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ABSTRACT. In this paper, we study the existence and uniqueness of classical global solutions of

some integrodifferential equations with infinite delay. We loosen the conditions of the integral term

in the equations which are more general than those that have been mentioned in many previous

studies. Some sufficient conditions are given which ensure the existence and uniqueness of solutions

on [0,∞). We assume linear part is not necessary to be densely defined and satisfies a Hille-Yosida

condition. By using matrix operators and fixed point theorems, we obtain new results for the

retarded integrodifferential equations.

Keywords: Hille-Yosida operator, retarded Volterra integrodifferential equation, integrated semi-
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1. INTRODUCTION

In this paper we consider the following partial functional differential equations

with infinite delay

(RACP )

{

u′(t) = Au(t) + F (t, ut), t ≥ 0,

x0 = ϕ ∈ P,

where A : D(A) ⊆ X → X is a closed linear operator in an infinite-dimensional

Banach space (X, ‖ · ‖), the phase space P is a linear space of function mapping

(−∞, 0] into X satisfying some axioms which will be described later, F is an X-

valued function defined on [0,∞) × P, and ut : (−∞, 0] → X, t ≥ 0, is defined

by

ut(θ) = u(t+ θ) for θ ∈ (−∞, 0].

Moreover, ϕ represents the initial condition of the given system throughout this paper.

The equation (RACP) has been studied by many authors (cf. [1], [2], [3] and [15]

etc.).

In the literature devoted to Eq. (RACP) with finite delay, the state space is

the space of all continuous function on [−r, 0], r > 0, endowed with the uniform
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norm topology. The investigation of functional differential equations with infinite

delay in an abstract admissible phase was initialed by Hale and Kato [8], Kapple and

Schappacher [13], and Schumacher [18]. The method of using admissible phase spaces

enables one to treat a large class of functional differential equations with infinite delay

in the same time and obtain more general results. For a detail discussion on this topic,

we refer the reader to the book by Hino et, al. [12].

There have been a great deal of works contributed to the study of finite delay by

using different methods under different conditions. The most original work is from

Travis and Webb [20]. In the study of Eq. (RACP), one assumes that the operator A

generates a C0-semigroup on X. In this case, A must be densely defined and satisfies

the Hille-Yosida condition. More recently, in [1], the authors show that the density

of domain for A is not necessary to deal with finite or infinite delay. For the study of

Eq. (RACP), we refer the reader to Hale and Kato [8] and Hino et, al. [12]. We shall

focus on the case that A is not densely defined but satisfies the Hille-Yosida condition.

In [1], the authors treated Eq. (RACP) by using variation-of-constant formula and

integrated semigroups to extend the results of Henriquez [9], [10] and [11]. In their

cases, F satisfies the local Lipschitz condition with respect to the phase space. For a

detail discussion on delay equations, we refer the reader to the book by Wu [21].

Based on ideas in [1] and the usage of the extrapolation approach which is intro-

duced by Nagel and Sinestrari [17], we consider the following equation

(V ID1)

{

u′(t) = Au(t) +
∫ t

0
B(t, θ, u(θ))dθ + F (t, ut), t ≥ 0,

u0 = ϕ ∈ P,

where B ∈ C(Γ×X,X), Γ = {(s, t) ∈ R
2| 0 ≤ t ≤ s <∞} and F ∈ C([0,∞)×P, X).

We point out that the Eq. (VID1) can be transformed into
{

u′(t) = Au(t) +G(t, ut), t ≥ 0,

u0 = ϕ ∈ P,

by setting G(t, ut) :=
∫ 0

−t
B(t, t+ θ, ut(θ))dθ + F (t, ut). However, in order to use this

transformation and apply the method in [1], we have to assume that B is a function

from Γ×P into X which is different from our assumptions (in our cases, B is defined

on Γ × X). We do not treat Eq. (VID1) by this transformation. In general, the

conclusions in [1] cannot be applied to our cases.

The purpose of this paper not only consider the Eq. (VID1) but also solve the

equation

(V ID2)

{

u′(t) = A[u(t) +
∫ t

0
B(t− θ)u(θ)dθ] + F (t, ut), t ≥ 0,

u0 = ϕ ∈ P

where B(·) is a bounded linear operator from X into X. The Eq. (VID2) without

delay was studied in [3], [6] and [16]. We will generalize the method in [6] to solve it.
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The obtained results would be an extension of [6]. Finally, the following equation

(V ID3)

{

u′(t) = A[u(t) +
∫ t

−∞
B(t− θ)u(θ)dθ] + F (t, ut), t ≥ 0,

u0 = ϕ ∈ P

is also studied.

In section 2, we recall some preliminary results about the extrapolated spaces

and semigroups. In section 3, we prove the existence and uniqueness of solutions to

Eq. (VID1), (VID2), and (VID3), the main results of this paper. Moreover, we give a

growth bound of solutions of Eq. (VID1). In the final section we give some examples

to show our result are valuable.

2. PRELIMINARY

In this section we give some basic definitions and results of extrapolation spaces

that are required in this paper. For more information about extrapolation spaces, see

[5], [6], [14] and [17].

Let X be a Banach space and let A be a linear operator with domain D(A).

Definition 2.1. The linear operator A is a Hille-Yosida operator on X if there exists

w ∈ R and M ≥ 1 such that (ω,+∞) ⊂ ρ(A) (ρ(A) is the usual resolvent set of A)

and satisfies

(HY ) ‖(λ− A)−n‖ ≤
M

(λ− ω)n
for all λ > ω and n ∈ N.

Throughout this paper, we assume that A is a Hille-Yosida operator, T > 0 is

an extended real number and without loss of generality, we set ω < 0. The domain

D(A) of A is not necessarily dense in X and we denote its closure in X by X0. The

part A0 of A in X0 is the linear operator with domain D(A0) = {x ∈ D(A)|Ax ∈ X0}

that defined by A0x = Ax for all x ∈ D(A0). Here is an elementary property of the

Hille-Yosida operator. The proof can be found in [5].

Proposition 2.2. The part A0 of A in X0 generates a C0-semigroup (T0(t))t≥0 on

X0. Moreover, ‖T0(t)‖ ≤Meωt for t ≥ 0.

Definition 2.3. For a fixed λ0 ∈ ρ(A), we define a new norm on X0 by

‖x‖−1 = ‖R(λ0, A0)x‖ for x ∈ X0.

The completion of (X0, ‖ · ‖−1), denoted by X−1, is called the extrapolation space of

X associated with A.

Note that the norm ‖ · ‖−1 associated to λ0 and the norm on X0 given by

‖R(λ,A)x‖ for different λ ∈ ρ(A) are equivalent. The operator T0(t) has a bounded

linear extension T−1(t) to the Banach space X−1 and T−1(·) is a strongly continuous

semigroup on X−1. T−1(·) is called the extrapolated semigroup of T0(·).
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Proposition 2.4 ([17], Proposition 2.1). The following properties hold:

(i) The space X0 is dense in (X−1, ‖ · ‖−1). Hence the extrapolation space X−1 is

also the completion of (X, ‖ · ‖−1).

(ii) For f ∈ L1
loc(R

+, X) (i.e. f is a function locally integrable) and t > 0, let

(T−1 ∗ f)(t) :=

∫ t

0

T−1(t− s)f(s)ds.

Then (T−1 ∗ f)(t) ∈ X0 and ‖(T−1 ∗ f)(t)‖ ≤ M1‖f‖L1((0,t),X) where M1 is a

constant independent of f and t.

Consider the abstract Cauchy problem

(ACP )

{

u′(t) = Au(t) + f(t), t ≥ 0,

u(0) = x

The following result has been proved in [17].

Proposition 2.5. If x ∈ D(A), f ∈ W 1,1([0, T ], X) and Ax + f(0) ∈ X0, then there

exists a unique solution u of Eq. (ACP) on the interval [0, T ], and

‖u(t)‖ ≤Meωt(‖x‖ +

∫ t

0

e−ωs‖f(s)‖ds)

for each t ∈ [0, T ].

For the rest of this paper, M1 and M always denote the constants in Proposi-

tion 2.4 and Proposition 2.5, respectively.

Finally, we give the basic definition and properties of integrated semigroups which

can be found in [14], [19] and their references. Let L(X) always denote the set of all

bounded linear operators on X.

Definition 2.6. A family {S(t); t ∈ [0,∞)} ⊂ L(X) is called an integrated semigroup

if the following conditions are satisfied.

(i) S(0) = 0.

(ii) For every x ∈ X, t 7→ S(t)x is a continuous function of t ≥ 0 with values in X.

(iii) S(t)S(s) =
∫ s

0
(S(t+ r) − S(r))dr for each t, s ≥ 0.

S(·) is said to be nondegenerate if S(t)x = 0 for all t > 0 implies x = 0. The generator

B of a nondegenerate integrated semigroup S(·) is defined as follows:

x ∈ D(B) and Bx = y if and only if S(t)x =

∫ t

0

S(u)ydu+ tx for t ≥ 0.

Proposition 2.7. Let B generate an integrated semigroup S(·). Then for all x ∈ X

and t ≥ 0, we have
∫ t

0

S(s)xds ∈ D(B) and S(t)x = B

∫ t

0

S(s)xds+ tx.
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In [14], it is shown that A generates an integrated semigroup S(·) on X and

S(t)x =
∫ t

0
T0(s)xds for x ∈ X0 and t ≥ 0. Hence, by Proposition 2.4(i) we derive

that

(2.1) S(t)x =

∫ t

0

T−1(s)xds

for all x ∈ X and t ≥ 0. (2.1) will be used later.

3. GLOBAL EXISTENCE OF SOLUTIONS

In this section, we prove global existence and uniqueness of the solutions to

equations (VID1) through (VID3) in an integrated form by using a variation-of-

constants formula in the sense of extrapolated semigroups. Then we give a growth

bound of the solutions of Eq. (VID1).

Definition 3.1. We say that a function u : R → X is a classical solution of

Eq. (VID1) on [0,∞) if u satisfies the following conditions

(i) u ∈ C1([0,∞), X) ∩ C([0,∞), D(A)),

(ii) u satisfies (V ID1) on [0,∞).

(iii) u(t) = ϕ(t) for −∞ < t ≤ 0.

Let us consider the abstract Cauchy problem. Since the mild solution of Eq. (ACP)

is given by

u(t) = T0(t)x +

∫ t

0

T−1(t− s)f(s)ds, t > 0

for x ∈ X0 . So, we give the following definition

Definition 3.2. Let ϕ(0) ∈ X0. We say that a continuous function u : R → X is a

mild solution of Eq. (VID1) on [0,∞) if u satisfies the following equation

(IE)











u(t) = T0(t)ϕ(0) +
∫ t

0
T−1(t− s)

∫ s

0
B(s, θ, u(θ))dθds

+
∫ t

0
T−1(t− s)F (s, us)ds,

u0 = ϕ

on [0,∞). We denote this solution by u(·, ϕ).

For the rest this paper, we assume that the phase space (P, ‖·‖P) is a seminormed

linear space consisting of functions from R
− into X satisfying the following axioms

introduced by Hale and Kato in [8].

(A1) There exist a positive constant H and functions K(·), M(·) : R
+ → R

+, with

K continuous and M locally bounded, such that for any σ ∈ R and a ≥ 0, if

x : (−∞, σ+ a] → X, xσ ∈ P and x(·) is continuous on [σ, σ+ a], then for every

t ∈ [σ, σ + a] the following conditions hold:

(i) xt ∈ P,
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(ii) ‖x(t)‖ ≤ H‖xt‖P ,

(iii) ‖xt‖P ≤ K(t− σ) sup
σ≤s≤t

‖x(s)‖ +M(t− σ)‖xσ‖P .

(A2) For each function x(·) in (A1), t 7→ xt is a P-value continuous function for

t ∈ [σ, σ + a].

(B) The space P is complete.

Let C00 be the set of continuous functions ψ : (−∞, 0] → X with compact support

supp(ψ).

Remark 3.3 ([12). ] Any ψ ∈ C00 belongs to P.

If u ∈ C([0,∞), X), we define

‖u‖[0,a] := sup
0≤s≤a

‖u(s)‖

for a ≥ 0.

(H1) B ∈ C(Γ ×X,X). Let a ≥ 0. There exists M 1
a dependent of a such that

∫ t

0

‖B(t, θ, u(θ)) − B(t, θ, v(θ))‖dθ ≤ M 1
a‖u− v‖[0,t]

for u, v ∈ C([0, t], X), t ∈ [0, a].

(H2) F ∈ C([0,∞) × P, X) and F (t, ·) satisfies a Lipschitz condition, i.e. for each

a > 0 there is a constant L(a) such that

‖F (t, ψ1) − F (t, ψ2)‖ ≤ L(a)‖ψ1 − ψ2‖P

for ψ1, ψ2 ∈ P and t ∈ [0, a].

Theorem 3.1. Suppose that (H1) and (H2) hold. If ϕ ∈ P and ϕ(0) ∈ X0, then

Eq. (VID1) has a unique mild solution u(·, ϕ) on [0,∞).

Proof. Let a > 0 be fixed. Consider the set

Za = {u : (−∞, a] → X; u0 ∈ P and u : [0, a] → X is continuous}

endowed with the seminorm ‖ · ‖Za
defined by ‖u‖Za

= ‖u0‖P + ‖u‖[0,a]. From the

Axiom (B), it follows that (Za, ‖ · ‖Za
) is complete. Furthermore, we define the set

Za(ϕ) = {u ∈ Za; ‖u0 − ϕ‖P = 0}.

Note that Za(ϕ) is a closed subset of Za. Define the map

P : Za(ϕ) → Za(ϕ)

by

(Pu)(t) =











T0(t)ϕ(0) +
∫ t

0
T−1(t− s)

∫ s

0
B(s, θ, u(θ))dθds

+
∫ t

0
T−1(t− s)F (s, us)ds, t ∈ [0, a],

ϕ(t), t ∈ (−∞, 0].
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By Proposition 2.4, we know that P is well defined. Let u, v ∈ Za(ϕ) and t ∈ [0, a].

Then

(3.1)
‖Pu− Pv‖Za(ϕ) = ‖(Pu)0 − (Pv)0‖P + ‖Pu− Pv‖[0,a]

= ‖Pu− Pv‖[0,a].

Since ‖u0 − v0‖P = 0, by Proposition 2.4 (ii), Axioms (A1-ii,iii), (H1), and (H2), we

have

‖(Pu− Pv)(t)‖ ≤ ‖
∫ t

0
T−1(t− s)

∫ s

0
B(s, θ, u(θ)) −B(s, θ, v(θ))dθds‖

+‖
∫ t

0
T−1(t− s)(F (s, us) − F (s, vs))ds‖

≤M1‖
∫ ·

0
B(·, θ, u(θ)) −B(·, θ, v(θ))dθ‖L1([0,t),X)

+M1‖F (·, u·) − F (·, v·)‖L1([0,t),X)

≤M1(M
1
a

∫ t

0
‖u− v‖[0,s]ds+ L(a)

∫ t

0
‖us − vs‖Pds)

≤M1(M
1
a

∫ t

0
‖u− v‖[0,s]]ds+ L(a)

∫ t

0
K(s) sup

0≤r≤s

‖u(r) − v(r)‖ds)

≤M1[M
1
a +KaL(a)]

∫ t

0
‖u− v‖[0,s]ds.

Note that M1, M
1
a , L(a), and Ka = sup

0≤ξ≤a

K(ξ) are constants defined in Proposi-

tion 2.4, Axiom (A1), (H1) and (H2). Thus, by equation (3.1), we have

(3.2) ‖Pu− Pv‖Za(ϕ) ≤M1[M
1
a +KaL(a)]‖u− v‖Za(ϕ)a.

Applying the method again and by equation (3.1) and (3.2), we have

‖(P 2u− P 2v)(t)‖ ≤ ‖
∫ t

0
T−1(t− s)

∫ s

0
B(s, θ, Pu(θ)) − B(s, θ, Pv(θ))dθds‖

+‖
∫ t

0
T−1(t− s)(F (s, (Pu)s) − F (s, (Pv)s))ds‖

≤M1[M
1
a +KaL(a)]

∫ t

0
‖Pu− Pv‖[0,s]ds

≤ {M1[M
1
a +KaL(a)]}2

∫ t

0
‖u− v‖[0,s]sds.

Thus

‖P 2u− P 2v‖Za(ϕ) ≤ {M1[M
1
a +KaL(a)]}2a

2

2!
‖u− v‖Za(ϕ).

Continue this process, we can obtain

‖P nu− P nv‖Za(ϕ) ≤ {M1[M
1
a +KaL(a)]}na

n

n!
‖u− v‖Za(ϕ)

for all n ∈ N . Since there exists n ∈ N such that {M1[M
1
a + KaL(a)]}n an

n!
< 1,

it follows that P n is a strict contraction mapping on the closed set Za(ϕ). By the

Banach fixed point theorem, there exists a unique u := u(·, ϕ) ∈ Za(ϕ) such that

Pu = u. The uniqueness of the solution is consequence of the uniqueness of the fixed

point of P . This concludes that equation (IE) has a unique solution on [0, a]. Since

the number a is arbitrary, we proved the existence and uniqueness of the solution

of the equation (IE) on [0,∞). Thus Eq. (VID1) has a unique mild solution on

[0,∞). �
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Next, we want to give a sufficient condition for the existence of classical solutions

to Eq. (VID1). To do this, we need the differentiability of mild solutions. We give

the following more restrictive conditions.

(C) If (φn) is a Cauchy sequence in P and if (φn) converges compactly to φ on

(−∞, 0], then φ ∈ P and ‖φn − φ‖P → 0, as n→ ∞.

(D) For a sequence (φn) in P, if ‖φn‖P → 0 as n→ ∞, then ‖φn(θ)‖ → 0, as n→ ∞,

for each θ ∈ (−∞, 0].

(H3) F is continuously differentiable and the derivatives D1F , D2F satisfy the fol-

lowing Lipschitz conditions: there is a constant L1(τ) > 0 such that

‖D1F (t, ψ1) −D1F (t, ψ2)‖ ≤ L1(τ)‖ψ1 − ψ2‖P ,

‖D2F (t, ψ1) −D2F (t, ψ2)‖ ≤ L1(τ)‖ψ1 − ψ2‖P ,

for τ ∈ [0,∞), t ∈ [0, τ ], and ψ1, ψ2 ∈ P.

The following lemmas have been proved in [2] and [12].

Lemma 3.2 ([12]). Let P satisfy axiom (C) and let f : [0, a] → P, a > 0, be a

continuous function such that f(t)(θ) is continuous for (t, θ) ∈ [0, a]× (−∞, 0]. Then
[
∫ a

0

f(t)dt

]

(θ) =

∫ a

0

f(t)(θ)dt

for θ ∈ (−∞, 0].

Lemma 3.3 ([2]). Let P satisfy axiom (D) and let f : [0, a] → P, a > 0, be a

continuous function. Then for all θ ∈ (−∞, 0], the function f(·)(θ) is continuous and
[
∫ a

0

f(t)dt

]

(θ) =

∫ a

0

f(t)(θ)dt

for θ ∈ (−∞, 0].

Theorem 3.4. Let P satisfy axiom (C) or (D). Assume that (H1), (H2), (H3) and

D1B ∈ C(Γ ×X,X) hold. In addition, assume that ϕ ∈ P is continuously differen-

tiable with ϕ′ ∈ P, ϕ(0) ∈ D(A) and ϕ′(0) = Aϕ(0) + F (0, ϕ) ∈ X0. If u(·, ϕ) is a

mild solution of Eq. (VID1) on [0,∞), then u(·, ϕ) is continuously differentiable on

[0,∞). Furthermore, u(·, ϕ) is a classical solution of Eq. (VID1) on [0,∞).

Proof. Let a ∈ [0,∞). Consider the equation

(3.3)























y(t) = T0(t)(Aϕ(0) + F (0, ϕ)) +
∫ t

0
T−1(t− s)B(s, s, u(s))ds

+
∫ t

0
T−1(t− s)

∫ s

0
D1B(s, θ, u(θ))dθds

+
∫ t

0
T−1(t− s)(D1F (s, us) +D2F (s, us)ys)ds, t ∈ [0, a],

y(t) = ϕ′(t), t ∈ (−∞, 0],
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where u(·) = u(·, ϕ). With a similar argument to that used to establish the The-

orem 3.4, it can be shown that Eq. (3.3) has a unique solution y(·, ϕ′). Define the

function z by

(3.4) z(t) =







ϕ(0) +
∫ t

0
y(s)ds, t ∈ [0, a]

ϕ(t), t ∈ (−∞, 0].

We shall show u = z. By (2.1) and Fubini’s Theorem, we obtain
∫ t

0

∫ r

0

T−1(r − s)(D1F (s, us) +D2F (s, us)ys)ds dr

=

∫ t

0

∫ t

s

T−1(r − s)(D1F (s, us) +D2F (s, us)ys)dr ds

=

∫ t

0

S(t− s)(D1F (s, us) +D2F (s, us)ys)ds, t ∈ [0, a],

and
∫ t

0

T0(s)(Aϕ(0) + F (0, ϕ))ds =

∫ t

0

T0(s)ϕ
′(0)ds = S(t)ϕ′(0),

where S(·) is the integrated semigroup generated by A. Therefore, z becomes

(3.5)
z(t) = ϕ(0) + S(t)ϕ′(0) +

∫ t

0
T−1(t− s)

∫ s

0
B(s, θ, u(θ))dθds

+
∫ t

0
S(t− s)(D1F (s, us) +D2F (s, us)ys)ds, t ∈ [0, a].

By Lemma 3.5 or Lemma 3.6, we obtain

zt = ϕ+

∫ t

0

ysds for t ∈ [0, a].

By the elementary properties of S(·), ϕ′ ∈ P, ϕ(0) ∈ D(A) and ϕ′(0) = Aϕ(0) +

F (0, ϕ) ∈ X0, we know that

(3.6) S(t)ϕ′(0) = T0(t)ϕ(0) − ϕ(0) + S(t)F (0, ϕ) for t ∈ [0, a].

Moreover, using the integration by parts formula, we have

(3.7)

∫ t

0
T−1(t− s)F (s, zs)ds

= S(t)F (0, ϕ) +
∫ t

0
S(t− s)(D1F (s, zs) +D2F (s, zs)ys)ds for t ∈ [0, a].

From (3.7), we deduce that

(3.8)
S(t)F (0, ϕ) = −(

∫ t

0
S(t− s)(D1F (s, zs) +D2F (s, zs)ys)ds)

+
∫ t

0
T−1(t− s)F (s, zs)ds for t ∈ [0, a].

Consequently, by (3.5), (3.6), and (3.8), we have

z(t) = T0(t)ϕ(0) + S(t)F (0, ϕ) +

∫ t

0

T−1(t− s)

∫ s

0

B(s, θ, u(θ))dθds

+

∫ t

0

S(t− s)(D1F (s, us) +D2F (s, us)ys)ds
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= T0(t)ϕ(0) +

∫ t

0

T−1(t− s)

∫ s

0

B(s, θ, u(θ))dθds

+

∫ t

0

S(t− s)(D1F (s, us) +D2F (s, us)ys)ds

− (

∫ t

0

S(t− s)(D1F (s, zs) +D2F (s, zs)ys)ds

+

∫ t

0

T−1(t− s)F (s, zs)ds for t ∈ [0, a].

Therefore,

‖u(t) − z(t)‖ ≤ ‖

∫ t

0

T−1(t− s)(F (s, us) − F (s, zs))ds‖

+ ‖

∫ t

0

S(t− s)(D1F (s, us) −D1F (s, zs)ds‖

+ ‖

∫ t

0

S(t− s)(D2F (s, us)ys −D2F (s, zs)ys)ds‖

≤ M1L(a)

∫ t

0

‖us − zs‖Pds

+M1aL1(a)(

∫ t

0

‖us − zs‖Pds+

∫ t

0

‖us − zs‖P‖ys‖Pds)

≤ Ka(M1L(a) +M1aL1(a) +M1aL1(a) × max
0≤s≤a

‖y(s)‖P)

×

∫ t

0

sup
0≤ζ≤s

‖u(ζ) − z(ζ)‖ds

where Ka = sup
0≤s≤a

max{K(t)} and K(t) is defined in Axiom (A1-iii). By Gronwall’s

Lemma, we get u = z. So, we derive that u is continuously differentiable on [0, a].

Since a is arbitrary, we complete the proof. �

Next, we consider the solutions of Eq. (VID2) and (VID3).

Definition 3.4. We say that a function u : R → X is a classical solution of

Eq. (VID2) on [0,∞) if u satisfies the following conditions

(i) u(t) +
∫ t

0
B(t− θ)u(θ)dθ ∈ D(A) for t ∈ [0,∞).

(ii) u ∈ C1([0,∞), X).

(iii) u satisfies Eq. (VID2) on [0,∞) and u(t) = ϕ(t) for −∞ < t ≤ 0.

Lemma 3.5. Suppose that x1 and x2 are two vectors of X, then there is a function

ψ ∈ P such that ψ is continuously differentiable with ψ ′ ∈ P, ψ(0) = x1 and ψ′(0) =

x2.

Proof. Let

C∞
c (R) := {f : R → R; f is infinitely differentiable with compact support}.
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By Urysohn’s Lemma, there is a function h ∈ C∞
c such that h(t) = 1 for t ∈ [−1, 0].

It follows that the function ψ defined by ψ(t) = h(t − 0.5)x1 + th(t − 0.5)x2 for

t ∈ (−∞, 0] is the desired function from Remark 3.3. �

The following is an extension of Theorem 3.2 in [6].

Theorem 3.6. Let P satisfy axiom (C) or (D). Assume that

(1) B(·) ∈ L(X), the strong derivative B ′(·)x and B′′(·)x exist and are continuous

on [0,∞) for each x ∈ X. F satisfies the condition (H2) and (H3).

(2) ϕ ∈ P is continuously differentiable with ϕ′ ∈ P, ϕ(0) ∈ D(A), ϕ′(0) = Aϕ(0)+

F (0, ϕ) ∈ X0 and Aϕ(0) +B(0)ϕ(0) + F (0, ϕ) ∈ X0.

Then the equation
{

u′(t) = A[u(t) +
∫ t

0
B(t− s)u(s)ds] + F (t, ut), t ∈ R

+,

u0 = ϕ ∈ P,

has a unique classical solution on [0,∞).

Proof. Let ~A =

[

0 A

B(0) A

]

. Grimmer and Liu in [6] showed that ~A is a Hille-Yosida

operator on X × X. According to Lemma 3.9, we can choose a ϕ1 ∈ P such that

ϕ′
1 ∈ P with ϕ1(0) = ϕ(0) and ϕ′

1(0) = Aϕ(0) + B(0)ϕ(0) + F (0, ϕ). Let ~ϕ =

[

ϕ

ϕ1

]

.

Therefore, ~ϕ ∈ P×P. We consider the following equation in the Banach space X×X

and phase space P × P

(3.12)











d
dt
~w(t) = ~A~w(t) +

∫ t

0
~B(t− θ)~w(θ)dθ + ~F (t, ~wt), t ∈ R

+,

~w0 =

[

ϕ

ϕ1

]

,

where

~w(t) :=

[

u(t)

w(t)

]

,

~B(t− θ)

[

u(θ)

w(θ)

]

:=

[

0

B′(t− θ)u(θ)

]

and

~F (t, ~wt) :=

[

F (t, ut)

F (t, ut)

]

.

We can apply Theorem 3.7 to solve Eq. (3.12). By assumption (1) and Principle of

Uniform Boundedness, we know that ~B satisfies the hypothesis (H1). Moreover, it

is easy to see that ~F satisfies the hypothesis (H2) and (H3) form assumption (1).

Finally, by assumption (2),
([

0 A

0 A

][

ϕ(0)

ϕ1(0)

]

+

[

F (0, ϕ)

F (0, ϕ)

])
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=

[

Aϕ(0) + F (0, ϕ)

Aϕ(0) +B(0)ϕ(0) + F (0, ϕ)

]

=

[

ϕ′(0)

ϕ′
1(0)

]

∈ X0 ×X0.

It follows that ~w′
0 ∈ P × P, ~w0(0) ∈ D( ~A) and ~w′

0(0) = ~A~ϕ(0) + ~F (0, ϕ) ∈ X0 ×X0.

Thus, by Theorem 3.7, Eq. (3.12) has a unique classical solution on [0,∞). On the

other hand, we rewrite equation (3.12) in the following component form

u′(t) = Aw(t) + F (t, ut),

w′(t) = Aw(t) +

∫ t

0

B′(t− θ)u(θ)dθ +B(0)u(t) + F (t, ut)

= u′(t) +
d

dt

∫ t

0

B(t− θ)u(θ)dθ.

Since w(0) = ϕ(0) = ϕ1(0) = u(0), we conclude that w(t) = u(t)+
∫ t

0
B(t− θ)u(θ)dθ.

So, u is the unique classical solution Eq. (VID2). �

Definition 3.5. We say that a function u : R → X is a classical solution of

Eq. (VID3) on [0,∞) if u satisfies the following conditions

(i) u(t) +
∫ t

−∞
B(t− θ)u(θ)dθ ∈ D(A) for t ∈ [0,∞).

(ii) u ∈ C1([0,∞), X).

(iii) u satisfies Eq. (VID3) on [0,∞) and u(t) = ϕ(t) for −∞ < t ≤ 0.

Theorem 3.7. Let P satisfy axiom (C) or (D). Assume that

(1) B(·) ∈ L(X). B′(·)x and B′′(·)x exist and are continuous on [0,∞) for each

x ∈ X. F satisfies the condition (H2) and (H3).

(2) ϕ ∈ P is continuously differentiable with ϕ′ ∈ P, and
∫ 0

−∞
B(t − θ)ϕ(θ)dθ ∈ X

for each t ∈ [0,∞).

(3) G ∈ C2([0,∞), X) where G is defined by G(t) =
∫ 0

−∞
B(t− θ)ϕ(θ)dθ.

(4) ϕ(0) +
∫ 0

−∞
B(−θ)ϕ(θ)dθ ∈ D(A),

ϕ′(0) = A[ϕ(0) +

∫ 0

−∞

B(−θ)ϕ(θ)dθ] + F (0, ϕ) ∈ X0

and

A[ϕ(0) +

∫ 0

−∞

B(−θ)ϕ(θ)dθ] +B(0)ϕ(0) +G′(0) + F (0, ϕ) ∈ X0.

Then the equation
{

u′(t) = A[u(t) +
∫ t

−∞
B(t− s)u(s)ds] + F (t, ut), t ∈ [0,∞),

u0 = ϕ ∈ P

has a unique classical solution on [0,∞).
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Proof. Let ~A =

[

0 A

B(0) A

]

. According to Lemma 3.9, we can choose a ϕ1 ∈ P

such that ϕ′
1 ∈ P with ϕ1(0) = ϕ(0) +

∫ 0

−∞
B(−θ)ϕ(θ)dθ and ϕ′

1(0) = A[ϕ(0) +

∫ 0

−∞
B(−θ)ϕ(θ)dθ]+B(0)ϕ(0)+F (0, ϕ)+G′(0). Let ~ϕ =

[

ϕ

ϕ1

]

. Therefore, ~ϕ ∈ P×P.

We consider the following equation in the Banach space X×X and phase space P×P

(3.12)











d
dt
~w(t) = ~A~w(t) +

∫ t

0
~B(t− θ)~w(θ)dθ + ~F (t, ~wt), t ∈ R

+,

~w0 =

[

ϕ

ϕ1

]

,

where

~w(t) :=

[

u(t)

w(t)

]

,

~B(t− θ)

[

u(θ)

w(θ)

]

:=

[

0

B′(t− θ)u(θ)

]

and

~F (t, ~wt) :=

[

F (t, ut)

F (t, ut) +G′(t)

]

.

The rest of the proof is the same as Theorem 3.10. �

We enclose this section by discussing the asymptotical behavior of solutions of

Eq. (VID1). Let us assume that (H1) (H2) and (H3) hold. Note that K(s), M(s),

M1
s and L(s) are defined in Axiom (A1(iii)), (H1), and (H2). Define Kt = sup

0≤s≤t

K(s),

Mt = sup
0≤s≤t

M(s), and Lt = sup
0≤s≤t

L(s).

Theorem 3.8. Let v and w be two solutions of Eq. (V ID1) with initial conditions

v0 and w0 respectively. Then

‖v − w‖[0,t] ≤ Mγ(t)eMδ(t)t‖v0 − w0‖P

where γ(t) = H + LtMt

∫ t

0
e−ωsds and δ(t) = M 1

t + LtKt.

Proof. Set u(t) = v(t)−w(t) and u0 = v0−w0. By Proposition 2.5, Axiom (A1)(iii),

(H1), and (H2) we have

‖u(t)‖ ≤M [‖u(0)‖eωt +

∫ t

0

eω(t−s)‖

∫ s

0

B(s, θ, v(θ)) − B(s, θ, w(θ))dθ‖ds

+

∫ t

0

eω(t−s)‖F (s, vs) − F (s, ws)‖ds]

≤M [‖u0‖PHe
ωt +M1

t e
ωt

∫ t

0

e−ωs‖u‖[0,s]ds

+ LtKte
ωt

∫ t

0

e−ωs‖u‖[0,s]ds+ LtMte
ωt

∫ t

0

e−ωs‖u0‖Pds]
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≤Meωtγ(t)‖u0‖P +Mδ(t)

∫ t

0

eω(t−s)‖u‖[0,s]ds

where γ(t) = H + LtMt

∫ t

0
e−ωsds and δ(t) = M 1

t + LtKt. Thus,

‖u‖[0,t] ≤Mγ(t)‖u0‖P +Mδ(t)

∫ t

0

‖u‖[0,s]ds.

By applying Gronwall’s lemma, we derive

‖u‖[0,t] ≤ Mγ(t)eMδ(t)t‖u0‖P . �

4. EXAMPLES

In this section, we improve the conclusions about the partial integrodifferential

equation which had been studied in [1]:

(PDED)























∂
∂t
ω(t, ξ) = d∆ω(t, ξ) +

∫ t

−∞
k(t, θ, ω(θ, ξ))dθ

+h(t, ω(t, ξ), ω(t− τ, ξ)), t ≥ 0, ξ ∈ Ω,

ω(t, ξ) = 0, t ≥ 0, ξ ∈ ∂Ω,

ω(θ, ξ) = ω0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ Ω,

where d > 0, τ > 0, Ω is a bounded open set in R
n with regular boundary ∂Ω,

∆ =
∑n

i=0
∂2

∂ξ2

i

and k : Γ×R
n → R

n, h : R
+×R

n×R
n → R

n and ω0 : (−∞, 0]×Ω → R
n

are functions.

Let | · | denote the Euclidean norm on R
n. Following the notations in [1], the

Banach space X, Hille-Yosida operator A, and the phase space P are given by X :=

C(Ω,Rn), A : D(A) ⊂ X → X with

D(A) = {u ∈ X; ∆u ∈ X and u|∂Ω = 0}

Au = d∆u,

and

P := {φ ∈ C((−∞, 0], X); lim
θ→−∞

|φ(θ)|

g(θ)
= 0},

endowed with the following norm:

‖φ‖P = sup
−∞<θ≤0

‖φ(θ)‖

g(θ)
,

where g : (−∞, 0] → (0,∞) is a continuous function satisfying

(g1) g(0) = 1.

(g2) The function G : R
+ → R

+ defined by

G(t) = sup
−∞<θ≤−t

g(t+ θ)

g(θ)
,

is locally bounded.
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It is has been shown that X0 = {u ∈ X; u|∂Ω = 0} and (P, ‖ · ‖P) satisfies the axioms

(A1), (A2), (B) and (D) (c.f. [1]).

Let a be an arbitrary positive number We transform the equation (PDED) into

(DACP )

{

u′(t) = Au(t) +
∫ t

0
B(t, θ, u(θ))dθ + F (t, ut), 0 ≤ t ≤ a,

u0 = ϕ ∈ P

by setting

u(t)(ξ) = ω(t, ξ), t ∈ R
+, ξ ∈ Ω,

B(t, θ, ψ(θ))(ξ) = k(t, θ, ψ(θ)(ξ)) where t ∈ [0, a], ψ ∈ C([0, a] × Ω,Rn), ξ ∈ Ω,

ϕ(θ) = ω0(θ, ξ) where θ ∈ (−∞, 0],

F (t, φ)(ξ) = h(t, φ(0)(ξ), φ(−τ)(ξ)) +

∫ 0

−∞

B(t, θ, ϕ(θ)(ξ))dθ,

t ∈ R
+, φ ∈ P, ξ ∈ Ω.

Let L : R
+ → R

+ be a function. We assume that k : Γ × R
n → R

n and h :

R
+ × R

n × R
n → R

n are continuous functions that satisfy the following conditions.

(i) Let T ∈ [0, a]. |k(t, θ, x) − k(t, θ, y)| ≤ L(T )|x − y| for x, y ∈ R
n and (t, θ) ∈

{(t, θ) ∈ R
2; 0 ≤ t ≤ T, θ ≤ t}.

(ii)
∫ 0

−∞
k(t, θ, ϕ(θ)(ξ))dθ exists for each t ∈ [0, a].

(iii) Let T ∈ [0, a]. |h(t, x1, y1)−h(t, x2, y2)| ≤ L(T )(|x1−x2|+ |y1−y2|) for t ∈ [0, T ]

and x1, x2, y1, y2 ∈ R
n.

(iv) ω0 ∈ C2((−∞, 0] × Ω,Rn), with lim
θ→−∞

|ω0(θ)|/g(θ) = 0 and ω0(0, ξ) = 0 for

ξ ∈ ∂Ω.

From the assumption (i), we know that B satisfies the hypothesis (H1). Let {(tn, φn)}

be convergent sequence of [0,∞) × P with limit (t, φ). Then

(4.1) ‖F (tn, φn) − F (t, φ)‖ ≤ ‖F (tn, φn) − F (tn, φ)‖ + ‖F (tn, φ) − F (t, φ)‖.

From the definition of P, we know that

(4.2) |φ(τ)| ≤ g(τ)‖φ‖P

for φ ∈ P. By the continuity of h, Axiom (A1), (4.1) and (4.2), we know that F is a

continuous function . Moreover, we have

(4.3) ‖F (t, φ1) − F (t, φ2)‖ ≤ L(T )(1 + g(τ))‖φ1 − φ2‖P

by Axiom (A1), (4.2) and assumptions (ii) and (iii) for each t ∈ [0, T ]. Finally, we

know that F satisfies the hypothesis (H2). It follows that Eq. (DACP) has a unique

mild solution by Theorem 3.4.

Under more restrictive conditions, we obtain the existence of classical solution.

(v) ω0 ∈ C2((−∞, 0] × Ω,Rn), with lim
θ→−∞

1
g(θ)

‖ ∂
∂θ
ω0(θ, ·)‖ = 0.
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(vi) ∆ω0(0, ξ) = 0 for ξ ∈ ∂Ω.

(vii) ω0(θ, ξ) = 0 for θ ∈ (−∞, 0] and ξ ∈ ∂Ω.

(viii) ∂
∂θ
ω0(0, ξ) = d∆ω0(0, ξ)+h(0, ω0(0, ξ), ω0(−τ, ξ))+

∫ 0

−∞
k(0, θ, ω0(θ, ξ)dθ for ξ ∈

Ω.

(ix)
∫ 0

−∞
k(t, θ, ϕ(θ))dθ and k(t, ·, ·) are continuously differentiable on [0, a].

(x) There is a function L1 : R
+ → R

+ satisfies the following condition:

|D1h(t, x1, y1) −D1h(t, x2, y2)| + |D2h(t, x1, y1) −D2h(t, x2, y2)|

+ |D3h(t, x1, y1) −D3h(t, x2, y2)| ≤ L1(T )(|x1 − x2| + |y1 − y2|)

for t ∈ [0, T ] and x1, x2, y1, y2 ∈ R
n.

From assumptions (ix) and (x), we know that both D1F and D2F exist on [0, a]×P.

Moreover, it is also easy to see that

D1F (t, φ)(ξ) =
d

dt
{

∫ 0

−∞

B(t, θ, ϕ(θ))dθ}(ξ) +D1h(t, φ(0)(ξ), φ(−τ)(ξ))

and

D2(F (t, φ))(ψ)(ξ)

= D2h(t, φ(0)(ξ), φ(−τ)(ξ))ψ(0)(ξ) +D3h(t, φ(0)(ξ), φ(−τ)(ξ))ψ(−τ)(ξ)

for φ, ψ ∈ P. By assumption (x) and a similar computation to (4.3), we know that F

satisfies the hypothesis (H3). It follows that Eq. (4.2) has a unique classical solution

on [0, a] by Theorem 3.7. Since a is arbitrary, we derive that Eq. (PDED) has a

solution on [0,∞).

Remark 4.1. In [1], the authors transform the equation (PDED) into

{

u′(t) = Au(t) + F (t, ut), 0 ≤ t,

u0 = ϕ ∈ P

by setting

F (t, φ)(ξ) = h(t, φ(0)(ξ), φ(−τ)(ξ)) +

∫ 0

−∞

k(t, t+ θ, φ(θ)(ξ))dθ

for φ ∈ P and 0 ≤ t. In this situation, the more growth bound and differentiability

for k and h are needed.
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