, 0, 1, 3, · · ·2n − 1, . . . } .

Then for any small continuous initial function, ψ : (−∞, 0]T → R, every solution,

x(·, 0, ψ) of the linear neutral differential equation,

(2.11) x∆(t) = −3xσ(t) + c0x
∆̃

(

t

2
−

1

2

)

,

where c0 is a constant, is bounded and goes to 0 as t→ ∞

Proof. In (2.11), we have τ(t) = t
2
− 1

2
. Let t ∈ (1/2)Z − 1. Then there exists an

n ∈ Z such that t = (1/2)n − 1. Hence,

τ(t) =
1

2

((

1

2

)n

− 1

)

−
1

2

=

(

1

2

)n+1

−
1

2
−

1

2

=

(

1

2

)n+1

− 1 ∈ T.

So, τ : T → T. Furthermore τ(T) is a time scale. Also, τ(t) = 1
2
t − 1

2
→ ∞ as

t → ∞ and [τ(t)]∆̃ = (t/2 − 1/2)∆̃ = 1/2. Consequently, conditions (2.2) and (2.9)

are satisfied. Since 1 + 3µ(t) > 0 for all t ∈ T, then 3 ∈ R+ and condition (2.3) is

satisfied as well.

One may easily arrive at r(s) = 6c0. Also

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣
+

∫ t

0

|r(s) − b(s)|e	a(t, s) ∆s ≤ 2c0 + 6c0

∫ t

0

e	3(t, s) ∆s

≤ 2c0 + 2c0 − 2c0e	3(t, 0)

≤ 4c0.
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Hence, (2.8) is satisfied for |c0| ≤
α
4
, α ∈ (0, 1). Let ψ be a given initial function that

is continuous with |ψ(t)| ≤ δ for all t ∈ T and define

S = {ϕ ∈ Crd : ϕ(t) = ψ(t) if t ≤ 0, ϕ(t) → 0 as t→ ∞, and ϕ is bounded} .

Define
(

Pϕ
)

(t) = ψ(t) if t ≤ 0

and

(

Pϕ
)

(t) =
(

ψ(0) − 2c0ψ(−1/2)
)

e	3(t, 0) + 2c0ϕ

(

1

2
t−

1

2

)

−

∫ t

0

6c0ϕ
σ

(

s

2
−

1

2

)

e	3(t, s) ∆s, t ≥ 0.

Then, for ϕ ∈ S with ‖ϕ‖ ≤ K, we have ‖Pϕ‖ ≤ |1−2c0|δ+4|c0|K ≤ |1−2co|δ+Kα.

This implies that ‖Pϕ‖ ≤ K, for K ≥ (1−α)
|1−2c0|δ

. To see that P defines a contraction

mapping, we let ζ, η ∈ S. Then
∣

∣

∣
(Pζ)(t) − (Pη)(t)

∣

∣

∣
≤ 2|c0| ‖ζ − η‖ + 2|c0|‖ζ − η‖

≤ α||ζ − η||.

Hence, by Theorem 2.2, every solution x(·, 0, ψ) of (2.11) with small continuous initial

function ψ : (−∞, 0]T → R, is in S, bounded and goes to zero as t → ∞ and the

proof is complete.

Next we turn our attention to the nonlinear neutral differential equation with

unbounded delay

(2.12) x∆(t) = −a(t)xσ(t) + c(t)x∆̃(τ(t)) + q
(

x(t), x(τ(t))
)

, t ∈ T.

where a, c, and τ are defined as before. Here, we assume q(0, 0) = 0 and is locally

Lipschitz continuous in x and y. That is, there is a K > 0 so that if |x|, |y|, |z| and

|w| ≤ K then

(2.13) |q(x, y) − q(z, w)| ≤ L|x− z| + E|y − w|

for some positive constants L and E.

Note that

|q(x, y)| = |q(x, y) − q(0, 0) + q(0, 0)|

≤ |q(x, y) − q(0, 0)|+ |q(0, 0)|

≤ L|x| + E|y|.

Let

S = {ϕ ∈ Crd : ‖ϕ‖ ≤ K,ϕ(t) = ψ(t) if t ≤ 0, ϕ(t) → 0 as t→ ∞} .
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Define a map P : S → S by

(

Pϕ
)

(t) = ψ(t), if t ≤ 0

and for t ≥ 0,

(

Pϕ
)

(t) =

(

ϕ(0) −
c(0)

τ∆(0)
ϕ(τ(0))

)

e	a(t, 0) +
c(t)

τ∆(t)
ϕ
(

τ(t)
)

+

∫ t

0

[

− r(s)ϕσ(τ(s)) + q
(

ϕ(s), ϕ(τ(s))
)

]

e	a(t, s) ∆s.

It is clear that for ϕ ∈ S, Pϕ is continuous. If P has a fixed point, say ϕ, then ϕ is

a solution of (2.12). In order for P to be a contraction, we assume that, there is an

α > 0 such that

(2.14)

∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

+

∫ t

0

(|r(s)| + L+ E)e	a(t, s) ∆s ≤ α < 1, t ≥ 0.

Theorem 2.4. If (2.2), (2.3), (2.13) and (2.14) hold, then every solution x(·, 0, ψ)

of (2.12) with small continuous initial function ψ : (−∞, 0]T → R, goes to zero as

t→ ∞. Moreover, the zero solution is stable at t0 = 0.

Proof. Let ϕ ∈ S and take t1 and t2 be as in the proof of Theorem 2.2. Then for

t > t2,
∣

∣

∣

∣

∫ t

0

q
(

ϕ(s), ϕ(τ(s))
)

e	a(t, s) ∆s

∣

∣

∣

∣

≤ K(L+ E)

∫ t1

0

e	a(t, s) ∆s+ ε(L+ E)

∫ t

t1

e	a(t, s) ∆s

≤ K(L+ E)e	a(t, t1)

∫ t1

0

e	a(t1, s) ∆s+ ε α

≤ αKe	a(t, t1) + ε α

≤ ε+ ε α.

This along with the proof of Theorem 2.2, shows that
(

Pϕ
)

(t) → 0 as t → ∞. Let

ψ be a small given continuous initial function with ‖ψ‖ < δ, δ > 0. Then, by using

(2.14) we arrive at

‖Pϕ‖ ≤

∣

∣

∣

∣

1 −
c(0)

τ ∆̃(0)

∣

∣

∣

∣

δ +

∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

K

+

∫ t

0

(|r(s)| + L+ E)e	a(t, s) ∆sK

≤

∣

∣

∣

∣

1 −
c(0)

τ ∆̃(0)

∣

∣

∣

∣

δ + αK,(2.15)

which implies that, ‖Pϕ‖ ≤ K, for the right choice of δ and α. It is left to show that

Pϕ is a contraction. Let ζ, η ∈ S. Then
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∣

∣

∣
(Pζ)(t) − (Pη)(t)

∣

∣

∣

≤
{

∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

||ζ − η||

+

∫ t

0

∣

∣r(s)| |ζσ(τ(s)) − ησ(τ(s))|e	a(t, s) ∆s

+

∫ t

0

|q
(

ζ(s), ζ(τ(s))
)

− q
(

η(s), η(τ(s))
)

|e	a(t, s) ∆s
}

≤

{
∣

∣

∣

∣

c(t)

τ ∆̃(t)

∣

∣

∣

∣

+

∫ t

0

(|r(s)| + L + E)e	a(t, s) ∆s

}

‖ζ − η‖

≤ α||ζ − η||.

Thus, by the contraction mapping principle, P has a unique fixed point in S which

solves (2.12) and tends to zero as t tends to infinity. This completes the proof.

Appendix - Time Scales

In his 1988 PhD dissertation, Stefan Hilger [3] introduced the theory of analysis

on time scales with the intention of unifying and extending the continuous and discrete

calculi. Since then many authors have engaged in studying dynamic equations on time

scales. See for example the references in the monographs [1] and [2]. The following

definitions and lemmas can be found in aforementioned texts.

A time scale T is a closed nonempty subset of R. For t ∈ T the forward jump

operator, σ, and the backward jump operator, ρ, respectively, are defined as σ(t) =

inf{τ ∈ T | τ > t} and ρ(r) = sup{τ ∈ T | τ < r}. These operators allow elements

in the time scale to be classified as follows. We say t is right scattered if σ(t) > t

and right dense if σ(t) = t. We say t is left scattered if ρ(t) < t and left dense if

σ(t) = t. The graininess function, µ : T → [0,∞), is defined by µ(t) = σ(t) − t

and gives the distance between an element and its successor. We set inf ∅ ≡ sup T

and sup ∅ ≡ inf T. If T has a left scattered maximum, M , we define T
κ = T \ {M}.

Otherwise, we define T
κ = T. If T has a right scattered minimum, m, we define

Tκ = T \ {m}. Otherwise, we define Tκ = T.

Let t ∈ T
κ and let f : T → R. The delta derivative of f(t), denoted f∆(t), is

defined to be the number (when it exists), with the property that, for each ε > 0,

there is a neighborhood, U , of t such that
∣

∣

∣
f(σ(t)) − f(s) − f∆(t)[σ(t) − s]

∣

∣

∣
≤ ε|σ(t) − s|,

for all s ∈ U . If T = R then f∆(t) = f ′(t) is the usual derivative. If T = Z then

f∆(t) = ∆f(t) = f(t+ 1) − f(t) is the forward difference of f at t.
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A function f is right dense continuous, (rd-continuous), f ∈ Crd = Crd(T,R), if

it is continuous at every right dense point t ∈ T and its left-hand limits exist at each

left dense point t ∈ T. The function f : T → R is differentiable on T
κ provided f∆(t)

exists for all t ∈ T
κ.

We are now ready to state some properties of the delta-derivative of f . Note

f(σ(t)) = fσ(t).

Theorem 3.5. Assume f, g : T → R are differentiable at t ∈ T
κ and let α be a scalar.

(i)
(

f + g
)∆

(t) = f∆(t) + g∆(t).

(ii) (αf)∆(t) = αf∆(t).

(iii) The product rules.

(

fg
)∆

(t) = f∆(t)g(t) + fσ(t)g∆(t).
(

fg
)∆

(t) = f(t)g∆(t) + f∆(t)gσ(t).

(iv) If g(t)gσ(t) 6= 0 then,
(

f

g

)

=
f∆(t)g(t) − f(t)g∆(t)

g(t)gσ(t)
.

The next theorem is the chain rule on time scales.

Theorem 3.6. Assume ν : T → T is strictly increasing and T̃ := ν(T) is a time

scale. Let w : T̃ → R. If ν∆(t) and w∆̃(ν(t)) exist for t ∈ T
κ, then

(w ◦ ν)∆ = (w∆̃ ◦ ν)ν∆.

We also need the substitution rule.

Theorem 3.7. Assume ν : T → R is strictly increasing and T̃ := ν(T) is a time

scale. If f : T is an rd-continuous function and ν is differentiable with rd-continuous

derivative, then for a, b ∈ T,
∫ b

a

f(t)ν∆(t) ∆t =

∫ ν(b)

ν(a)

(f ◦ ν−1)(s) ∆̃s.

A function p : T → R is said to be regressive provided 1 + µ(t)p(t) 6= 0 for all

t ∈ T
κ. The set of all regressive rd-continuous functions f : T → R is denoted by

R. The set of all positively regressive functions, R+, is given by R+ = {f ∈ R :

1 + µ(t)f(t) > 0 for all t ∈ T}.

Let p ∈ R. The exponential function is defined by

(3.16) ep(t, s) = exp

(
∫ t

s

1

µ(τ)
Log

(

1 + µ(τ)p(τ)
)

∆τ

)

.

If p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the exponential function y(t) = ep(t, s)

is the solution to the initial value problem y∆ = p(t)y, y(s) = 1. Other properties of

the exponential function are given in the following lemma.
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Lemma 3.8. Let p ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(ii) 1
ep(t,s)

= e	p(t, s) where 	p(t) = − p(t)
1+µ(t)p(t)

;

(iv) ep(·, s) = 1
ep(s,·)

= e	p(s, ·);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi)
(

1
ep(·,s)

)∆

= − p(t)
eσ
p
(·,s)

.
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