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ABSTRACT. Invariant manifolds facilitate the understanding of nonlinear stochastic dynamics.

When an invariant manifold is represented approximately by a graph for example, the whole sto-

chastic dynamical system may be reduced or restricted to this manifold. This reduced system

may provide valuable dynamical information for the original system. The authors have derived an

invariant manifold reduction or restriction principle for systems of Stratonovich or Ito stochastic

differential equations.

Two concepts of invariance are considered for invariant manifolds.

The first invariance concept is in the framework of cocycles — an invariant manifold being a

random set. The dynamical reduction is achieved by investigating random center manifolds.

The second invariance concept is in the sense of almost sure — an invariant manifold being a

deterministic set which is not necessarily attracting. The restriction of the original stochastic system

on this deterministic local invariant manifold is still a stochastic system but with reduced dimension.
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1. INTRODUCTION

Invariant manifolds provide geometric structures that describe dynamical behav-

ior of nonlinear systems. Dynamical reductions to attracting invariant manifolds or

dynamical restrictions to other (not necessarily attracting) invariant manifolds are

often sought to gain understanding of nonlinear dynamics.

There have been recent works on invariant manifolds for stochastic or random or-

dinary differential equations by Carverhill [9], Wanner [33], Arnold [3], Boxler [5, 6],

and Mohammed [22], among others. These authors use the (sample-wise) cocycle

property for the solution operator of the stochastic differential equations, the Os-

eledets’ multiplicative ergodic theorem [3], and a less-physical but technically conve-

nient random norm, to prove the existence of invariant manifolds. The construction

of a random norm needs the knowledge of Oseledets spaces (a kind of eigenspace in
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random linear algebra) as well as Lyapunov exponents, both are hardly ever available;

see [3], p. 191 and p.379. Random norms are not realistic in this sense, and thus

representations of invariant manifolds and the dynamical reductions are difficult to

achieve when random norms are used.

Earlier approaches on deriving dynamical reductions on stochastic center-like

manifolds by series expansions are considered by Knoblock and Wiesenfeld [18],

Schoner and Haken [30], and Xu and Roberts [36].

For stochastic dynamical systems, there are various concepts for invariance in the

definition of invariant manifolds [34]. In the framework of cocycles [3], the suitable

concept for invariance of a random set is that each orbit starting inside it stays

inside it sample-wise, modulo the change of sample due to noise. Another concept

is almost sure invariance of a deterministic set under stochastic dynamics, i.e., each

orbit starting inside it stays inside it almost surely.

In this paper, we consider invariant manifold reductions or restrictions for Strato-

novich and Ito stochastic differential equations in Euclidean spaces.

We first study the system of Stratonovich stochastic differential equations in R
n:

(1) dX = [AX + F ε(X)]dt + B(X) ◦ dW (t), X(0) = x0,

where X = X(t, ω) is the unknown variable; A is a n × n matrix with k eigenvalues

of zero real parts and n − k eigenvalues of negative real parts; F ε : R
n → R

n and

B : R
n → R

n×n are nonlinear vector and matrix functions (with ε > 0 a small

parameter), respectively; and W (t) is a standard vector Brownian motion (or Wiener

process) taking values in R
n. Moreover, ◦ denotes the stochastic differential in the

sense of Stratonovich.

Then we consider the following stochastic system defined by Ito stochastic differ-

ential equations in R
n:

(2) dX = F (X)dt + B(X)dW (t), X(0) = x0,

where again F and B are vector and matrix functions in R
n and R

n×n, respectively.

And W (t) are standard vector Brownian motion in R
n.

Note that the Stratonovich stochastic differential B(X)◦dW (t) and Ito stochastic

differential B(X)dW (t) are interpreted through their corresponding definitions of

stochastic integrals [24]:

∫ T

0

B(X) ◦ dW (t) := mean-square lim
∆tj→0

∑

j

B(X(
tj+1 + tj

2
))(Wtj+1

− Wtj ),

∫ T

0

B(X)dW (t) := mean-square lim
∆tj→0

∑

j

B(X(tj))(Wtj+1
− Wtj ).
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Note the difference in the sums: In Stratonovich integral, the integrand is evaluated

at the midpoint
tj+1+tj

2
of a subinterval (tj, tj+1), while for Ito integral, the integrand

is evaluated at the left end point tj. See [24] for the discussion about the difference in

physical modeling by these two kinds of stochastic differential equations. There are

also dynamical differences for these two type of stochastic equations, even at linear

level [8].

In this paper, we derive an invariant manifold reduction or restriction principle

for the above systems of stochastic differential equations.

For the Stratonovich stochastic system (1), we consider random invariant center

manifolds. The dynamical reduction is achieved by investigating asymptotic behavior

of random center manifolds.

For the Ito stochastic system (2), we study deterministic almost sure invariant

manifolds, which are not necessarily attracting. We reformulate the local invariance

condition as invariance equations, i.e., first order partial differential equations, and

then solve these equations by the method of characteristics. Although the local

invariant manifold is deterministic, the restriction of the original stochastic system

on this deterministic local invariant manifold is still a stochastic system but with

reduced dimension.

This paper is organized as follows: In Section 2, we recall some basic concepts

for stochastic dynamical systems. We consider random center manifold reduction

in Section 3. Finally, in Section 4, we construct deterministic invariant manifolds by

investigating first order partial differential equations via the method of characteristics,

and thus obtain dynamical restrictions for stochastic dynamical systems.

2. STOCHASTIC DYNAMICAL SYSTEMS

In this section we introduce some definitions in stochastic dynamical systems, as

well as recall some usual notations in probability.

We consider stochastic systems in the state space R
n, with the usual metric

or distance d(x, y) =
√

∑n

j=1(xj − yj)2, norm or length ‖x‖ =
√

∑n

j=1 x2
j , and the

usual scalar product < x, y >=
∑n

j=1 xjyj. All invariant manifolds and their sample

versions are in this state space.

Some stochastic processes, such as a Brownian motion, can be described by a

canonical (deterministic) dynamical system (see [3], Appendix A). A standard Brow-

nian motion (or Wiener process) W (t) in R
n, with two-sided time t ∈ R, is a sto-

chastic process with W (0) = 0 and stationary independent increments satisfying

W (t) − W (s) ∼ N (0, |t − s|I). Here I is the n × n identity matrix. The Brownian

motion can be realized in a canonical sample space of continuous paths passing the
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origin at time 0

Ω = C0(R, Rn) := {ω ∈ C(R, Rn) : ω(0) = 0}.

The convergence concept in this sample space is the uniform convergence on bounded

and closed time intervals, induced by the following metric

ρ(ω, ω′) :=

∞
∑

n=1

1

2n

‖ω − ω′‖n

1 + ‖ω − ω′‖n

, where ‖ω − ω′‖n := sup
−n≤t≤n

‖ω(t) − ω′(t)‖.

With this metric, we can define events represented by open balls in Ω. For example, a

ball centered at zero with radius 1 is {ω : ρ(ω, 0) < 1}. We define the Borel σ-algebra

F as the collection of events represented by open balls A’s, complements of open balls,

Ac’s, unions and intersections of A’s and/or Ac’s, together with the empty event, the

whole event (the sample space Ω), and all events formed by doing the complements,

unions and intersections forever in this collection.

Taking the (incomplete) Borel σ-algebra F on Ω, together with the corresponding

Wiener measure P, we obtain the canonical probability space (Ω,F , P), also called the

Wiener space. This is similar to the game of gambling with a dice, where the canon-

ical sample space is Ωdice = {1, 2, 3, 4, 5, 6}. Moreover, E denotes the mathematical

expectation with respect to probability P.

The canonical driving dynamical system describing the Brownian motion is de-

fined as

θ(t) : Ω → Ω, θ(t)ω(s) := ω(t + s) − ω(t), s, t ∈ R.

Then θ(t), also denoted as θt, is a homeomorphism for each t and (t, ω) � θ(t)ω is

continuous, hence measurable. The Wiener measure P is invariant and ergodic under

this so-called Wiener shift θt. In summary, θt satisfies the following properties.

• θ0 = id,

• θtθs = θt+s, for all s, t ∈ R,

• the map (t, ω) 7→ θtω is measurable and θtP = P for all t ∈ R.

We now introduce an important concept. A filtration is an increasing family

of information accumulations, called σ-algebras, Ft. For each t, σ-algebra Ft is a

collection of events in sample space Ω. One might observe the Wiener process Wt

over time t and use Ft to represent the information accumulated up to and including

time t. More formally, on (Ω,F), a filtration is a family of σ-algebras Fs : 0 ≤ s ≤ t

with Fs contained in F for each s, and Fs ⊂ Fτ for s ≤ τ . It is also useful to think

Ft as the σ-algebra generated by infinite union of Fs’s, which is contained in Ft.

So a filtration is often used to represent the change in the set of events that can be

measured, through gain or loss of information.
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For understanding stochastic differential equations from a dynamical point of

view, the natural filtration is defined as a two-parameter family of σ-algebras gener-

ated by increments

F t
s := σ(ω(τ1) − ω(τ2) : s ≤ τ1, τ2 ≤ t), s, t ∈ R.

This represents the information accumulated from time s up to and including time

t. This two-parameter filtration allows us to define forward as well as backward

stochastic integrals, and thus we can solve a stochastic differential equation from an

initial time forward as well as backward in time [3].

The solution operator for the stochastic system (1) or (2) with initial condition

x(0) = x0 is denoted as ϕ(t, ω, x0).

The dynamics of the system on the state space R
n, over the driving flow θt is

described by a cocycle. A cocycle ϕ is a mapping:

ϕ : R × Ω × R
n → R

n

which is (B(R) ⊗F ⊗ B(Rn),F)-measurable such that

ϕ(0, ω, x) = x ∈ R
n,

ϕ(t1 + t2, ω, x) = ϕ(t2, θt1ω, ϕ(t1, ω, x)),

for t1, t2 ∈ R, ω ∈ Ω, and x ∈ R
n. Then ϕ, together with the driving dynamical

system, is called a random dynamical system. Sometimes we also use ϕ(t, ω) to

denote this system.

Under very general conditions, the stochastic differential systems (1) and (2) each

generates a random dynamical system in R
n; see [3, 17].

We recall some concepts in dynamical systems. A manifold M is a set, which

locally looks like an Euclidean space. Namely, a “patch” of the manifold M looks

like a “patch” in R
n. For example, curves, torus and spheres in R

3 are one- and two-

dimensional differentiable manifolds, respectively. However, a manifold arising from

the study of invariant sets for dynamical systems in R
n, can be very complicated.

So we give a formal definition of manifolds. For more discussions on differentiable

manifolds, see [1, 25].

Definition 1 (Differentiable manifold and Lipschitz manifold). An n-dimensional

differentiable manifold M , is a connected metric space with an open covering {Uα},

i.e, M =
⋃

α Uα, such that

(i) for all α , Uα is homeomorphic to the open unit ball in R
n, B = {x ∈ R

n :

|x| < 1}, i.e., for all α there exists a homeomorphism of Uα onto B, hα : Uα → B, and
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(ii) if Uα ∩ Uβ 6= ∅ and hα : Uα → B, hβ : Uβ → B are homeomorphisms, then

hα(Uα ∩ Uβ) and hβ(Uα ∩ Uβ) are subsets of R
n and the map

(3) h = hα ◦ h−1
β : hβ(Uα ∩ Uβ) → hα(Uα ∩ Uβ)

is differentiable, and for all x ∈ hβ(Uα∩Uβ), the Jacobian determinant det Dh(x) 6= 0.

If the map (3) is only Lispchitz continuous, then we call M an n-dimensional

Lispchitz continuous manifold.

Recall that a homeomorphism of A to B is a continuous one-to-one map of A

onto B, h : A → B, such that h−1 : B → A is continuous.

Just as invariant sets are important building blocks for deterministic dynamical

systems, invariant sets are basic geometric objects to help understand stochastic dy-

namics [3]. Here we present two different concepts about invariant sets for stochastic

systems: random invariant sets and almost sure invariant sets.

Definition 2 (Random set). A collection M = M(ω)ω∈Ω, of nonempty closed sets

M(ω), ω ∈ Ω, contained in R
n, is called a random set if

ω 7→ inf
y∈M(ω)

d(x, y)

is a random variable for any x ∈ R
n.

Definition 3 (Tempered absorbing set). A random set B(ω) is called an tempered

absorbing set of ϕ if for any bounded set K ⊂ R
n there exists tK(ω) such that

∀t ≥ tK(ω)

ϕ
(

t, θ−tω, K
)

⊂ B(ω).

and for all ε > 0

lim
t→∞

e−εtd
(

B(θ−tω)
)

= 0, a.e. ω ∈ Ω,

where d(B) = supx∈B d(x, 0), with 0 ∈ R
n, is the diameter of B.

Definition 4 (Random invariant set). A random set M(ω) is called an invariant set

for a random dynamical system ϕ if

ϕ(t, ω, M(ω)) ⊂ M(θtω), t ∈ R and ω ∈ Ω.

Definition 5 (Random invariant manifold). If a random invariant set M can be

represented by a graph of a Lipschitz mapping

γ∗(ω, ·) : H+ → H−, with direct sum decomposition H+ ⊕ H− = R
n

such that

M(ω) = {x+ + γ∗(ω, x+), x+ ∈ H+},

then M is called a Lipschitz continuous invariant manifold.
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We will also consider deterministic invariant sets or manifolds, while the invari-

ance is in the sense of almost-sure (a.s.) [4, 13, 10, 31, 37].

Definition 6 (Almost sure invariant set). A (deterministic) set M in R
n is called

locally almost surely invariant for (2), if for all (t0, x0) ∈ R × M , there exists a

continuous local weak solution X (t0,x0) with lifetime τ = τ(t0, x0), such that

X
(t0 ,x0)
t∧τ ∈ M, ∀t > t0, a.s. ω ∈ Ω,

where t ∧ τ = min(t, τ).

3. RANDOM CENTER MANIFOLD REDUCTION

In this section we study an n−dimensional system of Stratonovich stochastic

differential equations in R
n:

(4) dX = [AX + F ε(X)]dt + B(X) ◦ dW (t), X(0) = x0,

where A is a n × n real matrix with k eigenvalues of zero real parts and n − k

eigenvalues of negative real parts (k < n). Without loss of generality, we assume

that the matrix A is in Jordan form (which can be achieved by an invertible linear

coordinate transformation in R
n) and that the first k eigenvalues have zero real parts.

Moreover, nonlinear function F ε : R
n → R

n and nonlinear matrix mapping

B : R
n → R

n×n are Lipschitz continuous with Lipschitz constants Lε
F and LB, respec-

tively. We assume that F ε(0) = B(0) = 0. Here ε is a small parameter so that F ε can

be seen as a small perturbation, that is, we have Lε
F → 0 as ε → 0. The state space

R
n is the direct sum of the center space R

n
c (i.e., eigenspace spanned by eigenvectors

or generalized eigenvectors corresponding to eigenvalues with zero real parts) and its

orthogonal complement R
n
s :

R
n = R

n
c ⊕ R

n
s ,

where dimensions dim R
n
c = k and dim R

n
s = n − k.

Let Xc be the projection of X ∈ R
n to the center space R

n
c . Hence every point

X in R
n may be uniquely decomposed as a sum of a vector Xc, in the center space

R
n
c and another vector Xs, in the orthogonal complement R

n
s . Namely,

X = Xc + Xs.

Let F ε
c (·) and Bc(·) be the projections of F ε(·) and B(·) into the center space R

n
c ,

respectively.

Note that later on we will truncate the nonlinearity so that it has global Lipschitz

constant. For stochastic systems, truncation may not be always appropriate, although

sometimes it works fine, such as in considering nonlinear dynamical behavior near

fixed points [7]. We have the following result about dynamically reducing an n-

dimensional stochastic system to a lower k-dimensional stochastic system.
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Theorem 1 (Random center manifold reduction). Given the above assumptions for

the Stratonovich stochastic differential equation (4) in R
n. If further assume that the

equation (4) generates a dissipative random dynamical system (e.g., having a random

absorbing set). Then for sufficiently small ε, the long time behavior of (4) can be

described by the following k-dimensional stochastic system with k < n:

(5) dXc(t) = AXc(t) + F ε
c (Xc(t))dt + Bc(Xc(t)) ◦ dWc(t)

provided (5) is structurally stable. In this reduced lower dimensional stochastic sys-

tem, F ε
c (Xc(t)) and Bc(Xc(t)) denote F ε

c (·) and Bc(·) evaluated at Xc, respectively.

Moreover, Wc(t) is the projection of W (t) into the k-dimensional center space R
n
c .

Remark 1. We say the long time dynamics of the stochastic equation (4) is described

by the stochastic equation (5) if both systems have the same limit sets (and possibly

also share some other invariant sets).

Remark 2. The random dynamical system ϕ(t, ω) generated by (5) is called struc-

turally stable, if for any small perturbation (small in the sense of the usual metric

in the space of continuous functions) to F ε(x) and B(x), the perturbed random dy-

namical system Φ(t, ω) is topologically equivalent to ϕ(t, ω). Namely, there exists a

random homeomorphism h(ω) so that Φ(t, ω) ◦ h(ω) = h(θtω) ◦ ϕ(t, ω).

Proof: The proof for this theorem can be obtained by modifying the proof in

[11, 12] or [32] from the infinite dimensional case to the present finite dimensional

system (4) in the state space R
n. Here we only highlight some main points.

The first step is to decompose or project the original system (4) into two subsys-

tems, one in the center space R
n
c and another one in its orthogonal complement R

n
s .

The subsystem in the center space R
n
c is what we would like to keep or retain, while

the subsystem in R
n
s is what we would like to reduce or eliminate.

The second step is to show the existence of a k-dimensional (local) random in-

variant (center) manifold M(ω). This is achieved by showing that this manifold is

represented by a Lipschitz graph, where variable Xs ∈ R
n
s can be represented by

variable Xc ∈ R
n
c (so that we can eliminate Xs inside this random (center) manifold

M(ω)). Thus we obtain a reduced lower k-dimensional stochastic system on variable

Xc, which is actually the system (5).

In the third step, we show that the reduced lower k-dimensional stochastic system

(5) captures the long time dynamics of the original system (4) when ε is sufficiently

small. To this end, we use an argument based on cone invariance and asymptotic

completeness [26, 27, 19].

This completes the sketch of the proof.

Let us look at an example.
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Example 1. Consider a system of stochastic differential equations in R
2:

dx = −xdt + (xy2 − x3 −
1

2
x)dt + x ◦ dW1(t),

dy = 0ydt + (−2 + x2y − y3 −
1

2
y)dt + y ◦ dW2(t),

where W1 and W2 are independent scalar Brownian motions.

Let u = (x, y)T . Then

du = (Au + F̃ (u))dt + Bu ◦ dW (t),

with

A =

(

−1 0

0 0

)

, F̃ (u) =

(

xy2 − x3 − 1
2
x

−2 + x2y − y3 − 1
2
y

)

and

Bu ◦ dW (t) =

(

x ◦ dW1(t)

y ◦ dW2(t)

)

.

In order to apply Ito’s formula, we rewrite this system in the equivalent Ito’s stochastic

differential equations (see [24], page 36):

dx = −xdt + (xy2 − x3)dt + xdW1(t),

dy = 0ydt + (−2 + x2y − y3)dt + ydW2(t),

where W1 and W2 are independent scalar Brownian motions. Let u = (x, y)T , then

du = (Au + F (u))dt + Bu dW (t)

with

A =

(

−1 0

0 0

)

, F (u) =

(

xy2 − x3

−2 + x2y − y3

)

and Bu =

(

x 0

0 y

)

.

Recall the standard scalar product < u1, u2 >= x1x2+y1y2 and norm ‖u‖ =
√

x2 + y2

in R
2. Then, we apply Ito’s formula (see [24], page 48) to obtain “energy” estimate

1

2

d

dt
E‖u‖2 = E〈u, du〉+ E

1

2
〈du, du〉

= E〈u, du〉+ E
1

2
〈Bu dW (t), Bu dW (t)〉

= E〈u, A(u) + F (u)〉 +
1

2
E Trace[Bu · (Bu)T ]

= −x2 + x2y2 − x4 − 2y + x2y2 − y4 +
1

2
(x2 + y2)

= −
1

2
(x2 + y2) + (2x2y2 − x4 − y4) − y + y2 − 1 + 1

= −
1

2
(x2 + y2) − (x2 − y2)2 + (y − 1)2 − 1

≤ −
1

2
E‖u‖2,
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if y is near the equilibrium point (0, 0) (so that 0 < y < 1). Note that here E denotes

the expectation with respect to probability P. This estimate will be used to conclude

dissipativity for the (truncated) system.

The nonlinear terms (xy2 − x3) and (−2 + x2y − y3) can be truncated within a

disk centered at (0, 0) with radius 0 < ε < 1 (making them zero outside the disk).

The truncated nonlinear terms satisfy desired Lipschitz conditions. And, the above

“energy” estimate implies the dissipative property for the truncated system.

By Theorem 1, near the equilibrium point (0, 0) (i.e., taking ε is small enough),

the original two-dimensional system is asymptotically reduced to a one-dimensional

stochastic dynamical system

dy = (−2 − y3)dt + ydW2(t).

4. INVARIANT MANIFOLD RESTRICTION

Now we consider the stochastic system (2) defined by Ito stochastic differential

equations in R
n:

(6) dX = F (X)dt + B(X)dW (t), X(0) = x0,

where F and B are vector and matrix functions in R
n and R

n×n, respectively. We

also assume that F (·) ∈ C1(Rn; Rn) and B(·) ∈ C1(Rn; Rn×n).

We are going to derive representations of invariant finite dimensional manifolds

in terms of A, F and B, by using the tangency conditions for a deterministic C2

manifold M in R
n:

µ(ω, x) := F (ω, x) −
1

2

∑

j

[DBj(ω, x)]Bj(ω, x) ∈ TxM,(7)

Bj(ω, x) ∈ TxM, j = 1, · · · , n,(8)

where D represents Jacobian operator and Bj is the j−th column of the matrix

B. The above tangency conditions are shown to be equivalent to almost sure local

invariance of manifold M ; see Filipovic ([13]) and related works [4, 21, 37, 10, 2].

The almost sure invariance conditions (7)-(8) for manifold M mean that the n+1

vectors, µ and Bj, j = 1, · · · , n, are tangent vectors to M . Namely, these n+1 vectors

are orthogonal to the normal vectors of manifold M .

In other words, if the normal vector for M at x is N(x), then the almost sure

invariance conditions (7)-(8) become the following invariance equations for manifold

M : For all x ∈ M ,

< µ(x), N(x) > = 0,(9)

< Bj(x), N(x) > = 0, j = 1, · · · , n,(10)

where, as before, < ·, · > denotes the usual scalar product in R
n.
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Invariant manifolds are usually represented as graphs of some functions in R
n.

By investigating the above invariance equations (9)-(10), we may be able to find some

local invariant manifolds M for the stochastic system (6).

The goal for this section is to present a method to find some of these local

invariant manifolds. Although the following result and example are stated for a

codimension 1 local invariant manifold, the idea extends to other lower dimensional

local invariant manifolds, as long as the normal vectors N(x) (or tangent vectors)

may be represented; see tangency conditions (9)-(10) above and (12)-(13) below.

Theorem 2 (Local invariant manifold restriction). Let the local invariant manifold

M for the stochastic dynamical system (6) be represented as a graph defined by the

algebraic equation

M : G(x1, · · · , xn) = 0.(11)

Then G satisfies a system of first order (deterministic) partial differential equations

and the local invariant manifold M may be found by solving these partial differential

equations by the method of characteristics. By restricting the original dynamical sys-

tem (6) on this local invariant manifold M , we obtain a locally valid, reduced lower

dimensional system.

In fact, the normal vector to this graph or surface is, in terms of partial deriva-

tives, ∇G(x) = (Gx1
, · · · , Gxn

). Thus the invariance equations (9)-(10) are now

< µ(x),∇G(x) > = 0,(12)

< Bj(x),∇G(x) > = 0, j = 1, · · · , n,(13)

This is a system of first order partial differential equations in G. We apply the

method of characteristics to solve for G, and therefore obtain the invariant manifold

M , represented by a graph in state space R
n: G(x1, · · · , xn) = 0.

In the rest of this section, we first recall the method of characteristics, and then

work out an example of finding a local invariant manifold and reduced system.

Method of Characteristics: Consider a first order partial differential equation

for the unknown scalar function u of n variables x1, · · · , xn

n
∑

j=1

ai(x1, · · · , xn)uxi
= c(x1, · · · , xn),(14)

with continuous coefficients ai’s and c.

Note that the solution surface u = u(x1, . . . , xn, t) in x1 · · ·xnu−space has normal

vectors N := (ux1
, · · · , uxn

,−1). This partial differential equation implies that the

vector V =: (a1, · · · , an, c) is perpendicular to this normal vector and hence must lie

in the tangent plane to the graph of z = u(x1, · · · , xn).
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In other words, (a1, · · · , an, c) defines a vector field in R
n, to which graphs of the

solutions must be tangent at each point [23]. Surfaces that are tangent at each point

to a vector field in R
n are called integral surfaces of the vector field. Thus to find

a solution of equation (14), we should try to find integral surfaces.

How can we construct integral surfaces? We can try using the characteristics

curves that are the integral curves of the vector field. That is, X = (x1(t), · · · , xn(t))

is a characteristic if it satisfies the following system of ordinary differential equa-

tions:

dx1

dt
= a1(x1, · · · , xn),

· · ·
dxn

dt
= an(x1, . . . , xn),

du

dt
= c(x1, . . . , xn).

A smooth union of characteristic curves is an integral surface. There may be many

integral surfaces. Usually an integral surface is determined by requiring it to contain

(or pass through) a given initial curve or an n − 1 dimensional manifold Γ:

xi = fi(s1, . . . , sn−1), i = 1, . . . , n

u = h(s1, . . . , sn−1)

This generates an n-dimensional integral manifold M parameterized by (s1, . . . , sn−1, t).

The solution u(x1, · · · , xn) is obtained by solving for (s1, . . . , sn−1, t) in terms of vari-

ables (x1, · · · , xn).

Remark: If initial data Γ is non-characteristic, i.e., it is nowhere tangent to the

vector field V = (a1, · · · , an, c), and a1, · · · , an, c are C1 (and thus locally Lipschitz

continuous), then there exists a unique integral surface u = u(x1, · · · , xn) containing

Γ, defined at least locally near Γ.

Now applying the above method of characteristics to (12)-(13), we obtain a so-

lution G = G(x1, · · · , xn). However, the local invariant manifold M that we look for

is represented by the equation

G(x1, · · · , xn) = 0.

Therefore, a skill is needed to make sure that the solution G = G(x1, · · · , xn) actually

penetrates the plane G = 0 in the x1 · · ·xnG−space; see Fig. 1. This needs to be

achieved by selecting appropriate initial data Γ. The invariant manifold M we thus

obtain is defined at least locally near the initial data Γ.

We illustrate the method for finding local invariant manifold and the correspond-

ing reduced system by an example.
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Figure 1. Local invariant manifold M is represented by the equation

G(x1, · · · , xn) = 0 in the x1 · · ·xn− space. Namely, M is the inter-

section of the surface G = G(x1, · · · , xn) with the plane G = 0 in

x1 · · ·xnG−space. Here G(x1, · · · , xn) is the solution of (12)-(13) via

the method of characteristics. Note that N = (ux1
, · · · , uxn

,−1) and

V = (a1, · · · , an, c).

Example 2.

dx

dt
= x + x Ẇ1 + x Ẇ2,

dy

dt
= 3x + 2y + (x + y) Ẇ1 + (x + y) Ẇ2

where W 1
t and W 2

t are independent scalar Brownian motions.

We look for a local invariant manifold M ⊂ R
2. For this illustrative example,

the associated tangency conditions (7) and (8) coincide and thus becomes a single

invariance condition:

(x, x + y)T ∈ TxM(15)

We represent the invariant manifold M by G(x, y) = 0. This surface has normal

vector (Gx, Gy). By noticing that normal vector is orthogonal to the tangent sur-

face TxM , we see that the above single invariance condition (15) becomes a single

invariance equation:

xGx + (x + y)Gy = 0.
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We solve this first order partial differential equation with initial curve Γ parameterized

as (f(s), g(s), h(s)). The characteristic equations are

dx

dt
= x,

dy

dt
= x + y,

dG

dt
= 0.

We solve these equations and invoke the initial conditions to find that

x = f(s)et,

y = (f(s)t + g(s))et,

G = h(s).

This is the general solution with respect to the general initial condition (x0(s), y0(s),

G0(s)) := (f(s), g(s), h(s)). By solving for t, s in terms of x, y, we obtain G = G(x, y).

We illustrate this by a specific choice of initial curve (f(s), g(s), h(s)). Note

that, in order to obtain a local invariant manifold G(x, y) = 0, we also need to pick

initial curve so that G actually takes both positive and negative values, and thus

the invariant manifold G(x, y) = 0 is defined on some set in the xy−plane. In other

words, the continuous function G(x, y) satisfies max{G} ∗ min{G} ≤ 0 locally.

For example, taking Γ : (x0(s), y0(s), G0(s)) = (1, s, s), we then have

x = et,

y = (t + s)et,

G = s.

Thus s = y

x
− ln(x) and G(x, y) = y

x
− ln(x). Thus an invariant manifold M is

G(x, y) = 0, i.e.,

y

x
− ln(x) = 0.
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