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1. INTRODUCTION

This paper is devoted to study the existence of multiple positive solutions for the

boundary value problem with impulse effects

—Lu = g(z,u), rel,

—A(pu)|oesy, = I(u(zg)), k=1,2,...,m,
Ri(u) = oqu(0) + 512/(0) = 0,

Ry(u) = asu(l) + fau/(1) =0,

(1.1)

here Lu = (p(z)u’)'+q(z)u is Sturm-Liouville operator, I = [0,1] I = I\{x1, 22, ..., Zm}
and 0 < 21 < 23 < -+ < &y, < 1 are given, Rt = [0,00), g € C(I x RT,R"), I} €
C(RT,RY), A(pt)|pea;, = plap)u/(z) — plap)u/(xy), u/'(z) (vespectively u'(z;))
denotes the right limit (respectively left limit) of v/(z) at © = xy.

Throughout this paper, we always suppose that
(S1) p(z) € CY([0,1],R), p(z) > 0, q(z) € C([0,1],R), q(z) < 0, a1, 02,5 > 0,

51 <0,08+5E>0,a3+ 6% >0.
In recent years, second-order differential boundary value problems with impulses

have been studied extensively in the literature (see for instance [1, 3, 6, 7, 8, 9, 10, 11]
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and their references). However, most papers are concerned with the case p(z) = 1
and ¢(z) = 0. In this paper, we will consider the case p(z) # 1 and ¢(x) # 0. Here
we also mention that second order dynamic inclusions on time scales with impulses
has been studied in [2].

The existence of positive solutions of problem (1.1) has been studied in [5]. By
employing Krasnoselskii fixed point theorem on compression and expansion of cones,
it was proved in [5] that problem (1.1) has at least one positive solution when g(x, u)
is either superlinear or sublinear in u. Our results in this paper improve those in [5].
The proof is based on fixed point index theory in cones [4].

To conclude the introduction, we introduce the following notation:

I
9o = liminf min g<x7 u>> ]O(k) = lim inf k<u>>
u—0t z€0,1] U w0+ U
I
Js = liminf min gz, u , Lo (k) = liminf k(u>’
u—+o00 x€[0,1] U U—+too U
I
9> = limsup max 9z, v) 1°(k) = limsup k(u),
u—+o0 z€[0,1] u u——400 u
I
¢° = lim sup max g(x,u)’ 1°(k) = limsup k(u>
u—0+ =€[0,1] U w0 U

Moreover, for the simplicity in the following discussion, we introduce the following

hypotheses.

o 32 Io(k)én (1) 0 32 Lo (k) (1)
k=1 >N\, Qoo + = > AL

da f01¢1
]f)¢1(35k) Z (@%(%)
k= )\1’ =1
K “%z?)asl(x)dx a +f(
m(x) n(z)

here ¢ = min min{ ,——=} (see section 2), and ¢;(x) is the eigenfunction
506[1'1 Ton] (1) n(O)

related to the smallest eigenvalue A; of the eigenvalue problem —L¢ = A\p, Ry(¢) =
Ry(¢) = 0.
(H3) There is a p > 0 such that 0 <u < pand 0 <z <1 implies

Hiy) g0
M) 9ot =
i(

(HQ) g(] + < )\17

<—0) o1 (z)dx

g(z,u) < np, I(u) < nep,

here 7, n, > 0 satisfy n+ > np > 0, nfol Gy, y)dy + > G(ag, zr)ne < 1 and
k=1 k=1

G(z,y) is the Green’s function of boundary value problem —Lu = 0, Ry(u) =
Ry(u) = 0 (see section 2).

(Hy) There is a p > 0 such that op < u < p implies
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here A, A > 0 satisfy A+ > Ay >0 and A [" G y)dy + > MG(5, 2) > 1.
k=1 k=1

2. PRELIMINARIES

In this paper, we shall consider the following space

PC'(I,R) = {u € C(I,R); W) (wp.00s1) € C(@k, Tp11),

W(zy) = (z), 3u'(zf), k=1,2,---,m}
with the norm ||ul|pcr = max{||ul|, [|u'|[}, here [[ul| = sup [u(z)], ||v'[| = sup |u'(z)].
z€[0,1] z€[0,1]

Then PC'(1,R) is a Banach space.

Definition 2.1. A function v € PC'(I,R)NC?(I’,R) is a solution of (1.1) if it satisfies
the differential equation

Lu+g(z,u)=0, xzel

and the function u satisfies conditions A(pu')|,—y, = — Ik (u(xy)) and Ry (u) = Ra(u) =
0.

Let Q=IxTand Q1 ={(z,y) €Q0<z<y<1} Q={(z,y) €Q0<y<
x < 1}. Let G(x,y) is the Green’s function of the boundary value problem

—Lu = O, Rl(U) = RQ(U) =0.
Following from [5], G(z,y) can be written by

M> ($vy) € Qla

(2.1) G(z,y) :=
bt o,

Lemma 2.2. [4] Suppose that (S1) holds, then the Green’s function G(z,y), defined
by (2.1), possesses the following properties:

(i) m(z) € C*(I, R) is increasing and m(z) > 0, x € (0,1].

(ii) n(x) € C*(I, R) is decreasing and n(z) >0, = € [0,1).

(iif) (Lm)(x) =0, m(0) = =By, m'(0) = ax.

n)(z) =0, n(l) = f, n'(1) = —as.

)
)
)
(iv)
(V) w is a positive constant. Moreover, p(z)(m/(x)n(z) — m(z)n'(x)) = w.
(vi)
(vii)
(viil) For each fizedy € 1, G(z,y) satisfies LG(x,y) =0 for x # vy, x € I. Moreover,
By (G) = Ry(G) = 0 fory € (0,1).

(L
w
G(z,y) is continuous and symmetrical over ().
G

(x,y) has continuously partial derivative over Qq, Q2.
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(viiil) G, has discontinuous point of the first kind at x =y and
1
p(y)’

GL(y+0,y) — G (y—0,y) = — y € (0,1).

Consider the linear Sturm-Liouvile problem
—(Lu)(x) = Au(z), Ry(u) = Ry(u) = 0.

By the Sturm-Liouvile theory of ordinary differential equations (see, for example,
[4], [11]), we know that there exists an eigenfunction ¢;(z) with respect to the first
eigenvalue \; > 0 such that ¢(z) > 0 for z € (0,1).

Following from Lemma 2.2, it is easy to see that

(2.2) min{m<f> n<x>} m(y)n(y)

m) 'm0 ) w =@y

<Gy =" ) o1)x 0.1)

Let E be a Banach space and K C E be a closed convex cone in E. For r > 0,
let K, ={u e K :||ul| <r}and 0K, = {u € K : ||u|| = r}. The following three

Lemmas are needed in our argument, which can be found in [4].

Lemma 2.3. Let ® : K — K be a continuous and completely continuous mapping
and ®u # u for u € OK,. Then the following conclusions hold:

(i) If ||u]| < ||Pul| for u € 0K, then i(P, K., K) = 0;

(i) If ||u|| > ||Pu|| for u € OK,, then i(®, K,, K) = 1.

Lemma 2.4. Let ® : K — K be a continuous and completely continuous mapping
with p®u # u for every u € 0K, and 0 < p < 1. Then i(®, K,, K) = 1.

Lemma 2.5. Let ® : K — K be a continuous and completely continuous mapping.
Suppose that the following two conditions are satisfied:

(i) uéral;(r || Dul| > 0; (il) pdPu # u for every u € 0K, and p > 1.
Then, i(®, K,, K) = 0.

In applications below, we take £ = C(I,R) and define

mix) 1)y e 1y,

K = {ue C(IR) : u(e) = min{ T0as, T

One may readily verify that K is a cone in F.

Define an operator ¢ : K — K by
1 m
@u)@) = [ Glap)gyuly)dy+ > Gl (ulm), o € 1
0 k=1

Lemma 2.6. ®(K) C K. Moreover, ® : K — K is continuous and completely

continuous.
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Proof It is easy to see that ® : K — K is continuous and completely continuous.
Thus we only need to show ®(K) C K.
In fact, for u € K, by using inequalities (2.2), we have that

|®ul < / Gy, 1)g(y, u(w))ds+ S Glan, vx) L(u(z))

and
2 (Bu)(z) me{ Ef;?f‘r } /0 Gy, v)g(y, u(y))dy
m(z) :c)
n o 2 Z Gk, ) (@)
m(z) n(x)
> min{ 2L S|l € [0.1)
Thus, (K) C K. -

Lemma 2.7. If u is a fized point of the operator ®, then u is a solution of problem

(1.1).

3. MAIN RESULTS

Lemma 3.1. If (Hj) is satisfied, then i(®, K, ,K) = 1.

Proof Let v € K with |lu|| = p. It follows from (Hs) that

[ @ul < / Gl gty ul)dy + 3 Ol ) Iu(u(ey))

k=1

1 m
<l / Gy, v)dy + 3 Gl z)m] < p = [l
0 k=1

Thus
|Pul| < |Jull, ¥V ueIK,.

It is obvious that ®u # u for v € OK,,. Therefore, i(®, K,, K) = 1, here we use
Lemma 2.3. O
Lemma 3.2. If (Hy) is satisfied, then i(®, K, K) = 0.

Proof Let u € K with ||u|| = p, then

mix) n@) i) 0

u(r) > min{ m(1)’ n(0) w€le1,0m] m(1)" n(0)

Hull = op, € [z1, ).
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It follows from (H,) that

(@u)(L) > Lﬁwm;ymwnwwMy+é;ag¢mﬂauww>
> MAﬁTG%wwy+é;&G%wﬂ

> p=|ul].
Therefore,
|Pu|| > ||u|l, VY uedK,.
Clearly ®u # u for u € 0K,. So, i(®, K,, K) = 0, here we use Lemma 2.3. O

Theorem 3.3. Assume that (Hy) and (H3) are satisfied. Then problem (1.1) has at

least two positive solutions uy, and us with
0 <[lurl] <p < |[uzll.

Proof According to Lemma 3.1, we have that

(3.1) i(®, K, K) = 1.
Since (H;) holds, then there exists 0 < ¢ < 1 such that

7 32 Io(hk)n (o) 7 3 L(h)n (o)
(3.2) (1—¢)lgo+ k:le (@) > A, (1=¢)goe + k:flol (@) ] > A

By the definitions of gy, Iy, one can find 0 < ry < p such that
g(x,u) > go(1 —e)u, Ix(u) > Io(k)(1 —e)u, Vo € [0,1], 0 <u <.

Let r € (0,79), then for u € 0K,, x € [x1,x,,], we have

m(z) n(z)
u(w) = min mind s 1) 70 )}H ull =

Thus

@0(3)= [ GG, <@+Ze—mm<»

/’G,yyw @+Ze—mmum>

Tm

>g(1-2) [ GG yulydy+ (- 2) Y Gl m) (Rl

Tm 1 m 1
> (1= SJorln [ GGy + Y Gl L)
1 k=1

from which we see that igﬁ( ||®ul| > 0, namely, hypothesis (i) of Lemma 2.5 holds.
ue r
Next we show that u®u # u for any u € 0K, and p > 1.
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If this is not true, then there exist ug € 0K, and py > 1 such that po®ug = ug.
Note that ug(z) satisfies

Lug(x) + pog(z, up(z)) =0, xel’,
—A(pug)|e=e, = polr(uo(zr)), k=1,2,---,m,
a1ug(0) + Brug(0) =

(3.3) .
OégU(](l) -+ 62U6(1) = 0.

Multiply equation (3.3) by ¢;(x) and integrate from 0 to 1, note that

/)@ Y + q(0)uola dx—/’¢1 [(p()uh(2)) + q(a)uo())dz

$k+1

+§j/’ (@) + a(@)uo(w)]da
«+/ 61 () [(p(x)u)(2)) + q(x)uto () dx
=¢xmmwn%wy4»—@mmmwwn—émmw%@wﬁ@w

m—1

+ [ atenle)on (@) + Y (on o plans (o ~ O

— o wplaup(o+0) = [ pla)u (o) o)
+ /xkﬂ q(z)uo(x)py (z)dz] + d1(1)p(L)ug(1) — G (2m)p(2m)ug(zm 4 0)
_/p@%@¢@m+/q@%@¢@m

m

=—2Awm%@wmm—/pm¢m%mm+/«mmwmmm
k=1 0 0
o (Dp(1)(1) — 6 (0)p(0)u(0).
Also note that
Amwm%mm=£mwwmm>
:mwﬁawaw—pmwﬁm%mwiéuaw@@w«wwm
:mwﬁumaw—mmﬁmmam+4zmw«@m@wx

4—M£%@@@w
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Thus, by the boundary conditions, we have

[ o0 + atwatollde = -3 Aar)in)e)
— p(1)¢1(1)uo(1) + p(0)¢' (0)uo(0) h
_ /0 ' wo(2)a(@)n (2)dz — Ay /0 o)1 ()
1(@)uo(
)

/Olq(l“cb )ug
(

+

z)dr + ¢1(1)p(1)ug(1) — ¢1(0)p(0)up(0)

m

)
=Y Al

k=1

nh(e))n@) =M1 [ unla)on(@)da

m

Z ol (uo(wr)) 1 (wr) — )\1/0 uo () s (v)dx

k=1

So we obtain

)\1/0 U0($)¢1($)d$:,uoka(uo(xk))%(l’k)+M0/0 ¢1(x)g(, uo(z))dz

>(1-¢) Z Lo (k)1 (wn)uo(zr) + (1 — 8)90/0 o1(x)ug(x)dx.

Since ug(x) > min{ :’;Ef ”(w

g;}r, we have fol o1(x)ug(z)dxr > 0,
and so from the above inequahty we see that )\1 > (1 —¢)go. If Ay = (1 — ¢€)go, then
In(k) =0,k =1,2,...,m. But from (3.2) we have (1 — &)gy > A;, which is a contra-
diction. So A\; > (1 —¢)go. Thus

A — (1 2)go) / wo(@)éi (2)dz > (1 — ¢ B)on (w)ula)
(1)

(
> (1 —Eg)or ]0(]€)¢1 Tk ).

) D o
k=1
Jor >
k=1
Sincefo1 uo(x)p1(x)dxr < Tfo ¢1(x)dx, we have

= (1= [ Gr(o)de = (1= 20 Y Tlk)oa o)
0 k=1

which contradicts (3.2) again. Hence ® satisfies the hypotheses of Lemma 2.5 in K.
Thus

(3.4) (P, K., K)=0.
On the other hand, from (H;), there exists H > p such that

(3.5) g(x,u) > goo(l —&)u, Ip(u) > Io(k)(1 —e)u,V x €[0,1], u> H.
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Let C = Jnax, max lg(z,u) — goo(l — €)u| + 21 Jhax, [Ix(u) — Io(k)(1 — €)ul. It is

clear that
(3.6) g(z,u) > goo(1 —)u—C, I(u) > Io(k)(1 —e)u—C, Vx €10,1], u>0.

Choose R > Ry := max{Z, p} and let u € OKp. Since u(z) > ollu|| = R > H for

T € |21, Ty, from (3.5) we see that
g(x,u(x)) > goo(l —)u(x) > 0guc(l — )R, V x € |21, Ty

Ii(u(zg) > 0l(k)(1 —€)R.

Essentially the same reasoning as above yields ig}f{ ||Pu|| > 0. Next we show that if
ue R

R is large enough, then p®u # u for any v € 0K and x> 1. In fact, if there exist
ug € OKg and po > 1 such that pg®uy = ug, then ug(x) satisfies equation (3.3).

Multiply equation (3.3) by ¢1(z) and integrate from 0 to 1, using integration by
parts in the left side to obtain

1

h [ @) (w)de =0 Y- Tlun(a)en(n) + i [ gl uole)on(e)da

k=1

>(1—¢) Z Lo (K) 1 (zx)uo(zy) + (1 — 5)900/0 uo(z) g1 (z)dx

1

- C(Z O(xk) + [ ¢1(x)de).

If goo < Aq, then we have

A1 — (1 —€)guo) /0 uo(z) 1 (x)dx + C (Z o1(zk) +/0 ¢1(x)dx>

(1 =) > Loo(k)a(w)uo(xs),
h=1

thus
|uol|[A1 — (1 — €)guo) /0 ¢1(x)dx + C (Z o1(xy) +/0 gbl(:c)dx)

(1 —¢&)o]|u ZI k) (1)

C(3 dr(a) + J) (e

(1= 2)0 > Too(B)n () — [ — (1 — £)goo] fi 61 (2)d
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If goo > A1, we can choose € > 0 such that (1 — ¢)gs > A1, then we have

(3ot + [ o0tis) 210~ 0 -1 [ aiorute
>[(1 = g = Mol | (2 fzg)¢mwa

C(Z@@@+£@@MQ
(3.7) l[uo]| < =l —: R.

[(1_5900_ fo (0 Cbl( )
Let R > max{p, R}, then for any u € (9KR and u > 1, we have u®u # u. Hence
hypothesis (ii) of Lemma 2.5 is satisfied and

Thus

(3.8) i(®, K ,K) = 0.
In view of (3.1), (3.4) and (3.8), we obtain
i(®,Kp\ K,,K)=—1, i(®, K, \ K,, K) = 1.

Then & has fixed points u; and uy in K, \ K, and Kg \ K,, respectively, which
means uy(x) and uy(z) are positive solution of the problem (1.1) and 0 < [Juq]| < p <
[ul]- [

Corollary 3.4. The conclusion of Theorem 3.3 is valid if (Hy) is replaced by
(HY) go =00 or > Io(k)di(zy) = oo; Joo =00 OF Y Io(k)d1(wx) = 00.
k=1

k=1

Theorem 3.5. Assume that (Hy) and (Hy) are satisfied, then problem (1.1) has at

least two positive solutions uy, and us with

0 <[] <p <|luall.
Proof According to Lemma 3.2, we have that
(3.9) i(®,K,,K)=0.

Since (Hz) holds, there exists 0 < ¢ < min{\; — ¢°, A\; — ¢g°°} such that

(3.10) (M —e— g% /01 (Zif; nE ) v)da > Z (I°(k) + €)1 (1),

and

(3.11) (M — ¢ —goo)/ol (%Z%i) ))dz > Z (I°°(k) + &)y ().

One can find 0 < rg < p such that

(3.12) g(z,u) < (" +e)u, Ii(u) < (I°(k)+e)u, Vo c[0,1], 0<u<r.
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Let r € (0,79). Now we prove that u®u # u for any z € 0K, and 0 < p < 1. If this
is not true, then there exist uy € K, and 0 < pg < 1 such that po®Pug = ug. Then
uo(z) satisfies equation (3.3). Multiply equation (3.3) by ¢;(z) and integrate from 0
to 1, using (3.12), to obtain

)\1/0 U0($)¢1($)dl’:Mosz(uo($k))¢1($k)+M0/0 ¢1(z)g(z, uo(z))d

I
SZ (I°(k) + &)ug(zr) d1 (k) / o1 (x)ug(x)dz(g” +€),

k=1
ie.
1 m m
(Al—go—g)/ o(x)¢1(z)dr < Z (I°(k) +€)uo (@) 1 (2x) TZ k) +e)or (@)
0 k=1 k=1
Since ug(x) > min{ Zig , Zgg Hluo|| > (m z ZE”S;) r, and so from the above inequality
we see that

1 m
o003 e i
which is a contradiction. By Lemma 2.4, we have
(3.13) i(®, K, K) = 1.
On the other hand, from (Hs), there exist H > p such that
g(x,u) < (g™ +e)u, I(u) < (I®(k)+e)uVxe|0,1], u> H.

Let C' = Jnax, max lg(z,u) — (g™ +e)ul +kz::1 Jnax, [T (u) — (I°(k)+¢<)ul. It is clear
that

(3.14)  g(z,u) < (¢ +e)u+C, Ip(u) < (I®k)+e)u+C, Vxel0,1], u>0.

Next we show that if R is large enough, then u®u # u for any u € 0Kg and
0 < p < 1. In fact, if there exist ug € 0Kg and 0 < pug < 1 such that pg®Pug = uy,
then ug(z) satisfies equation (3.3). Multiply equation (3.3) by ¢1(x) and integrate
from 0 to 1, using (3.14), to obtain

>\1/0 () (v)dz = Mosz(uo($k))¢1($k)+ﬂo/o g(z, uo(x)) 1 (x)dx

< Zum(k) +e)naum) + [ on@ula)dels™ + o

+ 1(zk) / o1 (z)dz),

ie.,
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(=% =) f wo@)or(@)dz < 3 (I%(8) + <)o (wuo(r)
C(3 dr(ai) + fy 1(a)d)

< loll 32 (1<(k) +2)en ()

C(3 dr(ai) + fy dr(a)ds

(3.15)

Also we have fol ug(x) gy (x)dz > ||uol| fo
(3.15) yields

(—0)<;51( )dz, and this together with

C(X dilan) + fy dn(x)da) )
luoll < = T =: R.
(M ) Jo (a1 (@)de = 3 (1(k) + )1 (x)

Let R = max{p, R}, then for any z € 0K and 0 < p < 1, we have u®u # u. Thus
(3.16) (@, Ky K)=1.
In view of (3.9), (3.13) and (3.16), we obtain
i(®, Kr\ K,, K) =1, i(®,K,\ K,, K) = —

Then @ has fixed points u; and uy in K, \ K, and Kp \ Kp, respectively, which
means u;(x) and ug(x) are positive solution of problem (1.1) and 0 < |Juy]| < p <
[uz]]- 0

Corollary 3.6. The conclusion of Theorem 3.5 is valid if (Hg) is replaced by
(Hy) ¢° = 0 and I°(k) = 0, k = 1,2,...,m; g® = 0 and I®(k) = 0, k =
1,2,....,m

The proof of the following two Theorems follows the ideas in the proof of Theorems
3.3 and 3.5. Here we omit it here.

Theorem 3.7. Assume the following condition is satisfied:

7 3 (k)o(x) 3 (K)o ()
P Rama 0 e e me
Then (1.1) has at least one positive solution.
Corollary 3.8. Assume the following condition is satisfied:
go = ooorZIo Yo1(xy) = g =0and I*(k)=0, k=1,...,m

k=1

Then (1.1) has at least one positive solution.
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Theorem 3.9. Assume the following condition is satisfied:

210<k> 61 (k) aﬁfoo(k)asl(xk)
0 )\1> oo :11 )\1~
eI < T T

Then (1.1) has at least one positive solution.

Corollary 3.10. Assume that

@ =0and I°(k) =0, k=1,...,m; = 00 or ZI k)1 (zr) = oo.

Then (1.1) has at least one positive solution.

Example 3.11. Consider the following impulsive boundary value problem

Lu+Au+Bu’ =0, z€l', 0<a<1<fB,A>0 B>0,
—ApW) o=z, = crulzr), e >0,

Ry(u) = aqu(0) + f1u/(0) = 0,

Ry(u) = asu(l) 4+ fou’(1) =0,

here Lu = (p(x)u')" + q(x)u. Assume that (S;) is satisfied. Then problem (3.17) has

at least two positive solutions u; and uy with

(3.17)

0 < f|ur]] <1 < |Jugl|

provided
(3.18) A+B< ZGIk,Ik Ck)s / G(y,y)d
k=1

Proof To see this we will apply Theorem 3.3 (or Corollary 3.4).
By (3.18), n > 0 is chosen such that

A+B<77< ZGﬂEk,!Eka
k=1
Set
g(w,u) = Au® + Bu”.
Note

go = X0, Joo = 00,
so (Hy) (or (HY)) holds.
Let n, = ¢, then n, n; satisfy

1 m
0 [ Gy + 3 Glamn < 1.
0 k=1

Let p =1, then for 0 < u < p, we have

g(x,u):Aua+Bu5§A+B<np:n,
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I (u) = cpu = mpu < nip,

thus (H3) holds. The result now follows from Theorem 3.3 (or Corollary 3.4). O
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