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ABSTRACT. This investigation is devoted to the study of a class of abstract first-order backward

McKean-Vlasov stochastic evolution equations in a Hilbert space. Results concerning the existence

and uniqueness of solutions and the convergence of an approximating sequence of solutions (and

corresponding probability measures) are established. Examples that illustrate the abstract theory

are also provided.
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1. INTRODUCTION

This investigation is devoted to the study of a class of abstract backward stochastic

evolution equations of McKean-Vlasov type of the general form

dx(t) + Ax(t)dt = f(t, µ(t), x(t), y(t))dt + (g(t, x(t)) + y(t))dW (t), 0 ≤ t ≤ T,

x(T ) = ξ(1.1)

in a separable Hilbert space H, where µ(t)is the probability distribution of (x(t), z(t)),

where z(t) =
∫ T

t
y(s)dW (s). Here, W is a given K-valued cylindrical Wiener process

defined on a complete probability space (Ω, F, P ) equipped with a natural filtration

{Ft}t≥0 (that is, Ft is the σ-algebra generated by {W (s) : 0 ≤ s ≤ t}, for all t ≥ 0);

the linear operator A : D(A) ⊂ H → H generates a strongly continuous semigroup

on H; f : [0, T ] × Pλ2(H) × H × L2(K; H) → H and g : [0, T ] × H → L2(K; H)

are given mappings (where K is a real separable Hilbert space, Pλ2(H)denotes a

particular subset of probability measures on H, and L2(K; H)is the collection of all

Hilbert-Schmidt operators from K to H); and ξ ∈ L2(Ω; H). (The function spaces

will be made precise in Section 2.)

The study of backward stochastic differential equations (BSDEs) was initiated by

Pardoux and Peng [28] and subsequently investigated (mainly in the finite-dimensional
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case) by several authors – see [16, 22, 26, 30]. A flourish of activity on infinite di-

mensional BSDEs has since continued by many authors, including Confortola [5],

Fuhrman & Tessitore [10, 11], Guatten & Tessitore [12], and Mahmudov & McK-

ibben [24]. Such equations arise naturally in a wide variety of applications, including

stochastic control and financial mathematics.

It is known that if the nonlinearities f and g do not depend on the probability

distribution µ(t) of the state process, then the process described by a forward SDE

is a standard Markov process [1]. Numerous papers and books devoted to the for-

mulation of theory of such equations have been written during the past two decades

(see [6, 8, 9, 27]). Allowing for the dependence of the nonlinearities on µ(t) is not

artificial and, in fact, such problems arise naturally in the study of diffusion processes

and have been studied extensively in the finite dimensional setting. Regarding the

infinite-dimensional setting, Ahmed and Ding [1] established an abstract formula-

tion of such problems in a Hilbert space, and subsequently, Keck and McKibben [19]

extended this theory to a class of integro-differential stochastic evolution equations.

Recently, Mahmudov and McKibben [21, 24] established existence and (optimal) con-

trollability results for a delay variant of such equations under so-called Caratheodory

growth conditions. The main purpose of the current investigation is to establish a

generalization of the known existence and convergence results in [14, 15] for backward

stochastic evolution equations to a class of so-called McKean-Vlasov equations.

From a theoretical standpoint, the results presented in the current manuscript

constitute an extension and generalization of the theory presented in [1, 6, 7, 9, 14, 15,

17, 21, 27, 28] in that we allow for dependence of the nonlinearities on the probability

distribution of the state process in (1.1). As such, the corresponding results in these

papers can be viewed as corollaries of the main results of this manuscript. Further,

our results elucidate the study of standard McKean-Vlasov equations in the form

of BSDEs, which is useful from the viewpoint of optimal control. From a practical

viewpoint, the results developed in this manuscript are applicable, in particular, to

nonlinear diffusion equations and Sobolev-type equations (as outlined in Section 5).

The following is the outline of the paper. First, we make precise the necessary

notation, function spaces, and definitions, and gather certain preliminary results in

Section 2. We then state the main results concerning existence and convergence

in Section 3, and provide the proofs in Section 4. We finally present two concrete

examples in Section 5 in order to illustrate the applicability of the abstract theory.

2. PRELIMINARIES

For details of this section, we refer the reader to [1, 3, 6, 14, 16] and the refer-

ences therein. Let (Ω, F, P ) be a complete probability space equipped with filtration

{Ft}t≥0. Throughout this paper, H and K are given real separable Hilbert spaces
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with respective norms ‖·‖ and ‖·‖K. The class of all bounded linear operators from

H into H (equipped with the usual sup norm) is denoted by BL(H), and the space

of all Hilbert-Schmidt operators from K into H is denoted by L2(K; H) with norm

denoted as ‖·‖L2(K;H).

The following function spaces are adapted from those used in [1]; we recall them

here for convenience. First, B(H)stands for the Borel class on H and P(H) repre-

sents the space of all probability measures defined on B(H) equipped with the weak

convergence topology. Define λ : H × L2(K; H) → R
+ by λ(x, y) = 1 + ‖(x, y)‖0

(cf. (2.7)), and define the space

Cρ(H) =
{

ϕ : H × L2(K; H) → R
∣

∣ϕ is continuous and ‖ϕ‖
Cρ

< ∞
}

,

where

‖ϕ‖
Cρ

= sup
(x,y)∈H×L2(K;H)

|ϕ(x, y)|

λ2(x, y)
+ sup

(x,y)6=(x̄,ȳ)

|ϕ(x, y) − ϕ(x̄, ȳ)|

‖(x, y) − (x̄, ȳ)‖H×L2(K;H)

< ∞.

Next, let

Ps
λ2(H) = {m : H → R |m is a signed measure on H such that

‖m‖λ2 =

∫

H

λ2(x, y) |m| (d(x, y)) < ∞

}

,

where m = m+ − m−is the Jordan decomposition of m, |m| = m+ + m−, and λ is

defined above. Then, we can define the space

Pλ2(H) = Ps
λ2(H) ∩ P(H)

equipped with the metric ρ given by

(2.1) ρ (ν1, ν2) = sup

{
∫

H×L2(K;H)

ϕ(x, y) (ν1 − ν2) (d(x, y)) : ‖ϕ‖
Cρ

≤ 1

}

.

It can be shown that (Pλ2(H), ρ) is a complete metric space. The space of all con-

tinuous Pλ2(H)-valued measures defined on [0, T ], denoted by Cλ2 , is complete when

equipped with the metric

(2.2) D (ν1, ν2) = sup
0≤t≤T

ρ (ν1(t), ν2(t)) , ν1, ν2 ∈ Cλ2 .

For the remainder of this section, H1 denotes any Hilbert space. The collection of all

strongly measurable, square integrable H1− valued random variables x is denoted by

L2 (Ω; H1) equipped with the norm

(2.3) ‖x(·)‖L2(Ω;H1)
=

(

E ‖x(·; ω)‖2
H1

)
1

2 .

For any 0 ≤ t ≤ T , the space of all L2−continuous, H1−valued stochastic processes

X : [t, T ] → H1, denoted by C ([t, T ] ; H1), is given by

(2.4) C ([t, T ] ; H1) =

{

X : [t, T ] → H1 | sup
t≤s≤T

‖X(s, ·)‖L2(Ω;H1)
< ∞

}

.
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Further, L2
F (0, T ; L2 (Ω; H1)) (written L2

F (0, T ; H1), for short) represents the function

space
{

z | z(t) is Ft − measurable, for all 0 ≤ t ≤ T, and

(

E

∫ T

0

‖z(t; ω)‖2
H1

dt

)

1

2

< ∞

}

endowed with the norm

(2.5) ‖z‖L2

F
(0,T ;H1)

=

(

E

∫ T

0

‖z(t; ω)‖2
H1

dt

)

1

2

.

Using these spaces, for any 0 ≤ t ≤ T , we define the Banach space M [t, T ] by

(2.6) M [t, T ] = L2
F(Ω; C([t, T ]; H)) × L2

F([t, T ]; L2(K; H))

equipped with the norm

(2.7) ‖(x, y)‖2
t = E sup

t≤s≤T
‖x(s; ω)‖2 + E

∫ T

t

‖y(s; ω)‖2
L2(K;H) ds.

Hereafter, for brevity, we suppress the dependence of all mappings on ω.

Next, we recall some properties of probability measures. The probability measure

P induced by an H1-valued random variable X, denoted PX , is defined by P ◦ X−1 :

B(H1) → [0, 1]. A sequence {Pn} ⊂ P(H1) is said to be weakly convergent to P

if
∫

Ω
hdPn →

∫

Ω
hdP , for every bounded, continuous function h : H1 → R; in such

case, we write Pn
w
→ P . A family {Pn} is tight if for each ε > 0, there exists a

compact set Kε such that Pn (Kε) ≥ 1−ε, for all n. Prokhorov [3, 20] established the

equivalence of tightness and relative compactness of a family of probability measures.

Consequently, the Arzelá-Ascoli theorem can be used to establish tightness.

Definition 2.1. Let P ∈ P(H1), 0 ≤ t1 < t2 < · · · < tk ≤ T , and X ∈ C ([0, T ] ; H1).

Define πt1,...,tk : C ([0, T ] ; H1) → Hk
1 by πt1,...,tk(X) = (X (t1) , . . . , X (tk)). The prob-

ability measures induced by πt1,...,tk are the finite dimensional joint distributions of

P .

Proposition 2.2. ([20, pg. 37]) If a sequence {Xn} of H1-valued random variables

converges weakly to an H1-valued random variable X in L2 (Ω; H1), then the sequence

of finite dimensional joint distributions corresponding to {PXn
} converges weakly to

the finite dimensional joint distribution of PX .

The next theorem, in conjunction with Proposition 2.2, is the main tool in estab-

lishing a convergence result in Section 4.

Theorem 2.3. Let {Pn} ⊂ P(H1). If the sequence of finite dimensional joint distri-

butions corresponding to {Pn}converges weakly to the finite dimensional joint distri-

bution of P and {Pn} is relatively compact, then Pn
w
→ P .
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Finally, in addition to the familiar Young, Hölder, and Minkowski inequalities, the

following inequality (which follows from the convexity of xm, m ≥ 1) is important:
(

n

Σ
i=1

ai

)m

≤ nm−1
n

Σ
i=1

am
i ,

where ai is a nonnegative constant (i = 1, . . . , m).

3. MAIN RESULTS

Our examination of (1.1) begins by first establishing a result concerning the exis-

tence and uniqueness of an Ft−adapted solution in the spirit of those developed in

[14, 15]. This result constitutes a direct extension of the corresponding results in

these papers to a more general McKean-Vlasov type stochastic equation. We begin

by considering the simpler backward stochastic evolution equation given by:

dx(t) + Ax(t)dt = f(t, µ(t))dt + [g(t) + y(t)]dW (t), 0 ≤ t ≤ T,

x(T ) = ξ(3.1)

in a separable Hilbert space H, where µ(t) is the probability distribution of (x(t), z(t)),

where z(t) =
∫ T

t
y(s)dW (s) (this identification of z will be used throughout the

manuscript), and f : [0, T ] × Pλ2(H) → H and g : [0, T ] → L2(K; H) are given

mappings.

Let M represent the σ-algebra of Ft−measurable subsets of Ω× [0, T ]. We consider

(3.1) under the following conditions:

(A1): A : D(A) ⊂ H → H generates a strongly continuous semigroup
{

eAt : 0 ≤ t ≤ T
}

on H with M = sup
0≤t≤T

∥

∥eAt
∥

∥

BL(H)
< ∞.

(A2): f : [0, T ] × Pλ2(H) → H is an M ⊗ B (Pλ2(H))-measurable mapping such

that

(i) for each µ ∈ Cλ2 , f(·, µ(·)) ∈ L2
F(0, T ; H),

(ii) there exists Mf > 0 such that ‖f(t, µ) − f(t, ν)‖ ≤ Mfρ(µ, ν), for all 0 ≤

t ≤ T, µ, ν ∈ Cλ2 .

(A3): g : [0, T ] → L2(K; H) is an M-measurable mapping such that g(·) ∈

L2
F(0, T ; L2(K; H)).

We seek to establish the existence and uniqueness of a solution to (3.1) in the

following sense:

Definition 3.1. A solution to (3.1) is an Ft−adapted pair {(x(t), y(t)) : 0 ≤ t ≤ T}

in L2
F(0, T ; H)×L2

F(0, T ; L2(K; H)) that satisfies the variation of parameters formula

x(t) = eA(T−t)ξ +

∫ T

t

eA(s−t)f(s, µ(s))ds(3.2)

+

∫ T

t

eA(s−t)[g(s) + y(s)]dW (s), 0 ≤ t ≤ T P a.s
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and µ(t) is the probability distribution of (x(t), z(t)), for all 0 ≤ t ≤ T .

Lemma 3.2. Let ξ ∈ L2(Ω; H). If (A1)–(A3) are satisfied, then there exists a unique

solution {(x(t), y(t)) : 0 ≤ t ≤ T} of (3.1) satisfying Definition 3.1, as well as the

following estimate, for all 0 ≤ t ≤ T :

‖(x, y)‖2
t ≤ 24M

2
E ‖ξ‖2 +24M

2
(T − t)E

∫ T

t

‖f(s, µ(s))‖2 ds(3.3)

+ 2E

∫ T

t

‖g(s)‖2
L2(K;H) ds.

Using Lemma 3.2, we can establish the existence and uniqueness of a solution to the

original problem (1.1). By a solution of (1.1), we mean a pair {(x(t), y(t)) : 0 ≤ t ≤ T}

satisfying Definition 3.1 with f(s, µ(s)) and g(s)+y(s) replaced by f(s, µ(s), x(s), y(s))

and g(s, x(s)) + y(s), respectively. Moreover, we replace the hypotheses (A2) and

(A3) on f and g by the following slightly modified versions:

(A4): f : [0, T ] × Pλ2(H) × H × L2(K; H) → H is an M ⊗ B (Pλ2(H)) ⊗

B (L2(K; H)) /B(H) ⊗ B(H)-measurable mapping such that

(i): for each µ ∈ Cλ2, f(·, µ(·), 0, 0) ∈ L2
F(0, T ; H),

(ii): there exists Mf > 0 such that

‖f(t, µ, x1, y1) − f(t, ν, x2, y2)‖ ≤ Mf

[

ρ(µ, ν) + ‖y1 − y2‖L2(K;H) + ‖x1 − x2‖
]

,

for all 0 ≤ t ≤ T, µ, ν ∈ Cλ2 , y1, y2 ∈ L2(K; H), and x1, x2 ∈ H.

(A5): g : [0, T ] × H → L2(K; H) is an M ⊗ B (H)−measurable mapping such

that

(i): g(·, 0) ∈ L2
F(0, T ; L2(K; H)),

(ii): there exists Mg > 0 such that

‖g(t, x1) − g(t, x2)‖L2(K;H) ≤ Mg ‖x1 − x2‖ ,

for all 0 ≤ t ≤ T and x1, x2 ∈ H.

Theorem 3.3. Let ξ ∈ L2(Ω; H). If (A1), (A4), and (A5) hold, then there exists

a unique solution {(x(t), y(t)) : 0 ≤ t ≤ T} of (1.1) such that µ(t) is the probability

distribution of (x(t), z(t)), for each 0 ≤ t ≤ T .

The following continuous dependence result is useful in establishing the main con-

vergence results. It follows from a standard application of Gronwall’s lemma.

Proposition 3.4. Assume that (A1), (A4), and (A5) hold. Then, for any ξ1, ξ2 ∈

L2(Ω; H), there exist positive constants ς1, ς2 such that

‖(x1, y1) − (x2, y2)‖
2
0 ≤ ς1E ‖ξ1 − ξ2‖

2 + ς2D
2
T (µ1, µ2) ,

where (x1, y1) and (x2, y2) denote the solutions of (1.1) corresponding to ξ1, ξ2 with

respective probability distributions µ1, µ2.
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Next, for each n ≥ 1, consider the Yosida approximation of (1.1) given by

dxn(t) + Axn(t)dt = nR(n; A)f(t, µn(t), xn(t), yn(t))dt

+nR(n; A)(g(t, xn(t)) + yn(t))dW (t), 0 ≤ t ≤ T,(3.4)

xn(T ) = nR(n; A)ξ

where µn(t) is the probability law of (xn(t), zn(t)), where zn(t) =
∫ T

t
yn(s)dW (s), and

R(n; A) = (I − nA)−1 is the resolvent operator of A. Assuming that (A1), (A4), and

(A5) hold, an application of Theorem 3.3 implies that (3.4) has a unique solution

(xn, yn) in the sense of Definition 3.1. The following convergence result holds:

Proposition 3.5. Let (x, y) denote the unique solution pair of (1.1) as guaranteed

to exist by Theorem 3.3. Then, the sequence of solutions (xn, yn) of (3.4) converges

to the solution (x, y) of (1.1) as n → ∞ in the sense that ‖(xn, yn) − (x, y)‖2
0 → 0.

The following corollary is used to establish the weak convergence of probability

measures (cf. Proposition 3.8). It follows immediately from the fact that for all

0 ≤ t ≤ T,

(3.5) D2
T (µn, µ) = sup

0≤t≤T
ρ2 (µn(t), µ(t)) ≤ ‖(xn, yn) − (x, y)‖2

t → 0 as n → ∞.

Corollary 3.6. The sequence of probability laws µn corresponding to the solutions

(xn, yn) of (3.4) converges in Cλ2 as n → ∞ to the probability law µ of the solution

(x, y) of (1.1).

Remark 3.7. We note for later purposes that Corollary 3.6 implies that

sup
n∈N

sup
0≤s≤T

‖µn(s)‖
2
C

λ2
< ∞.

We now consider the weak convergence of the probability measures induced by the

solutions of (3.4). Let P(x,y) denote the probability measure generated by the solution

(x, y) of (1.1) and P(xn,yn) the probability measure generated by the solution (xn, yn)

of (3.4). We have:

Proposition 3.8. Assume that (A1), (A4), and (A5) hold, E ‖ξ‖4
H < ∞, and

(A6) There exists Mf > 0 such that ‖f(t, µ(t), 0, 0)‖ ≤ Mf

[

1 + ‖µ‖
C

λ2

]

, for all 0 ≤

t ≤ T, µ, ν ∈ Cλ2 .

(A7) There exists Mg > 0 such that sup
0≤t≤T

E ‖g(t, 0)‖2
L2(K;H) < Mg. Then, P(xn,yn)

w
→

P(x,y) as n → ∞.

Finally, if A depends on t, then Eq. (1.1) becomes

dx(t) + A(t)x(t)dt = f(t, µ(t), x(t), y(t))dt + (g(t, x(t)) + y(t))dW (t), 0 ≤ t ≤ T,

x(T ) = ξ,(3.6)
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where {A(t) : 0 ≤ t ≤ T} is a family of linear operators on H with domains D(A(t))

such that D(A(t)) = D (independent of t) which generates an evolution operator

{U(t, s) : 0 ≤ s ≤ t ≤ T} of bounded linear operators on H satisfying the following

properties:

1. U(t, t) = I,for all 0 ≤ t ≤ T , (where I is the identity operator on H),

2. U(t, r)U(r, s) = U(t, s), for all 0 ≤ s ≤ r ≤ t ≤ T,

3. U(t, s) is strongly continuous in s on [0, T ] and in t on [s, T ],

4. max
(t,s)∈∆

‖U(t, s)‖BL(H) ≤ MU , for some positive constant MU , where

∆ = {(t, s) : 0 ≤ s ≤ t ≤ T}.

Conditions that ensure {A(t) : 0 ≤ t ≤ T} generates such an evolution operator are

outlined in [35]. Similar arguments (which make use of the properties of the evolution

system) can be used to establish results analogous to each of those presented in this

section. Since only the natural modifications need to be made to the proofs in the

following section, the technical details will be omitted.

4. PROOFS

Proof of Lemma 3.2 We employ a two-stage approach by combining the strate-

gies used in [1] and [14, 15]. Precisely, arguing as in [14, 15], we first show that

for a given µ ∈ Cλ2, (3.1) has a unique solution pair (x, y) in the sense of Def-

inition 3.1 which satisfies estimate (3.3). Then, we argue as in [1] to show that

µ(t) must be the probability distribution of (x(t), z(t)), for each 0 ≤ t ≤ T , where

z(t) =
∫ T

t
y(s)dW (s). We proceed as follows.

Let µ ∈ Cλ2 be given. Then, (3.1) is a linear BSEE. Hence, by Theorem 1 in [14],

(3.1) has a unique solution (x, y) ∈ M [0, T ] given by

(4.1) x(t) = eA(T−t)E (ξ | Ft) +

∫ T

t

eA(s−t)E (f(s, µ(s)) | Ft) ds

ỹ(t) = eA(T−t)L(t) −

∫ T

t

eA(s−t)Kµ(t, s)ds,(4.2)

y(t) = ỹ(t) − g(t),(4.3)

where by the extended martingale representation theorem [7], L ∈ L2
F ([0, T ] ; L2(K; H))

and Kµ ∈ L2
F ([0, T ] × [0, T ] ; L2(K; H)) satisfy the following, for each 0 ≤ t ≤ T :

E (ξ | Ft) = E[ξ] +

∫ t

0

L(θ)dW (θ),(4.4)

E (f(s, µ(s)) | Ft) = E[f(s, µ(s))] +

∫ t

0

Kµ(s, θ)dW (θ).(4.5)
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Now, for 0 ≤ t ≤ T we estimate the solution (x, y) given by (4.1)–(4.3) in M [t, T ].

Observe that (4.1) yields

E sup
t≤s≤T

‖x(s)‖2 ≤ 2M
2
E sup

t≤s≤T
‖E (ξ | Fs)‖

2

+ 2M
2
E sup

t≤s≤T

(
∫ T

t

E (‖f(r, µ(r))‖ | Fr) dr

)2

≤ 8M
2
E ‖ξ‖2 + 8M

2
(T − t)E

(
∫ T

t

E ‖f(r, µ(r))‖2 dr

)

.

Similarly, using the inequalities

‖ỹ(t)‖2
L2(K;H) ≤ 2M

2
[

‖L(t)‖2
L2(K;H) + (T − t)

∫ T

t

‖Kµ(s, t)‖2
L2(K;H) ds

]

,

E

∫ s

t

‖Kµ(s, θ)‖
2
L2(K;H) dθ ≤ 4E ‖f(s, µ(s))‖2 ,

∫ T

t

‖L(s)‖2
L2(K;H) ds ≤ 4E ‖ξ‖2 ,

we obtain the following estimate of ỹ in (4.2)

E

∫ T

t

‖ỹ(s)‖2
L2(K;H) ds

≤ 2M
2
[

E

∫ T

t

‖L(s)‖2
L2(K;H) ds +

∫ T

t

(T − s)

∫ T

s

‖Kµ(r, s)‖2
L2(K;H) drds

]

≤ 2M
2
[

E

∫ T

t

‖L(s)‖2
L2(K;H) ds + (T − t)

∫ T

t

∫ r

t

‖Kµ(r, s)‖
2
L2(K;H) dsdr

]

≤ 8M
2
E ‖ξ‖2 + 8M

2
(T − t)E

∫ T

t

‖f(s, µ(s))‖2 ds,(4.6)

which, in turn, yields:

‖(x, y)‖2
t = E sup

t≤s≤T
‖x(s)‖2 + E

∫ T

t

‖y(s)‖2
L2(K;H) ds

≤ E sup
t≤s≤T

‖x(s)‖2 + 2E

∫ T

t

‖ỹ(s)‖2
L2(K;H) ds + 2E

∫ T

t

‖g(s)‖2
L2(K;H) ds

≤ 24M
2
E ‖ξ‖2 + 24M

2
(T − t)E

(
∫ T

t

E ‖f(r, µ(r))‖2 dr

)

+ 2E

∫ T

t

‖g(s)‖2
L2(K;H) ds,

which is the desired estimate (3.3). This completes the first stage of the proof.

Next, we argue that µ(t) is, in fact, the probability distribution of (x(t), z(t)), for

all 0 ≤ t ≤ T . For the remainder of the argument, we shall write (x, z) as (xµ, zµ).

Denote the probability law L of (xµ, zµ) by L(xµ, zµ) = {L(xµ(t), zµ(t)) : 0 ≤ t ≤ T}
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and define the mapping Ψ : Cλ2 → Cλ2 by Ψ(µ) = L(xµ, zµ). We establish the

following two claims.

Claim 1 : Ψ is well-defined.

Proof. First, we argue that (xµ, zµ) is L2−continuous on [0, T ]. Let 0 ≤ t1 ≤ T

and |h| be sufficiently small. Observe that

E ‖xµ(t1 + h) − xµ(t1)‖
2 ≤ 4

[

E
∥

∥

(

eA(T−(t1+h)) − eA(T−t1)
)

ξ
∥

∥

2

+E

∥

∥

∥

∥

eA(T−(t1+h))

∫ t1+h

0

L(θ)dW (θ) − eA(T−t1)

∫ t1

0

L(θ)dW (θ)

∥

∥

∥

∥

2

+E

∥

∥

∥

∥

∫ T

t1+h

eA(s−(t1+h))f(s, µ(s))ds−

∫ T

t1

eA(s−t1)f(s, µ(s))ds

∥

∥

∥

∥

2

(4.7)

+E

∥

∥

∥

∥

∫ T

t1+h

eA(s−(t1+h))

∫ t1+h

0

Kµ(s, θ)dW (θ)ds −

∫ T

t1

eA(s−t1)

∫ t1

0

Kµ(s, θ)dW (θ)ds

∥

∥

∥

∥

2
]

= 4
4

∑

i=1

E ‖Ii(t1 + h) − Ii(t1)‖
2 .

Certainly, E ‖I1(t1 + h) − I1(t1)‖
2 → 0 as |h| → 0. Next, note that

E ‖I2(t1 + h) − I2(t1)‖
2

= E

∥

∥

∥

∥

(

eA(T−(t1+h)) − eA(T−t1)
)

∫ t1

0

L(θ)dW (θ) − eA(T−(t1+h))

∫ t1+h

t1

L(θ)dW (θ)

∥

∥

∥

∥

2

≤ 2E

∫ t1

0

∥

∥

(

eA(T−(t1+h)) − eA(T−t1)
)

L(θ)
∥

∥

2
dθ + 2hM

2
E

∫ t1+h

t1

‖L(θ)‖2
L2(K;H) dθ.

(4.8)

An application of the Lebesgue dominated convergence theorem shows that the right-

hand side of (4.8) goes to zero as |h| → 0, due to the strong continuity of
{

eAt : 0 ≤ t ≤ T
}

.

The same is true of E ‖I3(t1 + h) − I3(t1)‖
2 and E ‖I4(t1 + h) − I4(t1)‖

2 due to (A2),

(A3), and the fact that Kµ ∈ L2
F ([0, T ] × [0, T ] ; L2(K; H)). Next, from (4.2)–(4.5),

we have

E ‖zµ(t1 + h) − zµ(t1)‖
2 = E

∫ t1+h

t1

‖yµ(s)‖2
L2(K;H) ds

≤ 2

(

E

∫ t1+h

t1

‖ỹµ(s)‖2
L2(K;H) ds + E

∫ t1+h

t1

‖g(s)‖2
L2(K;H) ds

)

,(4.9)

where the right-hand side of (4.9) goes to 0 as h → 0 using (A3). As such, we have

established the L2−continuity of (xµ, zµ) on [0, T ]. This, together with the fact that

(xµ, zµ) is Ft−adapted, guarantees that L(xµ(t), zµ(t)) ∈ Pλ2(H), for all 0 ≤ t ≤ T .
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To complete the proof of Claim 1, it remains to verify the continuity of t 7→

L(xµ(t), zµ(t)). To this end, let 0 ≤ c ≤ T and take |h| > 0 small enough to en-

sure that 0 ≤ c + h ≤ T . From earlier computations, we know that

(4.10)

lim
h→0

(

E ‖xµ(c + h) − xµ(c)‖2 + E ‖zµ(c + h) − zµ(c)‖2) = 0, for all 0 ≤ c ≤ T.

Hence, it follows that lim
h→0

‖(xµ, yµ)(c + h) − (xµ, yµ)(c)‖
2
0 = 0, for all 0 ≤ c ≤ T

(cf. (2.7)).

Consequently, since for all 0 ≤ c ≤ T and ϕ ∈ Cλ2 , it is the case that

∣

∣

∣

∣

∫

H

ϕ(x, y) (L(xµ(c + h), zµ(c + h)) − L(xµ(c), zµ(c))) (d(x, y))

∣

∣

∣

∣

= |E [ϕ(xµ(c + h; ω), zµ(c + h; ω)) − ϕ(xµ(c; ω), zµ(c; ω))]|

≤ ‖ϕ‖
C

λ2
‖(xµ, yµ)(c + h) − (xµ, yµ)(c)‖

2
0

we can conclude that

ρ (L(xµ, zµ)(c + h), L(xµ, zµ)(c))

= sup
‖ϕ‖C

λ2
≤1

∫

H×L2(K;H)

ϕ(x, y) (L(xµ, zµ)(c + h) − L(xµ, zµ)(c)) (d(x, y)),

where the right-hand side goes to 0 as |h| → 0, for any 0 ≤ c ≤ T . Hence, t 7→

L (xµ(t), zµ(t)) is a continuous map, so that L(xµ, zµ) ∈ Cλ2 . Therefore, we conclude

that Ψ is indeed well-defined.

Claim 2: Ψ has a unique fixed point in Cλ2 ([0, T ]; (Pλ2(H), ρ)).

Proof. Let µ, ν ∈ Cλ2 and let (xµ, yµ), (xν , yν) be the corresponding solution pairs

of (3.1). Observe that

E ‖xµ(s) − xν(s)‖
2 = E

∥

∥

∥

∥

∫ T

s

eA(τ−s) [f(τ, µ(τ)) − f(τ, ν(τ))] dτ

∥

∥

∥

∥

2

≤ (T − s)M
2
M2

f

∫ T

s

ρ2(µ(τ), ν(τ))dτ(4.11)

and that

E

∫ T

t

‖ỹµ(s) − ỹν(s)‖
2
L2(K;H) ds ≤ 2M

2
E

∫ T

t

∫ T

s

‖Kµ(θ, s) − Kν(θ, s)‖
2
L2(K;H) dsdθ

≤ 8M
2
E

∫ T

t

‖f(θ, µ(θ)) − f(θ, ν(θ))‖2 dθ

≤ 8M
2
M2

f E

∫ T

t

ρ2(µ(θ), ν(θ))dθ.

(4.12)
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So, by (4.2)–(4.3), we see that (4.12) holds with y in place of ỹ. Consequently, for all

0 ≤ t ≤ T ,

(4.13) ‖(xµ, yµ) − (xν , yν)‖
2
t ≤ 9M

2
M2

f (T − t).

Let C(t) = 9M
2
M2

f (T − t). For 0 < δ < T , define D2
δ(µ, ν) = sup

T−δ≤s≤T
ρ2(µ(s), ν(s)).

Then, taking the supremum over [T − δ, T ] in (4.13) yields

(4.14) sup
T−δ≤t≤T

‖(xµ, yµ) − (xν, yν)‖
2
t ≤ sup

T−δ≤t≤T
C(t) · D2

δ(µ, ν).

Choosing 0 < δ0 < T such that sup
T−δ0≤t≤T

C(t) ≤ 1
2

enables us to conclude from (4.14)

that

(4.15) sup
T−δ0≤t≤T

‖(xµ, yµ) − (xν, yν)‖
2
t < D2

δ0(µ, ν).

By definition of ρ (cf. (2.1)), we know that

ρ (L(xµ(t), zµ(t)), L(xν(t), zν(t))) ≤ ‖(xµ, yµ) − (xν , yν)‖
2
t ,

and hence

D2
δ0(Ψ(µ), Ψ(ν)) ≤ sup

T−δ0≤t≤T
‖(xµ, yµ) − (xν, yν)‖

2
t < D2

δ0(µ, ν).

Thus, Ψ is a strict contraction on Cλ2 ([T − δ0, T ]; (Pλ2(H), ρ)) and hence, has a

unique fixed point on this space. Performing the same argument on [T − 2δ0, T − δ0],

[T −3δ0, T −2δ0],and so on, we conclude after finitely many steps that, in fact, Ψ has

a unique fixed point in Cλ2 ([0, T ]; (Pλ2(H), ρ)). This completes the proof of Claim 2.

Thus, we can conclude from the above argument that (3.1) has a unique solu-

tion pair {(xµ(t), yµ(t)) : 0 ≤ t ≤ T} such that µ(t) is the probability distribution of

(xµ(t), zµ(t)), for all such 0 ≤ t ≤ T . This completes the proof of Lemma 3.2.

Proof of Theorem 3.3 First, note that for any fixed µ ∈ Cλ2 and (x̄, ȳ) ∈ M [0, T ],

it follows from (A4) and (A5) that

F (·) = f(·, µ(·), x̄(·), ȳ(·)) ∈ L2
F(0, T ; H)

G(·) = g(·, x̄(·), ȳ(·)) ∈ L2
F(0, T ; L2(K, H))

Thus, by Lemma 3.2, the equation

x(t) = eA(T−t)ξ +

∫ T

t

eA(s−t)F (s, µ(s), x̄(s), ȳ(s))ds(4.16)

+

∫ T

t

eA(s−t)(g(s, x̄(s)) + y(s))dW (s) P a.s

has a unique solution (x, y) ∈ M [0, T ]. Thus, the operator Φ : M [0, T ] → M [0, T ]

defined by Φ(x̄, ȳ) = (x, y), where (x, y) is the solution to (4.16), is well-defined. As
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such, in order to verify Theorem 3.3 observe that from (3.3),

‖Φ(x̄, ȳ) − Φ(x̃, ỹ)‖2
t ≤ 12M2

S(T − t)

∫ T

t

E‖f(s, µ(s), x̄(s), ȳ(s))

−f(s, µ(s), x̃(s), ỹ(s))‖2ds

+2M2
SE

∫ T

t

‖(g(s, x̄(s)) − g(s, x̃(s)))‖2
L2(K;H) ds

≤ 24M2
SM2

f (T − t)E

∫ T

t

[

‖x̄(s) − x̃(s)‖2 + ‖ȳ(s) − ỹ(s)‖2
L2(K;H)

]

ds

+2M2
SM2

g (T − t) sup
t≤s≤T

E ‖x̄(s) − x̃(s)‖2

≤ 24M2
S(T − t)(M2

f + M2
g ) sup

t≤s≤T
E ‖x̄(s) − x̃(s)‖2

+2M2
SM2

f (T − t)E

∫ T

t

‖ȳ(s) − ỹ(s)‖2
L2(K;H) ds

≤ (T − t) max{24M 2
S(M2

f + M2
g ), 2M2

SM2
f } ‖(x̄, ȳ) − (x̃, ỹ)‖2

t .(4.17)

Thus, Φ is a contraction provided that

(T − t) max{24M 2
S(M2

f + M2
g ), 2M2

SM2
f } < 1

for sufficiently small t = T − t0. In such case, Φ has a unique fixed point (xµ, yµ) ∈

M [T − t0, T ]. Performing the same argument on [T − 2t0, T − t0] , [T − 3t0, T − 2t0] ,

and so on, we conclude after finitely many steps that, in fact, Φ has a unique fixed

point in M [0, T ]. In order to complete the proof, it remains to show that µ(t) is

the probability distribution of (xµ(t), zµ(t)). The proof of this fact is similar to the

corresponding portion of the proof of Lemma 3.2; the details are left to the reader.

Proof of Proposition 3.5 Observe that for 0 ≤ t ≤ T ,

‖(xn, yn) − (x, y) ‖2
t ≤ 24M

2
E

∥

∥(nR(n; A) − I) eA(T−t)ξ
∥

∥

2

+ 24M
2
(T − t)E

(

∫ T

t

E‖nR(n; A)f (s, µn(s), xn(s), yn(s))

− f (s, µ(s), x(s), y(s))‖2ds
)

+ 2E

∫ T

t

‖nR(n; A)g(s, xn(s)) − g(s, x(s))‖2
L2(K;H) ds

= J1 (t) + J2 (t) + J3 (t)

The strong convergence of nR(n; A) − I to 0 implies

(4.18) sup
0≤t≤T

J1(t) → 0 as n → ∞.

Standard computations lead to

J2(t) 6 48M
2
(T − t) E

∫ T

t

[

‖(nR(n; A) − I) f (s, µn(s), xn(s), yn(s))‖
2
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+ M2
f

(

ρ2 (µn(s), µ(s)) + ‖xn(s) − x(s)‖2 + ‖yn(s) − y(s)‖
2

L2(K;H)

)]

ds

≤ 48M
2
(T − t) E

∫ T

t

‖(nR(n; A) − I) f (s, µn(s), xn(s), yn(s))‖
2 ds

+48M
2
M2

f (T − t) max ((T − t) , 1) ‖(xn, yn) − (x, y)‖2
t + C1(n)(4.19)

where C1(n) → 0 as n → ∞. Further,

E

∫ T

t

‖(nR(n; A) − I) f (s, µn(s), xn(s), yn(s))‖
2 ds

6 2E

∫ T

t

‖nR(n; A) − I‖2
BL(H) ‖f (s, µn(s), xn(s), yn(s)) − f (s, µ(s), x(s), y(s))‖2 ds

(4.20)

+ 2E

∫ T

t

‖n R(n ; A) − I‖2
BL(H) ‖f (s, µ(s), x(s), y(s))‖2ds.

Since ‖f (s, µ(s), x(s), y(s))‖2 is bounded independently of n, the dominated con-

vergence theorem, together with the strong convergence of nR(n; A)− I to 0, enables

us to conclude that the right-side of (4.20) converges to 0 as n → ∞ . Hence, we

have

(4.21)

J2(t) 6 ς1(n)+48M
2
M2

f (T − t) max ((T − t) , 1) ‖(xn, yn) − (x, y)‖2
t , 0 6 t 6 T ,

where ς1(n) → 0 as n → ∞. Similarly,

(4.22) J3(t) 6 ς2(n) + 4M2
g (T − t) ‖(xn, yn) − (x, y) ‖2

t , 0 6 t 6 T ,

where ς2(n) → 0 as n → ∞ Combining (4.17)–(4.22) yields

‖(xn, yn) − (x, y)‖2
t 6 (ς1(n) + ς2(n))

+
(

48M
2
M2

f max ((T − t) , 1) + 4M 2
g

)

(T−t) ‖(xn, yn) − (x, y)‖2
t , 0 6 t 6 T.(4.23)

For sufficiently small t0 = T − t

1 −
(

48M
2
M2

f max ((T − t) , 1) + 4M 2
g

)

(T − t) > 0.

So, ‖(xn, yn) − (x, y) ‖2
t → 0 as n → ∞. Performing the same argument on

[T − 2t0, T − t0] , [T − 3t0, T − 2t0] , and so on, we conclude after finitely many steps

that

‖(xn, yn) − (x, y) ‖2
0 → 0 as n → ∞,

which completes the proof of Proposition 3.5.

Proof of Proposition 3.8 We argue that
{

P(xn,yn)

}∞

n=1
is relatively compact by us-

ing Arzelá-Ascoli, and then we invoke Theorem 2.3. Throughout the proof, Ciwill de-

note a suitable positive constant independent of n. To begin, we show that {(xn, yn)}is
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uniformly bounded in the sense that sup
n∈N

‖(xn, yn)‖
2
0 < ∞. Let t ∈ [0, T ]. We estimate

each term in the variation of parameters formula for xn(t) separately. Observe that

(4.24) sup n∈NE ‖xn(T )‖2 = sup n∈NE
∥

∥nR(n; A)eA(T−t)ξ
∥

∥

2
< ∞,

since nR(n; A) is contractive for all n ∈ N. Next, using (A4) and (A6) yields

‖f (t, µn(t), xn(t), yn(t))‖ ≤ ‖f (t, µn(t), xn(t), yn(t)) − f (t, µn(t), 0, 0) ‖

+ ‖f (t, µn(t), 0, 0)‖(4.25)

≤ C1 ‖µn(t)‖ + C2 ‖xn(t)‖ + C3 ‖yn(t)‖L2(K;H) ,

for all 0 6 t 6 T . Using a routine argument involving (4.24) and Remark 3.7 (similar

to the one used to establish (4.20)) yields

E

∥

∥

∥

∥

∫ T

t

eA(s−t)n R(n; A) f (s, µn(s), xn(s), yn(s)) ds

∥

∥

∥

∥

2

(4.26)

6 (T − t) M
2 (

C4 + C5 ‖(xn, yn)‖
2
t

)

,

for all 0 6 t 6 T . Similarly,

E

∥

∥

∥

∥

∫ T

t

eA(s−t)n R(n; A) (g(s, xn(s)) + yn(s)) ds

∥

∥

∥

∥

2

(4.27)

6 (T − t)M
2 (

C6 + C7 ‖(xn, yn)‖
2
t

)

,

for all 0 6 t 6 T . Further, we have

(4.28) E

∫ T

t

‖yn(s) − y(s)‖2
L2(K;H)ds 6 (T − t) M

2 (

C8 + C9 ‖(xn, yn)‖
2
t

)

,

for all 0 6 t 6 T . As such, since 1− (T − t) M
2
(C5 + C7 +C9) > 0 for sufficiently

small t0 = T − t , we note that there exists a constant C (independent of n) such that

‖(xn, yn)‖
2
T−t ≤ C, for all n ∈ N. Repeating this argument on subsequent intervals

[T − 2t0, T − t0] , [T − 3t0, T − 2t0] , . . . we conclude after finitely many steps that, in

fact, there exists a constant C (independent of n) such that ‖(xn, yn)‖
2
0 ≤ C, for all

n ∈ N, thereby verifying the uniform boundedness of {(xn, yn)}.

Next, to verify the equicontinuity, we argue that for every n ∈ N and 0 6 s 6 t 6

T,E ‖xn(t) − xn(s)‖4 → 0 as t− s → 0, independently of n. Let 0 6 s 6 t 6 T. Since
{

eAt :0 ≤ t ≤ T
}

is a semigroup,

(4.29)

E
∥

∥(eAt − eAs)nR(n; A)ξ
∥

∥

4
6 E

(
∫ t

s

∥

∥eAτAnR(n; A)ξ
∥

∥ dτ

)4

6 M
4
E ‖ξ‖4 (t − s)4.

Also,

E

(∫ T−t

t

∥

∥[eA(T−t−τ) − eA(t−τ)]nR(n; A)f (τ, µn(τ), xn(τ), yn(τ))
∥

∥ dτ
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+

∫ T

T−t

∥

∥eA(T−t−τ)nR(n; A)f (τ, µn(τ), xn(τ), yn(τ))
∥

∥ dτ

)4

6 E

(
∫ T

t

∫ T−t−τ

t−τ

∥

∥eAuAnR(n; A)f (τ, µn(τ), xn(τ), yn(τ))
∥

∥ dudτ

+ MMf

[

1 + ‖(xn, yn)‖0 + sup
06t6T

‖µn(t)‖C
λ2

]

(t − s)

)4

6 C10(t − s)4.(4.30)

Similarly,

E

(
∫ T−t

t

∥

∥[eA(T−t−τ) − eA(t−τ)]nR(n; A) (g(τ, xn(τ)) + yn(τ))
∥

∥ dτ +

+

∫ T

T−t

∥

∥eA(T−t−τ)nR(n; A) (g(τ, xn(τ)) + yn(τ))
∥

∥ dτ

)4

≤ C11(t − s)4.(4.31)

The equicontinuity now follows directly from (4.29)–(4.31).

Therefore, the family
{

P(xn,yn)

}∞

n=1
is relatively compact by Arzelá-Ascoli, and there-

fore tight (cf. Section 2). Hence, by Proposition 2.2, the finite dimensional joint

distributions of P(xn,yn) converge weakly to that of P(x,y)and so, by Theorem 2.3,

P(xn,yn)
w
→ P(x,y), as n → ∞.

5. APPLICATIONS

Example 5.1 Let D be a bounded domain in R
N with smooth boundary ∂D.

Consider the following initial boundary value problem:

∂x(t, z) =






∆zx(t, z) + F1(t, z, x(t, z), y(t, z)) +

∫

L2(D)

F2(t, z, w)µ(t, z)(dw)






∂t

+ [G(t, z, x(t, z)) + y(t, z)] dβ(t), a.e. on (0, T ) × D

x(t, z) = 0, a.e. on (0, T ) × ∂D,

(5.1)

x(T, z) = ξ(T, z), a.e. on D,

where x : [0, T ] × D → R, y : [0, T ] × D → L2(R
N ; L2(D)), F1 : [0, T ] × D × R ×

L2(R
N ; L2(D)) → R, F2 : [0, T ] × D × L2(D) → L2(D), µ(t, ·) ∈ Pλ2(L2(D)) is the

probability law of (x(t, ·), y(t, ·)), G : [0, T ]×D×R → L2(R
N ; L2(D)), β is a standard

N−dimensional Brownian motion equipped

with filtration {Ft}, and ξ : [0, T ] × D → R is an F0−measurable random variable

independent of β with finite second moment. We impose the following conditions:
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(A8): F1 satisfies the Caratheodory conditions (i.e., measurable in (t, z, x) and

continuous in the fourth variable) and there exists MF1
> 0 such that

|F1(t, z, w1, y1) − F1(t, z, w2, y2)| ≤ MF1

[

|w1 − w2| + ‖y1 − y2‖L2(RN ;L2(D))

]

,

for all 0 ≤ t ≤ T, z ∈ D, w1, w2 ∈ R, y1, y2 ∈ L2(R
N ; L2(D)).

(A9): F2 satisfies the Caratheodory conditions and

(i) there exists MF2
> 0 such that

|F2(t, z, w1) − F2(t, z, w2)| ≤ MF2
‖w1 − w2‖L2(D) ,

for all 0 ≤ t ≤ T, z ∈ D, w1, w2 ∈ L2(D).

(ii) there exists M̄F2
> 0 such that ‖F2(t, z, w)‖L2(D) ≤ M̄F2

[

1 + ‖w‖L2(D)

]

, for

all 0 ≤ t ≤ T, z ∈ D, w ∈ L2(D),

(iii) F2(t, z, ·) : L2(D) → L2(D) is in Cλ2 , for each 0 ≤ t ≤ T, z ∈ D.

(A10): G satisfies the Caratheodory conditions and there exists MG > 0 such that

‖G(t, z, w1) − G(t, z, w2)‖L2(RN ;L2(D)) 6 MG |w1 − w2| ,

for all 0 6 t 6 T, z ∈ D, w1, w2 ∈ R.

We have the following theorem:

Theorem 5.1. If (A8)-(A10) are satisfied, then (5.1) has a unique solution

(x, y) ∈ L2
F

(

0, T ; L2(Ω; L2(D))
)

× L2
F

(

0, T ; L2(RN ; L2(Ω; L2(D)))
)

such that is the probability law of (x(t, ·), ξ(t, ·)), where ξ(t, ·) =
∫ T

t
y(s, ·)dβ(s).

Proof. Let H = L2(D) and K = R
N . Also, denote ∂x/∂t by x′(t) ,and define the

operator A by

(5.2) Ax (t, ·) = ∆zx (t, ·) , x ∈ H2(D)∩H1
0 (D).

It is known that A generates a strongly continuous semigroup {S(t)} on L2(D) (see

[32]). Define the maps f : [0, T ]×Pλ2(H)×H ×L2(K; H) → H and g : [0, T ]×H →

L2(K; H) by

f(t, µ(t), x(t), y(t))(z) = F1(t, z, x(t, z), y(t, z)) +

∫

L2(D)

F2(t, z, w)µ(t, z)(dw),(5.3)

g(t, x(t))(z) = G(t, z, x(t, z)),(5.4)

for all 0 6 t 6 T, z ∈ D. With these identifications, we observe that (5.1) can be

written in the abstract form (1.1). As mentioned above, (A1) is satisfied. We now

show that f and g as defined in (5.3) and (5.4) satisfy (A4) and (A5), respectively.

To this end, we first use (A9)(ii) and (iii), together with the Hölder inequality, to

observe that for any fixed µ ∈ Pλ2(H),
∥

∥

∥

∥

∫

L2(D)

F2(t, ·, w)µ(t, ·)(dw)

∥

∥

∥

∥

L2(D)
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=







∫

D







∫

L2(D)

F2(t, z, w)µ(t, z)(dw)







2

dz







1/2

≤





∫

D

‖F2(t, z, w)‖2
L2(D) µ(t, z)(dw)dz





1/2

≤ MF2







∫

D







∫

L2(D)

(

1 + ‖w‖L2(D)

)2

µ(t, z)(dw)






dz







1/2

(5.5)

≤ MF2

√

m (D)
√

‖µ (t)‖
C

λ2
cf. (2.1)

≤ MF2

√

m (D)
(

1 + ‖µ (t)‖
C

λ2

)

, for all 0 ≤ t ≤ T.

Also, from (A8)(ii), we obtain

‖F1(t, ·, x1(θ, ·), y1(θ, ·)) − F1(t, ·, x2(θ, ·), y2(θ, ·))‖L2(D)

(5.6)

≤ 4MF1

[
∫

D

(

|x1(θ, z) − x2(θ, z)|2 + ‖y1(θ, z) − y2(θ, z)‖2
L2(RN ;L2(D))

)

dz

]
1

2

≤ 4MF1
max

(

1,
√

m(D)
) [

‖x1 − x2‖H + ‖y1 − y2‖L2(RN ;L2(D))

]

.

(Here, m denotes Lebesgue measure in R
N .) Hence, from (5.5) and (5.6), we deduce

that f satisfies (A4)(i).

Next, invoking (A9)(i) yields, for all µ, ν ∈ Pλ2(H),

∥

∥

∥

∥

∫

L2(D)

F2(t, ·, w)µ(t, ·)(dw)−

∫

L2(D)

F2(t, ·, w)ν(t, ·)(dw)

∥

∥

∥

∥

L2(D)

=

∥

∥

∥

∥

∫

L2(D)

F2(t, ·, w)(µ(t, ·)− ν(t, ·))(dw)

∥

∥

∥

∥

L2(D)

≤ ‖ρ(µ(t), ν(t))‖L2(D) (cf. (2.1))(5.7)

=
√

m(D)ρ(µ(t), ν(t)), for all 0 ≤ t ≤ T.

Combining (5.6) and (5.7), we see that f satisfies (A4)(ii) with

Mf = max
{

4MF1
, 4MF1

√

m(D),
√

m(D)
}

.

Also, it is easy to see that g satisfies (A5) with Mg = MG. Thus, we can invoke Theo-

rem 3.3 to conclude that (5.1) has a unique solution (x, y) ∈ L2
F (0, T ; L2(Ω; L2(D)))×

L2
F

(

0, T ; L2(RN ; L2(Ω; L2(D)))
)

such that is the probability law of (x(t, ·), ξ(t, ·)).
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Example 5.3 Consider the following initial-boundary value problem of Sobolev

type:

∂ (x(t, z) − xzz(t, z)) − xzz(t, z)∂t

=

(

F1(t, z, x(t, z), y(t, z)) +

∫

L2(0,π)

F2(t, z, w)µ(t, z)(dw)

)

∂t

+ (G (t, z, x(t, z)) + y(t, z)) dW (t), 0 ≤ z ≤ π, 0 ≤ t ≤ T,

x(t, 0) = x(t, π) = 0, 0 ≤ t ≤ T,(5.8)

x(T, z) = ξ(T, z), 0 ≤ z ≤ π,

where x : [0, T ] × [0, π] → R, F1 : [0, T ] × [0, π] × R × L2(R; L2(0, π)) → R, F2 :

[0, T ]× [0, π]×L2 (0, π) → L2 (0, π) , and G : [0, T ]× [0, π]×R → L2(R; L2(0, π)) are

given mappings satisfying (A8)–(A10) on the appropriate spaces; W is a standard

L2(0, π)−valued Wiener process equipped with filtration {Ft}; ξ : [0, T ] × [0, π] → R

is an F0−measurable random variable independent of W with finite second moment;

and µ(t, ·) ∈ Pλ2(L2(0, π)) is the probability law of (x(t, ·), y(t, ·)). We have the

following theorem.

Theorem 5.2. Under the above assumptions, (5.8) has a unique solution

(x, y) ∈ L2
F

(

0, T ; L2(Ω; L2(0, π))
)

× L2
F

(

0, T ; L2(RN ; L2(Ω; L2(0, π)))
)

,

such that {µ(t, ·) : 0 ≤ t ≤ T} is the probability law of (x(t, ·), ξ(t, ·)), where ξ(t, ·) =
∫ T

t
y(s, ·)dW (s).

Proof. Let H = L2(0, π), K = R, and define the operators A : D(A) ⊂ H → H

and B : D(B) ⊂ H → H, respectively, by

Ax(t, ·) = −xzz(t, ·), Bx(t, ·) = x(t, ·) − xzz(t, ·),

with domains

D(A) = D(B)

=
{

x ∈ L2(0, π) : x, xz are absolutely continuous,

xzz ∈ L2 (0, π) , x(0) = x(π) = 0
}

.

Define F1, F2, G as in Example 5.1 (with L2(0, π) in place of L2(D)). Then, (5.8) can

be written in the abstract form

d (Bx(t)) + Ax(t)dt = f1 (t, µ(t), x(t), y(t))dt + [g (t, x(t)) + y(t)] dW (t), 0 ≤ t ≤ T,

x(T ) = ξ(5.9)

Upon making the substitution v(t) = Bx(t) in (5.9), we arrive at the equivalent

problem

dv(t) + AB−1v(t)dt = f1

(

t, µ(t), B−1v(t), y(t)
)

dt
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+
[

g
(

t, B−1v(t)
)

+ y(t)
]

dW (t), 0 ≤ t ≤ T,

v(T ) = Bξ(5.10)

It is known that B is a bijective operator possessing a continuous inverse and that

−AB−1 is a bounded linear operator on L2(0, π) which generates a strongly contin-

uous semigroup {T (t)} on L2(0, π) satisfying (A1) with MT = α = 1 (see [27]).

Further, f and g are shown to satisfy (A4) and (A5), respectively, as in Example

5.1. Consequently, we can invoke Theorem 3.3 to conclude (5.10)) has a unique solu-

tion (v, y) which, in turn, yields the corresponding solution (x, y) (where x = B−1v)

to (5.9), and hence of (5.8).

Remark 5.5 This example provides a generalization of the work in [2, 8, 28, 33,

34] to the stochastic setting. Such initial-boundary value problems arise naturally

in the mathematical modeling of various physical phenomena (e.g., thermodynamics

[9], shear in second-order fluids [19, 34], fluid flow through fissured rocks [3], and

consolidation of clay [32].

Acknowledgement The authors wish to express their gratitude to the referee for

making valuable suggestions that improved the quality of this article.

REFERENCES

[1] Ahmed, N. U. and Ding, X., A semilinear McKean-Vlasov stochastic evolution equation in

Hilbert space, Stochastic Processes Appl. 1995, 60, 65–85.

[2] Barenblat, G., Zheltor, J., and Kochiva, I., Basic concepts in the theory of seepage of homoge-

nous liquids in fissured rocks, J. Appl. Math. Mech. 1960, 24, 1286–1303.

[3] Bergström, H., Weak Convergence of Measures, Academic Press, New York, N.Y., 1982.

[4] Brill, H., A semilinear Sobolev evolution equation in a Banach space, J. Diff. Eqs., 1977, 24,

412–425.

[5] Confortola, F., Dissipative BSDEs in infinite dimensions, Infin. Dimens. Anal. Quantum Prob.

Related Top., 2006, 9 (1), 155–168.

[6] Chen, P. J. and Curtin, M. E., On a theory of heat conduction involving two temperatures, Z.

Agnew. Math. Phys. 1968, 19, 614–627.

[7] DaPrato, G. and Zabczyk, J., Stochastic Evolution Equations in Infinite Dimensions, Cambridge

University Press, Cambridge, 1992.

[8] Dawson, D. A., Critical dynamics and fluctuations for a mean-field model of cooperative be-

havior, J. Statistical Phys. 1983, 31, 29–85.
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